1
|
Niu L, Wu Z, Liu J, Xiang Q, Bai Y. Enhancement effect of carvacrol on yeast inactivation by mild pressure carbon dioxide. Arch Microbiol 2023; 205:353. [PMID: 37815591 DOI: 10.1007/s00203-023-03689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Saccharomyces cerevisiae is one of the common spoilage microorganisms in fruit juices. This paper investigated the influences of carvacrol on S. cerevisiae inactivation by mild pressure carbon dioxide (MPCO2). The results demonstrated that carvacrol synergistically enhanced the antifungal activity against S. cerevisiae of MPCO2. With the increase of carvacrol concentration (20-160 µg/mL), CO2 pressure (1.5-3.5 MPa), process temperature (20-40 °C), and treatment time (15-60 min), the inactivation effect of carvacrol combined with MPCO2 on S. cerevisiae was gradually increased and significantly stronger than either single treatment. In the presence of carvacrol, MPCO2 severely disordered the plasma membrane of S. cerevisiae, including the increase of membrane permeability, and the loss of membrane potential and integrity. MPCO2 and carvacrol in combination also aggravated the mitochondrial depolarization of S. cerevisiae and reduced intracellular ATP and protein content. This study suggests the potential of carvacrol and pressurized CO2 as an alternative technology for food pasteurization.
Collapse
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, People's Republic of China
| | - Zihao Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Jingfei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
2
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Lian Z, Yang D, Wang Y, Zhao L, Rao L, Liao X. Investigating the microbial inactivation effect of low temperature high pressure carbon dioxide and its application in frozen prawn (Penaeus vannamei). Food Control 2022; 145:109401. [PMID: 36186659 PMCID: PMC9512252 DOI: 10.1016/j.foodcont.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.
Collapse
|
4
|
Changes in the Microbial Content and Quality Attributes of Carrot Juice Treated by a Combination of Ultrasound and Nisin During Storage. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02498-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Kustyawati ME, Pratama F, Saputra D, Wijaya A. Shelf life of tempeh processed with sub-supercritical carbon dioxides. POTRAVINARSTVO 2020. [DOI: 10.5219/1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tempeh, a fermented soybean-based food originally from Indonesia, is a remarkably nutritious functional food with health benefits. Unfortunately, tempeh is highly perishable, with a shelf life of 24 – 48 hours. The goal of this research was to evaluate the possibility of a sub-supercritical CO2 technique to increase the shelf life of tempeh by measuring the changes in the L* (lightness) value and texture of tempeh via application of a kinetic approach and, based on the observations, to estimate its shelf life. Tempeh was processed with sub-supercritical CO2 at 6.3 MPa for 10 min, then together with unprocessed tempeh (control), stored for 5 days at temperatures of 20, 30 and 40 °C. The Accelerated Self-Life Test (ASLT) with the Arrhenius model was used to measure the shelf life of processed and control tempeh. The calculated shelf life of processed tempeh using the ASLT by the Arrhenius method was 2.43 days at 20 °C, 3.7 days at 30 °C and 1.4 days at 40 °C, and the shelf life of unprocessed tempeh was 3.33 days at 20 °C, 2.90 days at 30 °C and 2.56 days at 40 °C. The conclusion was that the use of sub-supercritical CO2 at 6.3 MPa for 10 min increased the shelf life of tempeh stored at 30 °C.
Collapse
|
6
|
Komora N, Maciel C, Pinto CA, Ferreira V, Brandão TR, Saraiva JM, Castro SM, Teixeira P. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol 2020; 86:103315. [DOI: 10.1016/j.fm.2019.103315] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
|
7
|
GARAVAGLIA J, PINTO LMN, SOUZA DD, CASTILHOS JD, ROSSI RC, MACHADO ICK, RAMOS RCDS, ZIEGLER DDR. Natamycin and nisin to improve shelf life and minimize benzene generation in lemon soft drinks. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juliano GARAVAGLIA
- Universidade do Vale do Rio dos Sinos, Brasil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liao H, Jiang L, Cheng Y, Liao X, Zhang R. Application of nisin-assisted thermosonication processing for preservation and quality retention of fresh apple juice. ULTRASONICS SONOCHEMISTRY 2018; 42:244-249. [PMID: 29429666 DOI: 10.1016/j.ultsonch.2017.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 06/08/2023]
Abstract
The effects of thermosonication (TS) and 100 ppm nisin-assisted TS (TS + nisin) on the inactivation of naturally occurring microorganisms, retention of nutritional quality and extension of shelf life of fresh apple juice were evaluated, with nisin and mild heat (nisin + MH) treatments as control. Fresh apple juice was addressed by nisin + MH, TS and TS + nisin at 37, 42, 47, and 52 °C for 5-40 min. After processing, microbial growth was evaluated during storage at 8 °C at every 5 days. Temperature played a vital role in the inactivation of aerobic bacteria and yeasts and molds by TS and TS + nisin, higher temperature up to 52 °C could cause a considerable inactivation of microbial cells in apple juice. As apple juice was subjected to TS and TS + nisin at 52 °C for 30 min, retention of original quality including 89% ascorbic acid, non-visible color change, no significant alteration in BD, pH, TA and TSS values of fresh apple juice, and extension shelf life to 15 d at 8 °C were obtained. Nisin exhibit additional inactivation effect of aerobic bacteria in apple juice while not obviously effect on yeast and molds. These results indicated a potential application of TS and TS + nisin (100 ppm) to produce fresh-like quality apple juice and/or to extend its shelf life.
Collapse
Affiliation(s)
- Hongmei Liao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Lifen Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruirui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Petruzzi L, Campaniello D, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A. Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Compr Rev Food Sci Food Saf 2017; 16:668-691. [DOI: 10.1111/1541-4337.12270] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| |
Collapse
|
10
|
Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev Food Sci Nutr 2017; 56:1262-74. [PMID: 25675115 DOI: 10.1080/10408398.2013.763765] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nisin is a natural preservative for many food products. This bacteriocin is mainly used in dairy and meat products. Nisin inhibits pathogenic food borne bacteria such as Listeria monocytogenes and many other Gram-positive food spoilage microorganisms. Nisin can be used alone or in combination with other preservatives or also with several physical treatments. This paper reviews physicochemical and biological properties of nisin, the main factors affecting its antimicrobial effectiveness, and its food applications as an additive directly incorporated into food matrices.
Collapse
Affiliation(s)
- Adem Gharsallaoui
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Nadia Oulahal
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Catherine Joly
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| | - Pascal Degraeve
- a Université de Lyon, Université Lyon 1-ISARA Lyon, Laboratoire BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) , Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Bourg en Bresse , France
| |
Collapse
|
11
|
Microbial load reduction of sweet basil using acidic electrolyzed water and lactic acid in combination with mild heat. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhang Y, Huang D, Zhou L. Escherichia coli inactivation by pressurized CO2 treatment methods at room temperature: Critical issues. J Environ Sci (China) 2016; 43:285-292. [PMID: 27155435 DOI: 10.1016/j.jes.2015.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
This study aims to increase the inactivation efficiency of CO2 against Escherichia coli under mild conditions to facilitate the application of pressurized CO2 technology in water disinfection. Based on an aerating-cycling apparatus, three different treatment methods (continuous aeration, continuous reflux, and simultaneous aeration and reflux) were compared for the same temperature, pressure (0.3-0.7MPa), initial concentration, and exposure time (25min). The simultaneous aeration and reflux treatment (combined method) was shown to be the best method under optimum conditions, which were determined to be 0.7MPa, room temperature, and an exposure time of 10min. This treatment achieved 5.1-log reduction after 25min of treatment at the pressure of 0.3MPa and 5.73-log reduction after 10min at 0.7MPa. Log reductions of 4.4 and 5.0 occurred at the end of continuous aeration and continuous reflux treatments at 0.7MPa, respectively. Scanning electron microscopy (SEM) images suggested that cells were ruptured after the simultaneous aeration and reflux treatment and the continuous reflux treatment. The increase of the solubilization rate of CO2 due to intense hydraulic conditions led to a rapid inactivation effect. It was found that the reduction of intracellular pH caused by CO2 led to a more lethal bactericidal effect.
Collapse
Affiliation(s)
- Yongji Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Doudou Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Lingling Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Role of peach proteins in juice precipitation induced by high pressure CO2. Food Chem 2016; 209:81-9. [PMID: 27173537 DOI: 10.1016/j.foodchem.2016.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022]
Abstract
To better understand the role of peach proteins in juice precipitation induced by high pressure CO2 (HPCD), proteins extracted from peach juice were subjected to HPCD and heat, and changes in particle size distribution (PSD) and structure were investigated. PSD analysis showed aggregations of proteins were both induced by HPCD and heat, but HPCD induced a stronger aggregation. The endotherm of HPCD- and heat-treated proteins moved to lower temperature, indicating that higher-order structures were altered after treatments. Furthermore, proteins related to HPCD- and heat-induced precipitation were analyzed by proteomics and bioinformatics. It was found that proteins with low content of α-helix and hydrogen bonds were more inclined to precipitate under HPCD, and HPCD precipitated proteins with more compact structures than heat, which might cause the stronger aggregation of proteins by HPCD. In conclusion, HPCD could induce the aggregation of peach proteins by destroying higher-order structures, which contributes to juice precipitation.
Collapse
|
14
|
da Silva MA, de Araujo AP, de Souza Ferreira J, Kieckbusch TG. Inactivation of Bacillus subtilis and Geobacillus stearothermophilus inoculated over metal surfaces using supercritical CO2 process and nisin. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Li H, Xu Z, Zhao F, Wang Y, Liao X. Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices. Int J Food Microbiol 2015; 211:38-43. [DOI: 10.1016/j.ijfoodmicro.2015.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022]
|
18
|
Liu L, Zeng Q, Zhang R, Wei Z, Deng Y, Zhang Y, Tang X, Zhang M. Comparative Study on Phenolic Profiles and Antioxidant Activity of Litchi Juice Treated by High Pressure Carbon Dioxide and Thermal Processing. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lei Liu
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Qinshuai Zeng
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Ruifen Zhang
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Zhencheng Wei
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Yuanyuan Deng
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Yan Zhang
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Xiaojun Tang
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| | - Mingwei Zhang
- Key Laboratory of Functional Food, Ministry of Agricultural, Sericultural and Agri- Food Research Institute Guangdong Academy of Agricultural Sciences
| |
Collapse
|
19
|
Inactivation of Escherichia coli O157:H7 by high pressure carbon dioxide combined with nisin in physiological saline, phosphate-buffered saline and carrot juice. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Microbial inactivation of E. coli cells by a combined PEF–HPCD treatment in a continuous flow system. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2013.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Naknean P. Improvement in Shelf Life and Safety of Pasteurized Palm Sap (B
orassus flabellifer
Linn.) by the Addition of Nisin. J Food Saf 2013. [DOI: 10.1111/jfs.12084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Phisut Naknean
- Faculty of Agricultural Product Innovation and Technology; Srinakharinwirot University; Sukhumvit 23 Bangkok 10110 Thailand
| |
Collapse
|
22
|
Hongmei L, Zhong K, Liao X, Hu X. Inactivation of microorganisms naturally present in raw bovine milk by high-pressure carbon dioxide. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liao Hongmei
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
| | - Kui Zhong
- Institute of Agro-food Science and Technology; Chinese Academy of Agricultural Science; Beijing 100193 China
| | - Xiaojun Liao
- Research Centre for Fruit and Vegetable Processing Engineering; China Agricultural University; Beijing 100083 China
| | - Xiaosong Hu
- Research Centre for Fruit and Vegetable Processing Engineering; China Agricultural University; Beijing 100083 China
| |
Collapse
|
23
|
Yu Y, Wu J, Xiao G, Xu Y, Tang D, Chen Y, Zhang Y. Combined Effect of Dimethyl Dicarbonate (DMDC) and Nisin on Indigenous Microorganisms of Litchi Juice and its Microbial shelf life. J Food Sci 2013; 78:M1236-41. [DOI: 10.1111/1750-3841.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/15/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanshan Yu
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Jijun Wu
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Gengsheng Xiao
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Yujuan Xu
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Daobang Tang
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Yulong Chen
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| | - Yousheng Zhang
- Sericulture and Agri-food Research Insti.; Guangdong Academy of Agricultural Sciences; Guangzhou; 510610; China
| |
Collapse
|
24
|
Li J, Wang A, Zhu F, Xu R, Hu XS. Membrane Damage Induced by Supercritical Carbon Dioxide in Rhodotorula mucilaginosa. Indian J Microbiol 2013; 53:352-8. [PMID: 24426136 DOI: 10.1007/s12088-013-0373-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022] Open
Abstract
To clarify the mechanism of microbial inactivation by supercritical carbon dioxide (SCCO2), membrane damage of Rhodotorula mucilaginosa was investigated within specific pressure (10 Mpa), temperature (37 °C), and treatment time (10-70 min) ranges, including cell morphological structure, membrane permeability and fluidity. SEM and TEM observations showed morphological changes in the cell envelope and intracellular organization after SCCO2 treatment. Increase of membrane permeability was measured as increased uptake of the trypan blue dye with microscopy, and leakage of intracellular substances such as UV-absorbing materials and ions by determining the change of protein and electrical conductivity. The SCCO2 mediated reduction in CFU ml(-1) was 0.5-1 log higher at 37 °C and 10 MPa for 60 min in Rose Bengal Medium containing 4 % sodium than a similar treatment in Rose Bengal Medium. Membrane fluidity analyzed by fluorescence polarization method using 1,6-diphenyl-1,3,5-hexatriene showed that the florescence polarization and florescence anisotropy of the SCCO2-treated cells were increased slightly and gently compared with the untreated cells. The correlation between membrane damage and death of cells under SCCO2 was clear, and the membrane damage was a key factor induced the inactivation of cells.
Collapse
Affiliation(s)
- Jun Li
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 China
| | - Aiying Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Fengmei Zhu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 China
| | - Xiao Song Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
25
|
Comparison of Microbial Inactivation and Rheological Characteristics of Mango Pulp after High Hydrostatic Pressure Treatment and High Temperature Short Time Treatment. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0953-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|