1
|
Csoma H, Kállai Z, Czentye K, Sipiczki M. Starmerella lactis-condensi, a yeast that has adapted to the conditions in the oenological environment. Int J Food Microbiol 2023; 401:110282. [PMID: 37329632 DOI: 10.1016/j.ijfoodmicro.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The yeast Starmerella (Candida) lactis-condensi is considered a food contaminant microorganism. The aim of our research was to determine why St. lactis-condensi could become the dominant species of Essences, the top sweet wine speciality of Tokaj wine region in Hungary. We investigated the physiological properties of these yeasts based on parameters that may influence their ability to selectively proliferate and persist during maturation in wines with very high sugar content. These include glucose and fructose, alcohol, and sulphur tolerance. Our studies have shown that St. lactis-condensi is a fructophilic yeast that is able to adapt quickly to very high sugar concentrations (up to 500 g/L) in the Essences. The high glucose concentration inhibits its growth, as well as that of the St. bacillaris (Candida zemplinina) strains tested. The type and amount of sugars in the Essences, together with the sulphur and alcohol content, influence the composition of the dominant yeast biota. Analysis of (GTG)5 microsatellite in the nuclear genome and mtDNA-RFLP studies demonstrate that a diverse population of St. lactis-condensi occurs in the Tokaj wine region, in the Essences. This yeast species is characterised by both physiological and genetic biodiversity. GC-MS analysis of Essences colonised exclusively with these yeasts showed no deterioration in quality.
Collapse
Affiliation(s)
- Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary.
| | - Zoltán Kállai
- Research Institute for Viticulture and Oenology, Tarcal; Department of Oenological Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Czentye
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Gao Q, Zhang Y, Gao C, Li H, Cheng Y, Qian X, Zhang L, Liu J, Ogunyemi SO, Guan J. The Microbial Diversity in Relation to Postharvest Quality and Decay: Organic vs. Conventional Pear Fruit. Foods 2023; 12:1980. [PMID: 37238797 PMCID: PMC10217483 DOI: 10.3390/foods12101980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Organic food produced in environmentally friendly farming systems has become increasingly popular. (2) Methods: We used a DNA metabarcoding approach to investigate the differences in the microbial community between organic and conventional 'Huangguan' pear fruit; and (3) Results: Compared to a conventional orchard, the fruit firmness in the organic orchard had significantly lowered after 30 days of shelf-life storage at 25 °C, and the soluble solids content (SSC), titratable acid (TA), and decay index were higher. There were differences in the microbial diversity between organic and conventional orchards pears. After 30 days of storage, Fusarium and Starmerella became the main epiphytic fungi in organic fruits, while Meyerozyma was dominant in conventional fruits. Gluconobacter, Acetobacter, and Komagataeibacter were dominant epiphytic bacteria on pears from both organic and conventional orchards after a 30-day storage period. Bacteroides, Muribaculaceae, and Nesterenkonia were the main endophytic bacteria throughout storage. There was a negative correlation between fruit firmness and decay index. Moreover, the abundance of Acetobacter and Starmerella were positively correlated with fruit firmness, while Muribaculaceae was negatively correlated, implying that these three microorganisms may be associated with the postharvest decay of organic fruit; (4) Conclusions: The difference in postharvest quality and decay in organic and conventional fruits could potentially be attributed to the variation in the microbial community during storage.
Collapse
Affiliation(s)
- Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Huimin Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xun Qian
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Lishu Zhang
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jinyu Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310013, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
3
|
Li R, Liu Y, Zheng J, Xu M, Wang H, Sun C, Cai S, Guo X, Wu X, Chen Y. Oenological characteristics of two indigenous Starmerella bacillaris strains isolated from Chinese wine regions. Appl Microbiol Biotechnol 2023; 107:3717-3727. [PMID: 37097503 DOI: 10.1007/s00253-023-12502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
To broaden knowledge about the oenological characteristics of Starmerella bacillaris, the influence of two Chinese indigenous S. bacillaris strains on the conventional enological parameters and volatile compounds of Cabernet Sauvignon wines were investigated under different inoculation protocols (single inoculation and simultaneous/sequential inoculation with the commercial Saccharomyces cerevisiae EC1118). The results showed that the two S. bacillaris strains could complete alcohol fermentation alone under high sugar concentrations while increasing the content of glycerol and decreasing the content of acetic acid. Compared with wines fermented by EC1118 single inoculation, S. bacillaris single inoculation and S. bacillaris/EC1118 sequential inoculation increased the contents of isobutanol, ethyl isobutanoate, terpenes, and ketones and decreased the contents of isopentanol, phenylethyl alcohol, fatty acids, acetate esters, and total ethyl esters. Furthermore, for S. bacillaris/EC1118 simultaneous inoculation, the concentrations of ethyl esters were increased, contributing to a higher score of "floral" and "fruity" notes in agreement with sensory analysis. KEY POINTS: • S. bacillaris single and simultaneous/sequential inoculation. • Conventional enological parameters and volatile compounds were investigated. • S. bacillaris/EC1118 simultaneous fermentation increased ethyl esters.
Collapse
Affiliation(s)
- Ruirui Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yanjun Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China
| | - Meng Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunhong Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shijie Cai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China.
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China.
| |
Collapse
|
4
|
Perpetuini G, Rossetti AP, Battistelli N, Zulli C, Piva A, Arfelli G, Corsetti A, Tofalo R. Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d'Abruzzo Wine Volatile and Sensory Diversity. Foods 2023; 12:1102. [PMID: 36900619 PMCID: PMC10000971 DOI: 10.3390/foods12051102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, six fermentation trials were carried out: co-inoculation and sequential inoculation of Saccharomyces cerevisiae and Starmerella bacillaris in the presence and absence of oak chips. Moreover, Starm. bacillaris strain was attached to the oak chips and co-inoculated or sequentially inoculated with S. cerevisiae. Wines fermented with Starm. bacillaris adhered to oak chips showed a higher concentration of glycerol (more than 6 g/L) than the others (about 5 g/L). These wines also showed a higher content of polyphenols (more than 300 g/L) than the others (about 200 g/L). The addition of oak chips induced an increase of yellow color (b* value of about 3). Oak-treated wines were characterized by a higher concentration of higher alcohols, esters and terpenes. Aldehydes, phenols and lactones were detected only in these wines, independently from the inoculation strategy. Significant differences (p < 0.05) were also observed in the sensory profiles. The fruity, toasty, astringency, and vanilla sensations were perceived as more intense in wines treated with oak chips. The white flower descriptor showed a higher score in wines fermented without chips. Oak surface-adhered Starm. bacillaris cells could be a good strategy to improve the volatile and sensory profile of Trebbiano d'Abruzzo wines.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Alessio Pio Rossetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | | | - Andrea Piva
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Arfelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
5
|
Effects of Saccharomyces cerevisiae and Starmerella bacillaris on the physicochemical and sensory characteristics of sparkling pear cider (Perry). Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThis study was aimed to produce pear cider (Perry), using small caliber pears cv Abate Fètel, fermented by Starmerella bacillaris and Saccharomyces cerevisiae in co-inoculated (COF) and sequential (SEF) mixed cultures in comparison with S. cerevisiae monoculture fermentation (AXF), evaluating the influence of yeast starter cultures on Perry characteristics. The perries were re-fermented in bottle by S. cerevisiae strain EC1118. During primary fermentation, growth and fermentation kinetics were different in the co-inoculated and sequential fermentations in comparison with pure S. cerevisiae fermentation; however, sugars were depleted, and 6% (v/v) ethanol was produced in all the trials. Glycerol content was significantly higher in mixed fermentations due to Starm. bacillaris metabolism (+ 20% in COF, and + 42% in SEF conditions). After re-fermentation in bottle, higher levels of 3-Methyl-1-butanol, 1-propanol, acetaldehyde and esters were detected in Perry from the mixed fermentations. All the Perries were accepted by the consumers (general liking values from 6.01 to 6.26). Perries’ appearance from mixed fermentations was described as less intense and more clear. The use of small caliber pears cv Abate Fètel and Starm. bacillaris in combination with S. cerevisiae in Perry production might be a suitable tool to obtain novel beverages with distinctive organoleptic features.
Collapse
|
6
|
Evaluation of Different Molecular Markers for Genotyping Non-Saccharomyces Wine Yeast Species. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wine quality is determined by the particular yeast strains prevailing at various stages of fermentation. Therefore, the ability to make an easy, fast, and unambiguous discrimination of yeasts at the strain level is of great importance. Here, the tandem repeat-tRNA (TRtRNA) method with the 5GAC or ISSR-MB primer sets and random amplified polymorphic DNA (RAPD) analysis with (GTG)3, R5, and RF2 oligonucleotides were tested on various non-Saccharomyces wine yeast species. The TRtRNA-PCR employing ISSR-MB showed the highest capacity in discriminating Lachancea thermotolerans and Metschnikowia pulcherrima isolates. RAPD with RF2 was the most efficient method in resolving Starmerella bacillaris isolates, although it produced few polymorphic bands. RAPD with R5 showed the highest capacity to discriminate among the Issatchenkia orientalis, Hanseniaspora guilliermondii, and Pichia anomala isolates. RAPD with either R5 or RF2 exhibited the highest ability to discriminate among the Torulaspora delbrueckii isolates. RAPD with (GTG)3 was the most discriminating method for the H. uvarum isolates. Here we concluded that both TRtRNA-PCR and RAPD-PCR offer rapid means for typing non-Saccharomyces species. However, each method performs better for a given species when paired with a particular primer set. The present results can be useful in wine research for the fast fingerprinting of non-Saccharomyces yeasts.
Collapse
|
7
|
Tofalo R, Perpetuini G, Rossetti AP, Gaggiotti S, Piva A, Olivastri L, Cicchelli A, Compagnone D, Arfelli G. Impact of Saccharomyces cerevisiae and non-Saccharomyces yeasts to improve traditional sparkling wines production. Food Microbiol 2022; 108:104097. [DOI: 10.1016/j.fm.2022.104097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|
8
|
Giraldo C, Chaves-López C, Tofalo R, Angrisani R, Rodrigues A, Montoya-Lerma J. Yeasts associated with the worker caste of the leaf-cutting ant Atta cephalotes under experimental conditions in Colombia. Arch Microbiol 2022; 204:284. [PMID: 35476294 DOI: 10.1007/s00203-022-02811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Yeasts isolated from the worker caste of the Colombian leaf-cutting ant, Atta cephalotes (Hymenoptera: Myrmicinae) were cultured and identified by molecular methods. Abundant, persistent, and omnipresent species were classified as "prevalent". Experimental data were compared with information gathered from published reports on the yeast species composition in other leaf-cutting ant species. Diversity analysis was conducted using diversity values (q0, q1, and q2) to compare the richness and abundance of yeasts present in different leaf-cutting ant species. Clustering analysis was carried out to assess the similarity of yeast community according to ant species. The yeast species composition was highly variable among the ant species. A. laevigata and A. capiguara showed the highest degree of similarity and differed from the group composed by A. cephalotes, A. sexdens, A. sexdens rubropilosa, and A. texana. The isolation of dominant yeasts in different ant castes within the different compartments of a colony strongly suggests that the identified microorganisms are not transient but are native to the soil surrounding ant colonies and the substrates used by the ants to grow their fungal cultivars. It is apparent that the ant-fungus mutualism does not operate in an environment devoid of other microbes, but rather that the association must be seen within the context of a background of other microorganisms, particularly the dominant yeasts.
Collapse
Affiliation(s)
- Carolina Giraldo
- Departamento de Biología, Universidad del Valle, A.A. 25360, Cali, Colombia.
| | - Clemencia Chaves-López
- Facoltá di BioScience e Tecnologie Agro-Alimentari e Ambientali, Universitá Degli Studi di Teramo, Via R. Balzarini, 164100, Teramo, Italy
| | - Rosanna Tofalo
- Facoltá di BioScience e Tecnologie Agro-Alimentari e Ambientali, Universitá Degli Studi di Teramo, Via R. Balzarini, 164100, Teramo, Italy
| | - Roberto Angrisani
- NutriPlant S.R.L. Impianto Chimico per la Produzione Di Specialità Fertilizzanti per Agricoltura in Gestione Biologica e Convenzionale, S. S. 93 Km 46,400, 85024, Lavello, PZ, Italy
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | |
Collapse
|
9
|
Tofalo R, Suzzi G, Perpetuini G. Discovering the Influence of Microorganisms on Wine Color. Front Microbiol 2021; 12:790935. [PMID: 34925298 PMCID: PMC8678073 DOI: 10.3389/fmicb.2021.790935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
10
|
Promoting Candida zemplinina adhesion on oak chips: A strategy to enhance esters and glycerol content of Montepulciano d'Abruzzo organic wines. Food Res Int 2021; 150:110772. [PMID: 34865787 DOI: 10.1016/j.foodres.2021.110772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
In this study cell surface hydrophobicity and the ability to adhere on abiotic surfaces (polystyrene plates, stainless steel and oak chips) of 10 Candida zemplinina strains were assessed. Moreover, the impact of C. zemplinina cells adhered on oak surface on fermentation kinetics and volatile profile of Montepulciano d'Abruzzo organic wines was evaluated. All strains showed a hydrophobic nature with a certain affinity for the apolar solvents tested (hexadecane and decane). In agreement with this data strains were able to adhere on abiotic surfaces in a strain dependent way. On polystyrene plates all strains mainly grew as planktonic cells. On stainless steel surfaces sessile cells ranged from 2.6 Log CFU/mL (SB2) to 4.1 Log CFU/mL (SB8), while on oak chips were about 2 log higher ranging from 4.3 Log CFU/mL (SB8) to 6.1 Log CFU/mL (SB10). Candida zemplinina sessile state resulted in an increase of glycerol (from 6.98 g/L to 11.92 g/L) and esters amount (from 55.47 g/L to 91.5 mg/L), and a reduction of ethanol content (from 14.13% to 9.12% v/v). As for esters, methyl vanillate, ethyl isobutyrate, and ethyl isovalerate were present only when C. zemplinina was adhered on oak chips. This study revealed that changes of concentrations in esters and glycerol content reflected the fermentation bioactivity of yeast cells attached on oak chips. Surface-adhered behaviours should be considered in the improvement of strategies for the development of high-quality organic wines and eventually obtain novel wine styles.
Collapse
|
11
|
Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods 2021; 10:foods10102498. [PMID: 34681547 PMCID: PMC8535880 DOI: 10.3390/foods10102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The attention of some winemakers and researchers over the past years has been drawn towards the partial or total dealcoholization of wines and alcoholic beverages due to trends in wine styles, and the effect of climate change on wine alcohol content. To achieve this, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production. However, the removal of alcohol by these techniques can cause changes in color and losses of desirable volatile aroma compounds, which can subsequently affect the sensory quality and acceptability of the wine by consumers. Aside from the removal of ethanol, other factors such as the ethanol concentration, the kind of alcohol removal technique, the retention properties of the wine non-volatile matrix, and the chemical-physical properties of the aroma compounds can influence changes in the wine sensory quality during dealcoholization. This review highlights and summarizes some of the techniques for wine dealcoholization and their impact on wine quality to help winemakers in choosing the best technique to limit adverse effects in dealcoholized wines and to help meet the needs and acceptance among different targeted consumers such as younger people, pregnant women, drivers, and teetotalers.
Collapse
|
12
|
Ge Q, Guo C, Zhang J, Yan Y, Zhao D, Li C, Sun X, Ma T, Yue T, Yuan Y. Effects of Simultaneous Co-Fermentation of Five Indigenous Non- Saccharomyces Strains with S. cerevisiae on Vidal Icewine Aroma Quality. Foods 2021; 10:foods10071452. [PMID: 34206678 PMCID: PMC8307878 DOI: 10.3390/foods10071452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
In this study, Vidal grape must was fermented using commercial Saccharomyces cerevisiae F33 in pure culture as a control and in mixed culture with five indigenous non-Saccharomyces yeast strains (Hanseniaspora uvarum QTX22, Saccharomycopsis crataegensis YC30, Pichia kluyveri HSP14, Metschnikowia pulcherrima YC12, and Rhodosporidiobolus lusitaniae QTX15) through simultaneous fermentation in a 1:1 ratio. Simultaneous fermentation inhibited the growth of S. cerevisiae F33 and delayed the time to reach the maximum biomass. Compared with pure fermentation, the contents of polyphenols, acetic esters, ethyl esters, other esters, and terpenes were increased by R. lusitaniae QTX15, S. crataegensis YC30, and P. kluyveri HSP14 through simultaneous fermentation. S. crataegensis YC30 produced the highest total aroma activity and the most abundant aroma substances of all the wine samples. The odor activity values of 1 C13-norisoprenoid, 3 terpenes, 6 acetic esters, and 10 ethyl esters improved significantly, and three lactones (δ-decalactone, γ-nonalactone, and γ-decalactone) related to coconut and creamy flavor were only found in this wine. Moreover, this sample showed obvious “floral” and “fruity” note odor due to having the highest amount of ethyl ester aromatic substances and cinnamene, linalool, citronellol, β-damascenone, isoamyl ethanoate, benzylcarbinyl acetate, isobutyl acetate, etc. We suggest that simultaneous fermentation of S. crataegensis YC30 with S. cerevisiae might represent a novel strategy for the future production of Vidal icewine.
Collapse
Affiliation(s)
- Qian Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Jing Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Yue Yan
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Danqing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Caihong Li
- Institute of Quality Standard and Testing Technology for Agro-Products of Ningxia, Yinchuan 750002, China; (J.Z.); (Y.Y.); (D.Z.); (C.L.)
| | - Xiangyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Q.G.); (C.G.); (X.S.); (T.M.); (T.Y.)
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
- Correspondence: ; Tel./Fax: +86-029-87092261
| |
Collapse
|
13
|
Genetic, Physiological, and Industrial Aspects of the Fructophilic Non-Saccharomyces Yeast Species, Starmerella bacillaris. FERMENTATION 2021. [DOI: 10.3390/fermentation7020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast species, frequently found in enological ecosystems. Peculiar aspects of the genetics and metabolism of this yeast species, as well as potential industrial applications of isolated indigenous S. bacillaris strains worldwide, have recently been explored. In this review, we summarize relevant observations from studies conducted on standard laboratory and indigenous isolated S. bacillaris strains.
Collapse
|
14
|
Battistelli N, Perpetuini G, Piva A, Pepe A, Sidari R, Wache Y, Tofalo R. Cultivable microbial ecology and aromatic profile of "mothers" for Vino cotto wine production. Food Res Int 2021; 143:110311. [PMID: 33992330 DOI: 10.1016/j.foodres.2021.110311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to assess the cultivable microbiota of "mothers" of Vino cotto collected from production of different years 1890, 1895, 1920, 1975, 2008. A total of 73 yeasts and 81 bacteria were isolated. Starmerella lactis-condensi, Starmerella bacillaris, Hanseniaspora uvarum, Saccharomyces cerevisiae, Hanseniaspora guillermondi and Metschnikowia pulcherrima were identified. Bacteria isolates belonged to lactic acid bacteria (Lactiplantibacillus plantarum and Pediococcus pentosaceus) and acetic acid bacteria (Gluconobacter oxydans). Remarkable biodiversity was observed for Starm. bacillaris, as well as L. plantarum and G. oxydans. Organic acids and volatile compounds were also determined. Malic and succinic acids were the main ones with values ranging from 8.49 g/L to 11.76 g/L and from 4.15 g/L to 7.73 g/L respectively, while citric acid was present at low concentrations (<0.2 g/L) in all samples. Esters and higher alcohols were the main volatile compounds detected followed by alkanes. This study permits to better understand the microbial communities associated to this product and could be considered a starting point for the definition of tailored starter cultures to improve the quality of Vino cotto preserving its typical traits.
Collapse
Affiliation(s)
- Noemi Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Andrea Piva
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Alessia Pepe
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Rossana Sidari
- Department of Agraria, Mediterranean University of Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy
| | - Yves Wache
- Tropical Fermentation Network, France; International Joint Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 12120, Thailand
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| |
Collapse
|
15
|
Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a group of esters and acetals associated to fruity and herbaceous aroma. Microbial and chemical characterization of non-Saccharomyces yeasts presents an exciting approach to enhance flavor complexity and regionality of hybrid wines.
Collapse
|
16
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
17
|
Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Food Res Int 2020; 138:109779. [DOI: 10.1016/j.foodres.2020.109779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
|
18
|
Pilot Scale Fermentations of Sangiovese: An Overview on the Impact of Saccharomyces and Non-Saccharomyces Wine Yeasts. FERMENTATION 2020. [DOI: 10.3390/fermentation6030063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The production of wines with peculiar analytical and sensorial profiles, together with the microbiological control of the winemaking process, has always been one of the main objectives of the wine industry. In this perspective, the use of oenological starters containing non-Saccharomyces yeasts can represent a valid tool for achieving these objectives. Here we present the results of seven pilot scale fermentations, each of which was inoculated with a different non-Saccharomyces yeast strain and after three days with a commercial Saccharomyces cerevisiae starter. The fermentations were carried out in double on 70 L of Sangiovese grape must, the most widely planted red grape variety in Italy and particularly in Tuscany, where it is utilized for the production of more than 80% of red wines. Fermentations were monitored by assessing both the development of the microbial population and the consumption of sugars at the different sampling times. The impact of the different starters was assessed after stabilization through the evaluation of the standard analytical composition of the resulting wines, also taking into account polysaccharides and volatile compounds. Moreover, quantitative descriptive sensory analyses were carried out. Compared to the control wines obtained by inoculating the S. cerevisiae starter strain, those inoculated with non-Saccharomyces/Saccharomyces mixed starters presented a significant differentiation in the chemical-analytical composition. Moreover, sensory analysis revealed differences among wines mainly for intensity of color, astringency, and dryness mouthfeel perception.
Collapse
|
19
|
Mangani S, Buscioni G, Guerrini S, Granchi L. Influence of sequential inoculum of
Starmerella bacillaris
and
Saccharomyces cerevisiae
on flavonoid composition of monovarietal Sangiovese wines. Yeast 2020; 37:549-557. [DOI: 10.1002/yea.3474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Silvia Mangani
- FoodMicroTeam Spin‐off University of Florence Florence Italy
| | | | - Simona Guerrini
- FoodMicroTeam Spin‐off University of Florence Florence Italy
| | - Lisa Granchi
- Department of Agriculture, Foods, Environment and Forestry University of Florence Florence Italy
| |
Collapse
|
20
|
Horváth BO, Sárdy DN, Kellner N, Magyar I. Effects of High Sugar Content on Fermentation Dynamics and Some Metabolites of Wine-Related Yeast Species Saccharomyces cerevisiae, S. uvarum and Starmerella bacillaris. Food Technol Biotechnol 2020; 58:76-83. [PMID: 32684791 PMCID: PMC7365345 DOI: 10.17113/ftb.58.01.20.6461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is an important non-Saccharomyces yeast in winemaking with valuable oenological properties, accompanying Saccharomyces species in sweet wine fermentation, and has been suggested also for application as combined starter culture in dry or sweet wines. In this study, the major metabolites and nitrogen utilization of these yeasts are evaluated in the musts with high or extremely high sugar concentration. The change in the metabolic footprint of Saccharomyces cerevisiae, Saccharomyces uvarum and Starmerella bacillaris strains was compared when they were present as pure cultures in chemically defined grape juice medium with 220 and 320 g/L of sugar, to represent a fully matured and an overripe grape. Surprisingly, the extreme sugar concentration did not result in a considerable change in the rate of sugar consumption; only a shift of the sugar consumption curves could be noticed for all species, especially for Starmerella bacillaris. At the extreme sugar concentration, Starmerella bacillaris showed excellent glycerol production, moderate nitrogen demand together with a noticeable proline utilisation. The change in the overall metabolite pattern of Starmerella bacillaris allowed clear discrimination from the change of the Saccharomyces species. In this experiment, the adequacy of this non-Saccharomyces yeast for co-fermentation in juices with high sugar concentration is highlighted. Moreover, the results suggest that Starmerella bacillaris has a more active adaptation mechanism to extremely high sugar concentration.
Collapse
Affiliation(s)
- Borbála Oláhné Horváth
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Diána Nyitrainé Sárdy
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Nikolett Kellner
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Ildikó Magyar
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| |
Collapse
|
21
|
Russo P, Tufariello M, Renna R, Tristezza M, Taurino M, Palombi L, Capozzi V, Rizzello CG, Grieco F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms 2020; 8:E628. [PMID: 32357569 PMCID: PMC7285007 DOI: 10.3390/microorganisms8050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
In this investigation, we explored the oenological significance of Candida zemplinina (syn. Starmerella bacillaris) isolates from Apulian grape musts. Moreover, we provide the first evidence of the impact of different C. zemplinina strains on the wine aromatic properties tested as monocultures. We described the diversity of C. zemplinina strains isolated from grapes and the variability of 'volatile' phenotypes associated with this intraspecific variability. Thirty-three isolates were characterized at strain level by PCR-based approach and, among these, 16 strains were identified and then tested by microfermentation tests carried out in grape must. Analyzed strains were low producers of acetic acid and hydrogen sulphide, not able to decarboxylate a panel of representative amino acids, whereas they showed fructophilic character and significant glycerol production. Volatile profiles of produced wines were investigated by gas chromatography-mass spectrometry. The Odor Activity Values of all molecules were calculated and 12 compounds showed values above their odor thresholds. Two selected strains (35NC1 and 15PR1) could be considered as possible starter cultures since they were able to positively affect the sensory properties of obtained wine. This report firstly supplies evidence on the strain-specific impact of different C. zemplinina strains on the final aroma of produced wines.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Maria Tufariello
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Raffaela Renna
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Mariana Tristezza
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Marco Taurino
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Lorenzo Palombi
- CNR—Institute for Applied Physics ‘Nello Carrara” (IFAC), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Carlo G. Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Francesco Grieco
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| |
Collapse
|
22
|
Russo P, Englezos V, Capozzi V, Pollon M, Río Segade S, Rantsiou K, Spano G, Cocolin L. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation. Food Res Int 2020; 134:109246. [PMID: 32517918 DOI: 10.1016/j.foodres.2020.109246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023]
Abstract
This work aims to improve the management of the malolactic fermentation (MLF) in red wines by elucidating the interactions between Starmerella bacillaris and Saccharomyces cerevisiae in mixed fermentations and malolactic bacteria. Two Starm. bacillaris strains were individually used in mixed fermentations with a commercial S. cerevisiae. MLF was performed using two autochthonous Lactobacillus plantarum and one commercial Oenococcus oeni inoculated following a simultaneous (together with S. cerevisiae) or sequential (at the end of alcoholic fermentation) approach. The impact of yeast inoculation on the progress of MLF was investigated by monitoring the viable microbial populations and the evolution of the main oenological parameters, as well as the volatile organic composition of the wines obtained in mixed and pure micro-scale winemaking trials. Our results indicated that MLF was stimulated, inhibited, or unaffected in mixed fermentations depending on the strains and on the regime of inoculation. O. oeni was able to perform MLF under all experimental conditions, and it showed a minimal impact on the volatile organic compounds of the wine. L. plantarum was unable to perform MLF in sequential inoculation assays, and strain-depending interactions with Starm. bacillaris were indicated as factor affecting the outcome of MLF. Moreover, uncompleted MLF were related to a lower aromatic complexity of the wines. Our evidences indicate that tailored studies are needed to define the appropriate management of non-Saccharomyces and malolactic starter cultures in order to optimize some technological parameters (i.e. reduction of vinification time) and to improve qualitative features (i.e. primary and secondary metabolites production) of red wines.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Vasileios Englezos
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Matteo Pollon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
23
|
Microbial Community Analyses Associated with Nine Varieties of Wine Grape Carposphere Based on High-Throughput Sequencing. Microorganisms 2019; 7:microorganisms7120668. [PMID: 31835425 PMCID: PMC6956142 DOI: 10.3390/microorganisms7120668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the composition of microbials on the grape carposphere may provide direct guidance for the wine brewing. In this work, 16S rRNA and ITS (Internal Transcribed Spacer) fungal amplicon sequencing were performed to investigate the differences of epiphytic microbial communities inhabiting different varieties of wine grape berries. The results showed that the dominated phylum of different wine grape carpospheres were Proteobacteria, Actinomycetes, Firmicutes, Gemmatimonadete, and Bacteroidetes. The dominant bacterial genera of different wine grape varieties were Pseudomonas, Arthrobacter, Bacillus, Pantoea, Planomicrobium, Massilia, Curtobacterium, Corynebacterium, Cellulomonas, Sphingomonas, and Microvirga. The fungal communities of the grapes were dominated by Ascomycota for all nine wine varieties. The dominant fungal genera on grape carposphere were Alternaria, Cladosporium, unclassified Capnodiales, Phoma, Rhodotorula, Cryptococcus, Aureobasidium, and Epicoccum. Community structure exerts a significant impact on bacterial Bray-Curtis dissimilarity on six red grapes and also a significant bacterial impact on three white grapes. Community structure exerts a significant impact on fungal Bray-Curtis dissimilarity on six red grapes but weak or no fungal impact on three white grapes. The results revealed that grape variety plays a significant role in shaping bacterial and fungal community, varieties can be distinguished based on the abundance of several key bacterial and fungal taxa.
Collapse
|
24
|
Binati RL, Lemos Junior WJF, Luzzini G, Slaghenaufi D, Ugliano M, Torriani S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int J Food Microbiol 2019; 318:108470. [PMID: 31841784 DOI: 10.1016/j.ijfoodmicro.2019.108470] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/02/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Saccharomyces cerevisiae starter cultures are largely used in winemaking to repress the wild microorganisms and achieve more predictable and desired outcomes. Notwithstanding, alternative microbial resources received increasing attention for their potential to produce wines with more distinctive and typical features. Our previous survey revealed a great inter- and intra-species diversity in an extensive collection of non-Saccharomyces wine yeasts from multiple regions of Italy. This study aimed to explore the detected biodiversity evaluating the quality of wines obtained by sequential inoculation of specific selected strains of the collection (Lachancea thermotolerans or Metschnikowia spp. or Starmerella bacillaris), and S. cerevisiae EC 1118. Fermentations of natural grape must at laboratory scale were followed by microbiological, chemical and sensorial analysis of the wines. The results indicated that each yeast species and strain exerted a distinctive impact on the wine, giving final products clearly separated with Principal Component Analysis. In particular, L. thermotolerans contributed producing relevant amounts of lactic acid and had the highest potential to reduce ethanol content; the presence of S. bacillaris increased the level of glycerol, and, remarkably, reduced acetaldehyde and total SO2; Metschnikowia spp. promoted the formation of higher alcohols and esters, and reduced volatile phenols. The sensory analysis based on the orthonasal aroma confirmed the separation between the wines obtained with the sequential fermentations and the control with single inoculation of EC 1118, although the three non-Saccharomyces species used could not be clearly distinguishable by the panelists. This study indicates that the use of selected native non-Saccharomyces strains in conjunction with S. cerevisiae positively modulates some relevant chemical parameters, and improves the aromatic intensity of wine, therefore justifying investments in non-conventional yeasts as co-starter cultures.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Giovanni Luzzini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
25
|
Binati RL, Innocente G, Gatto V, Celebrin A, Polo M, Felis GE, Torriani S. Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking. Food Res Int 2019; 122:432-442. [DOI: 10.1016/j.foodres.2019.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
|
26
|
Englezos V, Pollon M, Rantsiou K, Ortiz-Julien A, Botto R, Río Segade S, Giacosa S, Rolle L, Cocolin L. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations. Food Res Int 2019; 122:392-401. [DOI: 10.1016/j.foodres.2019.03.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/01/2022]
|
27
|
Raymond Eder ML, Conti F, Bely M, Masneuf‐Pomarède I, Albertin W, Rosa AL. Vitis
species, vintage, and alcoholic fermentation do not drive population structure in
Starmerella bacillaris
(synonym
Candida zemplinina
) species. Yeast 2019; 36:411-420. [DOI: 10.1002/yea.3385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- María Laura Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| | - Francisco Conti
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| | - Marina Bely
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
| | - Isabelle Masneuf‐Pomarède
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
- Bordeaux Sciences Agro Gradignan France
| | - Warren Albertin
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
- ENSCBPBordeaux INP Pessac France
| | - Alberto Luis Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| |
Collapse
|
28
|
Vinicius De Melo Pereira G, De Carvalho Neto DP, Junqueira ACDO, Karp SG, Letti LAJ, Magalhães Júnior AI, Soccol CR. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1630636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Dão P. De Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Ana C. De O. Junqueira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Susan G. Karp
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Luiz A. J. Letti
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | - Carlos R. Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
29
|
Wei J, Zhang Y, Yuan Y, Dai L, Yue T. Characteristic fruit wine production via reciprocal selection of juice and non-Saccharomyces species. Food Microbiol 2019; 79:66-74. [DOI: 10.1016/j.fm.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
|
30
|
Mbuyane LL, de Kock M, Bauer FF, Divol B. Torulaspora delbrueckii produces high levels of C5 and C6 polyols during wine fermentations. FEMS Yeast Res 2019; 18:5061120. [PMID: 30060050 DOI: 10.1093/femsyr/foy084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
Non-Saccharomyces yeasts impact wine fermentations and can diversify the flavor profiles of wines. However, little information is available on the metabolic networks of most of these species. Here we show that unlike the main wine yeast Saccharomyces cerevisiae, Torulaspora delbrueckii and to a lesser extent Lachancea thermotolerans produce significant concentrations of C5 and C6 polyols under wine fermentation conditions. In particular, D-arabitol, D-sorbitol and D-mannitol were produced at significant levels. Their release into the extracellular matrix started when that of glycerol ceased. The data also show that polyol production is influenced by initial sugar concentration, repressed by acetic acid and induced in ethanol supplemented media. Moreover, unlike glycerol and sorbitol, mannitol was partially re-assimilated when populations started to decline. The findings suggest that polyol synthesis is a physiological adaptation to stressful conditions characteristic of alcoholic fermentation and that these polyols may serve a similar purpose as glycerol production in S. cerevisiae, including osmoadaptation and redox balancing.
Collapse
Affiliation(s)
- Lethiwe L Mbuyane
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marli de Kock
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
31
|
Csoma H, Ács-Szabó L, Papp LA, Sipiczki M. Application of different markers and data-analysis tools to the examination of biodiversity can lead to different results: a case study with Starmerella bacillaris (synonym Candida zemplinina) strains. FEMS Yeast Res 2019. [PMID: 29518226 DOI: 10.1093/femsyr/foy021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Starmerella bacillaris (Candida zemplinina) is a genetically heterogeneous species. In this work, the diversity of 41 strains of various origins is examined and compared by the analysis of the length polymorphism of nuclear microsatellites and the RFLP of mitochondrial genomes. The band patterns are analysed with UPGMA, neighbor joining, neighbor net, minimum spanning tree and non-metric MDS algorithms. The results and their comparison to previous analyses demonstrate that different markers and different clustering methods can result in very different groupings of the same strains. The observed differences between the topologies of the dendrograms also indicate that the positions of the strains do not necessarily reflect their real genetic relationships and origins. The possibilities that the differences might be partially due to different sensitivity of the markers to environmental factors (selection pressure) and partially to the different grouping criteria of the algorithms are also discussed.
Collapse
Affiliation(s)
- Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - László Attila Papp
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| |
Collapse
|
32
|
Draft Genome Sequence of the Candida zemplinina (syn., Starmerella bacillaris) Type Strain CBS 9494 [corrected]. Microbiol Resour Announc 2018; 7:MRA00872-18. [PMID: 30533866 PMCID: PMC6211350 DOI: 10.1128/mra.00872-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/29/2022] Open
Abstract
Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species. Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species.
Collapse
|
33
|
Study of the Influence of Different Yeast Strains on Red Wine Fermentation with NIR Spectroscopy and Principal Component Analysis. J 2018. [DOI: 10.3390/j1010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcoholic fermentation is a key step in wine production. Indeed, a wide range of compounds, which strongly affect the sensory properties of wine, is produced during this process. While Saccharomyces cerevisiae yeast cultures are commonly employed in winemaking to carry on the fermentation process, some non-Saccharomyces species have recently gained attention due to their ability to produce various metabolites of oenological interest. The use of different yeasts strains usually results in wines with different sensory properties, despite being obtained from the same grape variety. In this paper, we tested the feasibility of using near-infrared spectroscopy (NIR) to discriminate among red wines from three different grape varieties produced with pure S. cerevisiae or by mixed fermentation with a promising non-Saccharomyces yeast, namely the Starmeriella bacillaris, which usually yields wines with significant amounts of glycerol and low levels of ethanol, acetic acid, and acetaldehyde. A principal component analysis (PCA) performed on the NIR spectra was used to search for differences in the samples. The NIR results have been compared with both basic wine parameters and sensory analysis data.
Collapse
|
34
|
Abstract
Candida stellata is an imperfect yeast of the genus Candida that belongs to the order Saccharomycetales, while phylum Ascomycota. C. stellata was isolated originally from a must overripe in Germany but is widespread in natural and artificial habitats. C. stellata is a yeast with a taxonomic history characterized by numerous changes; it is either a heterogeneous species or easily confused with other yeast species that colonize the same substrates. The strain DBVPG 3827, frequently used to investigate the oenological properties of C. stellata, was recently renamed as Starmerella bombicola, which can be easily confused with C. zemplinina or related species like C. lactis-condensi. Strains of C. stellata have been used in the processing of foods and feeds for thousands of years. This species, which is commonly isolated from grape must, has been found to be competitive and persistent in fermentation in both white and red wine in various wine regions of the world and tolerates a concentration of at least 9% (v/v) ethanol. Although these yeasts can produce spoilage, several studies have been conducted to characterize C. stellata for their ability to produce desirable metabolites for wine flavor, such as acetate esters, or for the presence of enzymatic activities that enhance wine aroma, such as β-glucosidase. This microorganism could also possess many interesting technological properties that could be applied in food processing. Exo and endoglucosidases and polygalactosidase of C. stellata are important in the degradation of β-glucans produced by Botrytis cinerea. In traditional balsamic vinegar production, C. stellata shapes the aromatic profile of traditional vinegar, producing ethanol from fructose and high concentrations of glycerol, succinic acid, ethyl acetate, and acetoin. Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 73–74% for Starmerella bombicola. Numerous studies have clearly proven that these macromolecules make multiple positive contributions to wine quality. Recent studies on C. stellata strains in wines made by co-fermentation with Saccharomyces cerevisiae have found that the aroma attributes of the individual strains were apparent when the inoculation protocol permitted the growth and activity of both yeasts. The exploitation of the diversity of biochemical and sensory properties of non-Saccharomyces yeast could be of interest for obtaining new products.
Collapse
|
35
|
González B, Vázquez J, Morcillo-Parra MÁ, Mas A, Torija MJ, Beltran G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 2018; 74:64-74. [DOI: 10.1016/j.fm.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
36
|
Maturano YP, Mestre MV, Kuchen B, Toro ME, Mercado LA, Vazquez F, Combina M. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Int J Food Microbiol 2018; 289:40-48. [PMID: 30196180 DOI: 10.1016/j.ijfoodmicro.2018.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023]
Abstract
Current consumer preferences are determined by well-structured, full-bodied wines with a rich flavor and with reduced alcohol levels. One of the strategies for obtaining wines with reduced ethanol content is sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae yeasts. However, different factors affect the production of metabolites like ethanol, glycerol and acetic acid by inoculated yeasts. In order to obtain low alcohol wines without quality loss, the aims of our study were: i) to determine optimum conditions (fermentation temperature and time of permanence and initial inoculum size of the non-Saccharomyces population at the beginning of the process, prior to inoculation with S. cerevisiae); ii) to validate the optimized factors; and iii) to assess sensory quality of the wines obtained after validation. Two combinations of yeasts were used in this study: Hanseniaspora uvarum BHu9/S. cerevisiae BSc114 and Candida membranaefaciens BCm71/S. cerevisiae BSc114. Optimization of three fermentation factors that affect to non-Saccharomyces yeasts prior to S. cerevisiae inoculation was carried out using a Box-Behnken experimental design. Applying the models constructed by Response Surface Methodology, the lowest ethanol production by H. uvarum BHu9/S. cerevisiae BSc114 co-culture was obtained when H. uvarum BHu9 was inoculated 48 h 37 min prior to S. cerevisiae inoculation, at a fermentation temperature of 25 °C and at an initial inoculum size of 5 × 106 cells/mL. Lowest alcohol production with C. membranaefaciens BCm71/S. cerevisiae BSc114 was observed when C. membranaefaciens BCm71 was inoculated 24 h 15 min prior to S. cerevisiae at a fermentation temperature of 24.94 °C and at an initial inoculum size of 2.72 × 106 cells/mL. The optimized conditions of the two co-cultures were subsequently submitted to lab-scale validation. Both proposed strategies yielded ethanol levels that were significantly lower than control cultures (S. cerevisiae). Wines fermented with non-Saccharomyces/Saccharomyces co-cultures under optimized conditions were also associated with higher aromatic complexity characterized by the presence of red fruit aromas, whereas wines obtained with S. cerevisiae BSc114 were described by parameters linked with high ethanol levels.
Collapse
Affiliation(s)
- Y Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - M Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - Benjamín Kuchen
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - M Eugenia Toro
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Laura A Mercado
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martin 3853, 5507 Luján de Cuyo, Mendoza, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina; Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martin 3853, 5507 Luján de Cuyo, Mendoza, Argentina
| |
Collapse
|
37
|
Raymond Eder ML, Conti F, Rosa AL. Differences Between Indigenous Yeast Populations in Spontaneously Fermenting Musts From V. vinifera L. and V. labrusca L. Grapes Harvested in the Same Geographic Location. Front Microbiol 2018; 9:1320. [PMID: 29971059 PMCID: PMC6018209 DOI: 10.3389/fmicb.2018.01320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Yeast communities associated with Vitis vinifera L. ecosystems have been widely characterized. Less is known, however, about yeast communities present in grapes and fermenting musts from Vitis non-vinifera ecosystems. Moreover, there are no comparative studies concerning yeast communities in grapes from V. vinifera L. and non-vinifera Vitis species in vineyards from a shared terroir. In this work, we have used a culture-dependent strategy, phenotypic analyses, and molecular genotyping, to study the most representative yeast species present in spontaneously fermenting musts of grapes harvested from neighboring V. vinifera L. (cv. Malbec) and V. labrusca L. (cv. Isabella) vineyards. Phenotypic analyses of H2S production, ethanol tolerance and carbon utilization, on randomly selected strains of each Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae strains, as well as microsatellite genotyping of S. cerevisiae isolates from each the Malbec and Isabella grape musts, suggest that V. vinifera L. and V. labrusca L. ecosystems could harbor different yeast strain populations. Thus, microbial communities in exotic Vitis species may offer opportunities to look for unique yeast strains that could not be present in conventional V. vinifera L. ecosystems.
Collapse
Affiliation(s)
- María L Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Francisco Conti
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
38
|
Nisiotou A, Sgouros G, Mallouchos A, Nisiotis CS, Michaelidis C, Tassou C, Banilas G. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Res Int 2018; 111:498-508. [PMID: 30007712 DOI: 10.1016/j.foodres.2018.05.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/08/2018] [Accepted: 05/18/2018] [Indexed: 11/17/2022]
Abstract
The performance of two vineyard strains, Saccharomyces cerevisiae SacPK7 and Starmerella bacillaris StbPK9, was evaluated in laboratory and pilot scale fermentations of Cretan grape must under the following inoculation schemes: single inoculation of SacPK7 (IS), simultaneous inoculation of StbPK9 and SacPK7 (SM), and sequential inoculation of StbPK9 followed by SacPK7 (SQ). Un-inoculated (spontaneous) fermentations (SP) and fermentations inoculated with control S. cerevisiae strains (CS) were also conducted as reference. Star. bacillaris not only did not restrict but also slightly promoted the growth of S. cerevisiae when the two strains were co-inoculated at equal quantities. On the contrary, the SQ inoculation scheme conferred a competitive advantage to Star. bacillaris over S. cerevisiae, which maximum population was reduced, while increased levels of Star. bacillaris were recorded. The fermentation kinetics were also affected, accordingly. The completion of fermentation was faster in SM, IS and CS ferments than in SQ and SP. Ethanol accumulation had a predominant role in the early death of Star. bacillaris, since its growth was similarly arrested irrespective of the dominating yeast species, the magnitude of yeast population or the availability of energy sources. Interestingly, the inoculation scheme applied significantly affected the chemical profiles of the resulting wines. SQ produced the most divergent chemical profile in sterile must, with glycerol, acetic acid, acetaldehyde, residual glucose, malic acid, ethyl acetate and higher alcohols being the key compounds affected by the prolonged activity of StbPK9. In pilot scale ferments, the indigenous S. cerevisiae produced twice as high levels of esters and higher alcohols compared to the commercial starter. Star. bacillaris further increased the levels of ethyl esters in the respective ferments. The use of a mixed S. cerevisiae/Star. bacillaris starter culture instead of S. cerevisiae alone enhanced the chemical complexity of Cretan local wine. The magnitude of differentiation was even higher when the addition of Star. bacillaris preceded that of S. cerevisiae. The highest divergence in analytical profiles was recorded between wines produced by native strain combinations and commercial S. cerevisiae. Present results show that the use of indigenous yeast formulations provides significant diversification to local wines, in line with the microbial terroir concept and recent observations that indigenous yeast strains may confer regional characters to wines.
Collapse
Affiliation(s)
- Aspasia Nisiotou
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece.
| | - Georgios Sgouros
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Constantinos-Symeon Nisiotis
- Department of Statistics, Athens University of Economics and Business, 76 Patission Str., Athens GR-10434, Greece
| | - Christos Michaelidis
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Chryssoula Tassou
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridona St., Athens 12210, Greece
| |
Collapse
|
39
|
Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen XX, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P. Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 2018; 7:33034. [PMID: 29648535 PMCID: PMC5897096 DOI: 10.7554/elife.33034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fructophily is a rare trait that consists of the preference for fructose over other carbon sources. Here, we show that in a yeast lineage (the Wickerhamiella/Starmerella, W/S clade) comprised of fructophilic species thriving in the high-sugar floral niche, the acquisition of fructophily is concurrent with a wider remodeling of central carbon metabolism. Coupling comparative genomics with biochemical and genetic approaches, we gathered ample evidence for the loss of alcoholic fermentation in an ancestor of the W/S clade and subsequent reinstatement through either horizontal acquisition of homologous bacterial genes or modification of a pre-existing yeast gene. An enzyme required for sucrose assimilation was also acquired from bacteria, suggesting that the genetic novelties identified in the W/S clade may be related to adaptation to the high-sugar environment. This work shows how even central carbon metabolism can be remodeled by a surge of HGT events. Cells build their components, such as the molecular machinery that helps them obtain energy from their environment, by following the instructions contained in genes. This genetic information is usually transferred from parents to offspring. Over the course of several generations, genes can accumulate small changes and the molecules they code for can acquire new roles: yet, this process is normally slow. However, certain organisms can also obtain completely new genes by ‘stealing’ them from other species. For example, yeasts, such as the ones used to make bread and beer, can take genes from nearby bacteria. This ‘horizontal gene transfer’ helps organisms to rapidly gain new characteristics, which is particularly useful if the environment changes quickly. One way that yeasts get the energy they need is by breaking down sugars through a process called alcoholic fermentation. To do this, most yeast species prefer to use a sugar called glucose, but a small group of ‘fructophilic’ species instead favors a type of sugar known as fructose. Scientists do not know exactly how fructophilic yeasts came to be, but there is some evidence horizontal gene transfers may have been involved in the process. Now, Gonçalves et al. have compared the genetic material of fructophilic yeasts with that of other groups of yeasts . Comparing genetic material helps scientists identify similarities and differences between species, and gives clues about why specific genetic features first evolved. The experiments show that, early in their history, fructophilic yeasts lost the genes that allowed them to do alcoholic fermentation, probably since they could obtain energy in a different way. However, at a later point in time, these yeasts had to adapt to survive in flower nectar, an environment rich in sugar. They then favored fructose as their source of energy, possibly because this sugar can compensate more effectively for the absence of alcoholic fermentation. Later, the yeasts acquired a gene from nearby bacteria, which allowed them to do alcoholic fermentation again: this improved their ability to use the other sugars present in flower nectars. When obtaining energy, yeasts and other organisms produce substances that are relevant to industry. Studying natural processes of evolution can help scientists understand how organisms can change the way they get their energy and adapt to new challenges. In turn, this helps to engineer yeasts into ‘cell factories’ that produce valuable chemicals in environmentally friendly and cost-effective ways.
Collapse
Affiliation(s)
- Carla Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Purdue Center for Plant Biology, Purdue University, West Lafayette, United States
| | - Jacek Kominek
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Madalena Salema Oom
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Maria José Leandro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.,LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia (UB), Lisboa, Portugal
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Dana A Opulente
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - David Peris
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
40
|
Balmaseda A, Bordons A, Reguant C, Bautista-Gallego J. Non- Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation. Front Microbiol 2018; 9:534. [PMID: 29628914 PMCID: PMC5876288 DOI: 10.3389/fmicb.2018.00534] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Joaquín Bautista-Gallego
- Food Biotechnology Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
41
|
Chasseriaud L, Coulon J, Marullo P, Albertin W, Bely M. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide. Appl Microbiol Biotechnol 2018. [PMID: 29516146 DOI: 10.1007/s00253-018-8861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.
Collapse
Affiliation(s)
- Laura Chasseriaud
- BioLaffort, 33100, Bordeaux, France. .,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.
| | | | - Philippe Marullo
- BioLaffort, 33100, Bordeaux, France.,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| | - Warren Albertin
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.,ENSCBP - Bordeaux INP, 16 avenue Pey Berland, 33607, Pessac Cedex, France
| | - Marina Bely
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| |
Collapse
|
42
|
Englezos V, Rantsiou K, Cravero F, Torchio F, Pollon M, Fracassetti D, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L. Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Food Chem 2018; 257:350-360. [PMID: 29622221 DOI: 10.1016/j.foodchem.2018.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
Mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae affect the chemical composition of wines, by modulating various metabolites of oenological interest. The current study was carried out to elucidate the effect of sequential inoculation of the above mentioned species on the production of white wines, especially on the chemical and aromatic characteristics of Chardonnay, Muscat, Riesling and Sauvignon blanc wines. Titratable acidity and glycerol content exhibited evident differences among the wines after fermentation. For volatile compounds, mixed fermentations led to a reduction of the total esters, including ethyl acetate, which is a compound responsible for wine deterioration. However, Sauvignon blanc wines fermented by mixed cultures contained significantly higher levels of esters and thiols, both associated with positive sensory attributes. These findings suggest that sequential inoculations possess great potential in affecting and modulating the chemical and aromatic profile of white wines, especially those produced from Sauvignon blanc grapes.
Collapse
Affiliation(s)
- Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Francesco Cravero
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Fabrizio Torchio
- Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Matteo Pollon
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Daniela Fracassetti
- Università degli Studi di Milano, Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via Giovanni Celoria 2, 20133 Milano, Italy
| | | | - Vincenzo Gerbi
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Rolle
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
43
|
Estela-Escalante WD, Moscosa-Santillán M, González-Ramírez JE, Rosales-Mendoza S. Evaluation of the Potential Production of Ethanol byCandida ZemplininaYeast with Regard to Beer Fermentation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-2532-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Waldir D. Estela-Escalante
- Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Escuela Académico Profesional de Ingeniería Agroindustrial, Lima 01, Perú
| | | | | | - Sergio Rosales-Mendoza
- Universidad Autónoma de San Luís Potosí, Facultad de Ciencias Químicas, San Luis Potosí 78210, Mexico
| |
Collapse
|
44
|
Dakal TC, Solieri L, Giudici P. Evaluation of fingerprinting techniques to assess genotype variation among Zygosaccharomyces strains. Food Microbiol 2017; 72:135-145. [PMID: 29407390 DOI: 10.1016/j.fm.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023]
Abstract
Molecular typing techniques are key tools in surveillance of food spoilage yeasts, in investigations on intra-species population diversity, and in tracing selected starters during fermentation. Unlike previous works on strain typing of Zygosaccharomyces spoilage species, here Zygosaccharomyces mellis and the Zygosaccharoymces rouxii complex yeasts, which include Z. rouxii, Zygosaccharomyces sapae, and a mosaic lineage (ML) of putatively hybrids, were evaluated by three typing methods for intra- and inter-species resolution. Overall these yeasts are relevant for food fermentation and spoilage, but are quite difficult to discriminate at strain and species level as they evolved by reticulation. A pool of 76 strains from different sources were typed by M13 and (GTG)5 MSP-PCR fingerprinting and PCR-RFLP of ribosomal intergenic spacer region (IGS). We demonstrated that M13 overcame (GTG)5 fingerprinting to group Z. sapae, Z. rouxii, Z. mellis and the ML isolates in congruent distinct clusters. Even if (GTG)5 primer yielded a number of DNA fingerprints comparable with those obtained by M13 primer, it failed to discriminate Z. sapae, Z. mellis and Z. rouxii at species level. Clustering of IGS RFLP patterns obtained with three endonucleases produced groups congruent with species assignment and highlighted intra-species diversity similar to that observed by M13 fingerprinting. However, IGS PCR amplification failed for 14 ML and 6 Z. mellis strains under the experimental conditions tested here, indicating that this marker could be less easy to use in fast typing protocol. Finally, our results posit that the genetic diversity within Z. sapae and Z. mellis could be shaped by isolation source. The information generated in this study would facilitate the monitoring of these yeasts during food processing and storage, and provides preliminary evidences about Z. sapae and Z. mellis intra-species diversity.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy.
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| |
Collapse
|
45
|
Bagheri B, Bauer FF, Setati ME. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations. Front Microbiol 2017; 8:1988. [PMID: 29085347 PMCID: PMC5650610 DOI: 10.3389/fmicb.2017.01988] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022] Open
Abstract
Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non-Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non-Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of indigenous yeast populations did not appear to affect the broad interaction patterns between the consortium species. The data show that the wine ecosystem is characterized by both mutually supportive and inhibitory species. The current study presents a first step in the development of a model to predict the oenological potential of any given wine mycobiome.
Collapse
Affiliation(s)
| | | | - Mathabatha E. Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
46
|
Englezos V, Giacosa S, Rantsiou K, Rolle L, Cocolin L. Starmerella bacillaris in winemaking: opportunities and risks. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Albertin W, Zimmer A, Miot-Sertier C, Bernard M, Coulon J, Moine V, Colonna-Ceccaldi B, Bely M, Marullo P, Masneuf-Pomarede I. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Appl Microbiol Biotechnol 2017; 101:7603-7620. [PMID: 28913648 DOI: 10.1007/s00253-017-8492-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/23/2017] [Accepted: 07/30/2017] [Indexed: 11/26/2022]
Abstract
Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking.
Collapse
Affiliation(s)
- Warren Albertin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France.
- ENSCBP, Bordeaux INP, 33600, Pessac, France.
| | - Adrien Zimmer
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- INRA, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave d'Ornon, France
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | | | | | | | - Marina Bely
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170, Gradignan, France
| |
Collapse
|
48
|
Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae. Food Microbiol 2017; 69:179-188. [PMID: 28941899 DOI: 10.1016/j.fm.2017.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 01/13/2023]
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation.
Collapse
|
49
|
Mestre Furlani MV, Maturano YP, Combina M, Mercado LA, Toro ME, Vazquez F. Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: a strategy to obtain wines with reduced ethanol content. FEMS Yeast Res 2017; 17:2975574. [PMID: 28175291 DOI: 10.1093/femsyr/fox010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Ethanol content of wine has increased over the last decades as consequence of searching phenolic maturity, requiring increased grape maturity. This may result in the production of wines with excessive alcohol levels (sometimes more than 15% (v/v)), sluggish and stuck fermentations and excessive volatile acidity. Many strategies to reduce ethanol in wines are being studied, and microbial methods have some additional advantages. However, because of the broad intra- and interspecies variability, new selection criteria should be included. Therefore, the goal of the present work was to design and evaluate a simple and integral procedure for non-Saccharomyces yeast selection. This strategy allowed selection of yeasts that presented successful implantation in grape must with high alcohol potential and their use in co-cultures could reduce the ethanol in wines. A total of 114 native non-Saccharomyces yeasts were assayed to determine their respiratory, fermentative and physiological characteristics of enological interest. Hanseniaspora uvarum BHu9 and BHu11, H. osmophila BHo51, Starmerella bacillaris BSb55 and Candida membranaefaciens BCm71 were selected as candidates to design co-culture starters.
Collapse
Affiliation(s)
- María Victoria Mestre Furlani
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.,Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martin 3853. 5507 Luján de Cuyo Mendoza, Argentina
| | - Laura Analía Mercado
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martin 3853. 5507 Luján de Cuyo Mendoza, Argentina
| | - María Eugenia Toro
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| |
Collapse
|
50
|
Petruzzi L, Capozzi V, Berbegal C, Corbo MR, Bevilacqua A, Spano G, Sinigaglia M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front Microbiol 2017. [PMID: 28642742 PMCID: PMC5462979 DOI: 10.3389/fmicb.2017.00995] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Vittorio Capozzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Carmen Berbegal
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Maria R Corbo
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| |
Collapse
|