1
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Amer DA, Albadri AAM, El-Hamshary HA, Nehela Y, Makhlouf AH, El-Hawary MY, Awad SA. Changes in Sensory Properties, Physico-Chemical Characteristics, and Aromas of Ras Cheese under Different Coating Techniques. Foods 2023; 12:foods12102023. [PMID: 37238841 DOI: 10.3390/foods12102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ras cheese is one of the main hard cheeses in Egypt and is well-known worldwide. Herein, we investigated the potential effects of different coating techniques on the physico-chemical characteristics, sensory properties, and aroma-related volatile organic compounds (VOCs) of Ras cheese over a six-month ripening period. Four coating techniques were tested, including (I) uncoated Ras cheese (the benchmark control), (II) Ras cheese coated with paraffin wax (T1), (III) Ras cheese coated with a plastic film under a vacuum (PFUV; T2), and (IV) Ras cheese coated with a plastic film treated with natamycin (T3). Although none of the treatments significantly affected the salt content, Ras cheese coated with a plastic film treated with natamycin (T3) slightly reduced the moisture content over the ripening period. Moreover, our findings revealed that while T3 had the highest ash content, it showed the same positive correlation profiles of fat content, total nitrogen, and acidity % as the control cheese sample, indicating no significant effect on the physico-chemical characteristics of the coated cheese. Furthermore, there were significant differences in the composition of VOCs among all tested treatments. The control cheese sample had the lowest percentage of other VOCs. T1 cheese, coated with paraffin wax, had the highest percentage of other volatile compounds. T2 and T3 were quite similar in their VOC profiles. According to our GC-MS findings, thirty-five VOCs were identified in Ras cheese treatments after six months of ripening, including twenty-three fatty acids, six esters, three alcohols, and three other compounds identified in most treatments. T2 cheese had the highest fatty acid % and T3 cheese had the highest ester %. The development of volatile compounds was affected by the coating material and the ripening period of the cheeses, which played a major role in the quantity and quality of volatile compounds.
Collapse
Affiliation(s)
- Dina A Amer
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abdinn A M Albadri
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanaa A El-Hamshary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Abeer H Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Mohamed Y El-Hawary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Sameh A Awad
- Dairy Microorganisms and Cheese Research Laboratory (DMCR), Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
3
|
Gou LJ, Liu TT, Zeng Q, Dong WR, Wang L, Long S, Su JT, Chen YX, Zhou G. Natamycin Has an Inhibitory Effect on Neofusicoccum parvum, the Pathogen of Chestnuts. Molecules 2023; 28:molecules28093707. [PMID: 37175119 PMCID: PMC10179887 DOI: 10.3390/molecules28093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This research aimed to investigate natamycin's antifungal effect and its mechanism against the chestnut pathogen Neofusicoccum parvum. Natamycin's inhibitory effects on N. parvum were investigated using a drug-containing plate culture method and an in vivo assay in chestnuts and shell buckets. The antifungal mechanism of action of natamycin on N. parvum was investigated by conducting staining experiments of the fungal cell wall and cell membrane. Natamycin had a minimum inhibitory concentration (MIC) of 100 μg/mL and a minimum fungicidal concentration (MFC) of 200 μg/mL against N. parvum. At five times the MFC, natamycin had a strong antifungal effect on chestnuts in vivo, and it effectively reduced morbidity and extended the storage period. The cell membrane was the primary target of natamycin action against N. parvum. Natamycin inhibits ergosterol synthesis, disrupts cell membranes, and causes intracellular protein, nucleic acid, and other macromolecule leakages. Furthermore, natamycin can cause oxidative damage to the fungus, as evidenced by decreased superoxide dismutase and catalase enzyme activity. Natamycin exerts a strong antifungal effect on the pathogenic fungus N. parvum from chestnuts, mainly through the disruption of fungal cell membranes.
Collapse
Affiliation(s)
- Lin-Jing Gou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Tian-Tian Liu
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Wan-Rong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Jiang-Tao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Yu-Xin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
4
|
Samelis J, Tsanasidou C, Bosnea L, Ntziadima C, Gatzias I, Kakouri A, Pappas D. Pilot-Scale Production of Traditional Galotyri PDO Cheese from Boiled Ewes’ Milk Fermented with the Aid of Greek Indigenous Lactococcus lactis subsp. cremoris Starter and Lactiplantibacillus plantarum Adjunct Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The performance of a mixed thermophilic and mesophilic starter culture consisting of Streptococcus thermophilus ST1 and the Greek indigenous nisin-A-producing Lactococcus lactis subsp. cremoris M78 was evaluated in the absence (A: ST1+M78) or presence (B: ST1+M78+H25) of Lactiplantibacillus plantarum H25—another indigenous ripening strain—under real cheesemaking conditions. Three pilot-scale trials of fresh (6-day-old) Galotyri PDO cheese were made from boiled milk by an artisanal method using simple equipment, followed by cold ripening of the A1–A3 and B1–B3 cheeses at 4 °C for 30 days. All of the cheeses were analyzed microbiologically and for pH, gross composition, proteolysis, sugar and organic acid contents, and sensorial attributes before and after ripening. The artisanal (PDO) Galotyri manufacturing method did not ensure optimal growth of the ST1+M78 starter as regards the constant ability of the thermophilic strain ST1 to act as the primary milk acidifier under ambient (20–30 °C) fermentation conditions. Consequently, major trial-dependent microbial and biochemical differences between the Acheeses, and generally extended to the Bcheeses, were found. However, high-quality Galotyri was produced when either starter strain predominated in the fresh cheeses; only trial A1 had microbiological and sensory defects due to an outgrowth of post-thermal Gram-negative bacterial contaminants in the acidified curd. The H25 adjunct strain, which grew above 7 to 9 log CFU/g depending on the trial, had minor effects on the cheese’s pH, gross composition, and proteolysis, but it improved the texture, flavor, and the bacteriological quality of the Bcheeses during processing, and it exerted antifungal effects in the ripened cheeses.
Collapse
|
5
|
Kamal I, Ashfaq UA, Hayat S, Aslam B, Sarfraz MH, Yaseen H, Rajoka MSR, Shah AA, Khurshid M. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett 2023; 45:137-162. [PMID: 36504266 DOI: 10.1007/s10529-022-03328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.
Collapse
Affiliation(s)
- Iqra Kamal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Hamna Yaseen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
6
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Ultrasound and Its Combination with Natural Antimicrobials: Effects on Shelf Life and Quality Stability of a Fruit and Vegetable Smoothie. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Meena M, Prajapati P, Ravichandran C, Sehrawat R. Natamycin: a natural preservative for food applications-a review. Food Sci Biotechnol 2021; 30:1481-1496. [PMID: 34868698 DOI: 10.1007/s10068-021-00981-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Natamycin is a natural antimicrobial peptide produced by the strains of Streptomyces natalensis. It effectively acts as an antifungal preservative on various food products like yogurt, khoa, sausages, juices, wines, etc. Additionally, it has been used as a bio preservative and is listed as generally recognized as a safe ingredient for various food applications. In this review, natamycin properties, production methods, toxicity, and application as a natural preservative in different foods are emphasized. This review also focuses on optimal condition and process control required in natamycin production. The mode of action and inhibitory effect of natamycin on yeast and molds inhibition and its formulation and dosage to preserve various food products, coating, and hurdle applications are summarized. Understanding the scientific factors in natamycin's production process, its toxicity, and its efficiency as a preservative will open its practical application in various food products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00981-1.
Collapse
Affiliation(s)
- Mahima Meena
- Institute of Home Economics, University of Delhi, New Delhi, India
| | | | - Chandrakala Ravichandran
- Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, 641114 India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
9
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
10
|
Lima RC, de Carvalho APA, Vieira CP, Moreira RV, Conte-Junior CA. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers (Basel) 2021; 13:2675. [PMID: 34451212 PMCID: PMC8398146 DOI: 10.3390/polym13162675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The side effects and potential impacts on human health by traditional chemical additives as food preservatives (i.e., potassium and sodium salts) are the reasons why novel policies are encouraged by worldwide public health institutes. More natural alternatives with high antimicrobial efficacy to extend shelf life without impairing the cheese physicochemical and sensory quality are encouraged. This study is a comprehensive review of emerging preservative cheese methods, including natural antimicrobials (e.g., vegetable, animal, and protist kingdom origins) as a preservative to reduce microbial cheese contamination and to extend shelf life by several efforts such as manufacturing ingredients, the active ingredient for coating/packaging, and the combination of packaging materials or processing technologies. Essential oils (EO) or plant extracts rich in phenolic and terpenes, combined with packaging conditions and non-thermal methods, generally showed a robust microbial inhibition and prolonged shelf life. However, it impaired the cheese sensory quality. Alternatives including EO, polysaccharides, polypeptides, and enzymes as active ingredients/nano-antimicrobials for an edible film of coating/nano-bio packaging showed a potent and broad-spectrum antimicrobial action during shelf life, preserving cheese quality parameters such as pH, texture, color, and flavor. Future opportunities were identified in order to investigate the toxicological effects of the discussed natural antimicrobials' potential as cheese preservatives.
Collapse
Affiliation(s)
- Rayssa Cruz Lima
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
| | - Carla P. Vieira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Rodrigo Vilela Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
11
|
Ben Amor N, Nava V, Albergamo A, Potortì AG, Lo Turco V, Ben Mansour H, Di Bella G. Tunisian essential oils as potential food antimicrobials and antioxidants and screening of their element profile. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Meng F, Zhu X, Zhao H, Nie T, Lu F, Lu Z, Lu Y. A class Ⅲ bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Fayed A, Elsayed H, Ali T. Packaging fortified with Natamycin nanoparticles for hindering the growth of toxigenic Aspergillus flavus and aflatoxin production in Romy cheese. J Adv Vet Anim Res 2021; 8:58-63. [PMID: 33860013 PMCID: PMC8043338 DOI: 10.5455/javar.2021.h485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study assessed the effect of cellulose sheets fortified with Natamycin-loaded alginate nanoparticles on the growth of toxigenic Aspergillus flavus and aflatoxin production on the superficial layer of Egyptian Romy cheese after 12 weeks of maturation. MATERIALS AND METHODS Toxigenic A. flavus (GenBank accession No. MT645073) was inoculated into the outer surface of Egyptian Romy cheese (at 5 log CFU/gm) and wrapped with a cellulose sheet fortified with Natamycin-loaded alginate nanoparticles. Unwrapped control contaminated Romy wheels were made as well as non-contaminated wrapped cheese wheels for sensory evaluation. Romy cheese wheels were stored at a temperature similar to commercial methods for 12 weeks. Fungal counts were enumerated during this time, and enzyme-linked immune sorbent assay detected aflatoxin after the 4th week of maturation storage. RESULTS In cheese samples covered with cellulose sheets containing Natamycin-loaded alginate nanoparticles, the fungal count was reduced by 2 log approximately in contrast to control samples after the 2nd week of storage. However, within the 8th week of storage, the greatest significant reduction (p < 0.05) was seen where fungal growth was hindered entirely to the end of the ripening period. The mean values for taste, color, flavor, and overall acceptability were 4, 4.7, 4.09, and 4.3, respectively. Furthermore, in the treated samples, the total aflatoxin concentration was decreased by 78.6% relative to the untreated control one. CONCLUSION Using cellulose sheets fortified with Natamycin-loaded alginate nanoparticles in Egyptian Romy cheese wrapping could be an effective way of controlling A. flavus and subsequent aflatoxin production without influencing the typical taste, color, flavor, and overall appearance of traditional Romy cheese.
Collapse
Affiliation(s)
- Asmaa Fayed
- Reference Lab for Safety Analysis of Food of Animal Origin, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Huda Elsayed
- Reference Lab for Safety Analysis of Food of Animal Origin, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Taghreed Ali
- Reference Lab for Safety Analysis of Food of Animal Origin, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| |
Collapse
|
14
|
Sozbilen GS, Yemenicioğlu A. Antilisterial effects of lysozyme-nisin combination at temperature and pH ranges optimal for lysozyme activity: Test of key findings to inactivate Listeria in raw milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Moavro A, Sanchez-Díaz M, Zampatti M, Castells ML, Delfederico L, Wagner J, Ludemann V. Stuffed cheese with superficial Penicillium nalgiovense development: Role of microperforated film packaging in the ripening process. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Karaman K, Sagdic O, Yilmaz MT. Potential of natamycin to control growth of Zygosaccharomyces spp. in apple juice during storage. Int J Food Microbiol 2020; 332:108771. [PMID: 32650062 DOI: 10.1016/j.ijfoodmicro.2020.108771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
In this research, anti-yeast activity of natamycin in apple juice inoculated with both Zygosaccharomyces rouxii and Z. bailii during the storage at different temperatures was investigated. For this purpose, a response surface methodology approach was used to test and optimize effects of some processing variables; storage time (1, 21 and 41 days), storage temperature (4, 12 and 20 °C), sodium benzoate as a positive control (0, 0.05 and 0.1%) and natamycin concentration (0, 30 and 60 mg/L) on several physicochemical and bioactive properties of the apple juice samples. The results showed that the natamycin performed a remarkable anti-yeast effect on Z. bailii rather than on Z. rouxii. The brix levels of the samples decreased and so the turbidity values increased significantly due to the yeast activity during the storage. Bioactive properties were also significantly affected by the natamycin which was also revealed to increase the antioxidant capacity of apple juice during storage. Using multiple response optimization technique, it was calculated that minimum yeast count (YC) values would occur at storage time = 38.64 and 40.9 days, storage temperature = 19.81 and 14.4 °C, sodium benzoate level (fixed to 0%) and natamycin concentration = 40 and 51.9 mg/L for the samples inoculated with Z. bailii and Z. rouxii, respectively. It was concluded that the bioactive properties of apple juice could be preserved by addition of natamycin which is suggested to be a natural inhibitor during the storage.
Collapse
Affiliation(s)
- Kevser Karaman
- Erciyes University, Faculty of Agriculture, Department of Agricultural Biotechnology, 38039 Kayseri, Turkey.
| | - Osman Sagdic
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, 34210 Istanbul, Turkey
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia; Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, 34210 Istanbul, Turkey
| |
Collapse
|
17
|
Siroli L, Patrignani F, D’Alessandro M, Salvetti E, Torriani S, Lanciotti R. Suitability of the Nisin Z-producer Lactococcus lactis subsp. lactis CBM 21 to be Used as an Adjunct Culture for Squacquerone Cheese Production. Animals (Basel) 2020; 10:E782. [PMID: 32365951 PMCID: PMC7277329 DOI: 10.3390/ani10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
This research investigated the technological and safety effects of the nisin Z producer Lactococcus lactis subsp. lactis CBM 21, tested as an adjunct culture for the making of Squacquerone cheese in a pilot-scale plant. The biocontrol agent remained at a high level throughout the cheese refrigerated storage, without having a negative influence on the viability of the conventional Streptococcus thermophilus starter. The inclusion of CBM 21 in Squacquerone cheesemaking proved to be more effective compared to the traditional one, to reduce total coliforms and Pseudomonas spp. Moreover, the novel/innovative adjunct culture tested did not negatively modify the proteolytic patterns of Squacquerone cheese, but it gave rise to products with specific volatile and texture profiles. The cheese produced with CBM 21 was more appreciated by the panelists with respect to the traditional one.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
18
|
Li X, Gao F, Liu H, Gao Y. Development of a capillary zone electrophoresis method to determine natamycin in food and a comparison with a liquid chromatography method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:811-816. [PMID: 31617212 DOI: 10.1002/jsfa.10089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Natamycin is often added to pastries, cheeses, and beverages. The residual amount of natamycin should be less than 10 mg kg-1 . The current method for its determination in various foodstuffs is high-performance liquid chromatography (HPLC). Capillary electrophoresis (CE) is a simple, fast, and environmentally friendly method with low reagent consumption and comparable separation performance. However, no reports were found on the determination of natamycin in foods by CE. A CE method to determine natamycin is therefore sought. RESULTS Natamycin in foods was determined by the capillary zone electrophoresis (CZE) method with ultraviolet-visible (UV) detection. Separation conditions were optimized as 20 mM Na2 HPO4 , pH 9.2, with 25 kV applied voltage, and UV detection at 306 nm. Under optimal conditions, electrophoretic analysis was completed in less than 4 min, with a limit of detection (LOD) of 0.065 μg mL-1 and limit of quantitation (LOQ) of 0.22 μg mL-1 . A good linear relationship (r2 = 0.999) was obtained at the range of 0.1-25 μg mL-1 . A comparison with the HPLC-UV method was also carried out according to the National Standards of the People's Republic of China. CONCLUSION The results obtained by the CZE and HPLC methods are comparable but the proposed CZE method can help us obtain a shorter detection time at low cost. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Fangfang Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| |
Collapse
|
19
|
Liu J, Meng F, Du Y, Nelson E, Zhao G, Zhu H, Caiyin Q, Zhang Z, Qiao J. Co-production of Nisin and γ-Aminobutyric Acid by Engineered Lactococcus lactis for Potential Application in Food Preservation. Front Microbiol 2020; 11:49. [PMID: 32063895 PMCID: PMC7000361 DOI: 10.3389/fmicb.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/10/2020] [Indexed: 02/05/2023] Open
Abstract
Microbiological contamination and oxidative damage are the two main challenges in maintaining quality and improving shelf-life of foods. Here, we developed a Lactococcus lactis fermentation system that could simultaneously produce nisin, an antimicrobial peptide, and γ-aminobutyric acid (GABA), an antioxidant agent. In this system, we metabolically engineered a nisin producing strain L. lactis F44 for GABA production by expression of glutamate decarboxylase and glutamate/GABA antiporter. GABA biosynthesis could facilitate nisin production through enhancing acid resistance of the strain. By applying a two-stage pH-control fermentation strategy, the engineered strain yielded up to 9.12 g/L GABA, which was 2.2 times higher than that of pH-constant fermentation. Furthermore, we demonstrated the potential application of the freeze-dried fermentation product as a preservative to improve the storage performance of meat and fruit. These results suggested that the fermentation product of nisin-GABA co-producing strain could serve as a cost-effective, easily prepared, and high-performance food preservative.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Furong Meng
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Edwina Nelson
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhijun Zhang
- Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
20
|
GARAVAGLIA J, PINTO LMN, SOUZA DD, CASTILHOS JD, ROSSI RC, MACHADO ICK, RAMOS RCDS, ZIEGLER DDR. Natamycin and nisin to improve shelf life and minimize benzene generation in lemon soft drinks. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juliano GARAVAGLIA
- Universidade do Vale do Rio dos Sinos, Brasil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Laurindo J, Prado NVD, Morés S, Tonial IB. Quantification, migration and decline of natamycin in blue cheeses. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.07718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract This study aimed to quantify the concentration of natamycin in the rind and verify its migration in Gorgonzola type cheese, as well as evaluating the decline of natamycin in Blue cheese during maturation. Eight samples of Gorgonzola cheese were purchased in supermarkets of which six were produced in different regions of Brazil, one in Argentina and one in Italy. The rinds of four of the eight cheese samples presented natamycin concentrations above 5 mg/kg, three of these samples being from Brazil and one from Argentina. With the exception of the Italian cheese, all the samples showed natamycin inside the cheese mass (up to 6 mm from the rind). To evaluate the rate of decline during the ripening of Blue cheeses, samples were collected from an industry as from day 0 (day of manufacture) up to the 45 days of ripening. The results showed that, after 45 days of ripening for cheese immersed in a 3% natamycin solution, the concentration in the rind was 4 times the amount allowed by the legislation (5 mg/kg). However, for immersion in a 1.5% natamycin solution, after 25 days of ripening, the antifungal concentration was in accordance with the standards established by the legislation.
Collapse
|
23
|
Garnier L, Valence F, Mounier J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017; 5:E42. [PMID: 28788096 PMCID: PMC5620633 DOI: 10.3390/microorganisms5030042] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
Collapse
Affiliation(s)
- Lucille Garnier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Florence Valence
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
24
|
Fernández MV, Agüero MV, Jagus RJ. Green tea extract: A natural antimicrobial with great potential for controlling native microbiota,
Listeria innocua
and
Escherichia coli
in fresh‐cut beet leaves. J Food Saf 2017. [DOI: 10.1111/jfs.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- María Verónica Fernández
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Facultad de IngenieríaBuenos Aires Argentina
- Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial: Tecnología de alimentosBuenos Aires Argentina
- Peruilh Foundation, Facultad de Ingeniería, Universidad de Buenos AiresBuenos Aires Argentina
| | - María Victoria Agüero
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Facultad de IngenieríaBuenos Aires Argentina
- Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial: Tecnología de alimentosBuenos Aires Argentina
| | - Rosa Juana Jagus
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Facultad de IngenieríaBuenos Aires Argentina
- Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial: Tecnología de alimentosBuenos Aires Argentina
| |
Collapse
|
25
|
Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogel coating on Arzúa-Ulloa DOP cheeses. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Diversity of spoilage fungi associated with various French dairy products. Int J Food Microbiol 2017; 241:191-197. [DOI: 10.1016/j.ijfoodmicro.2016.10.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022]
|
27
|
Bian X, Muhammad Z, Evivie SE, Luo GW, Xu M, Huo GC. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yangilar F. Effects of natamycin edible films fortified with essential oils on the safety and quality parameters of Kashar cheese. J Food Saf 2016. [DOI: 10.1111/jfs.12306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filiz Yangilar
- Department of Nutrition and Dietetics, School of Health; Erzincan University; 24100 Erzincan Turkey
| |
Collapse
|
29
|
Yangilar F. Effect of the Fish Oil Fortified Chitosan Edible Film on Microbiological, Chemical Composition and Sensory Properties of Göbek Kashar Cheese during Ripening Time. Korean J Food Sci Anim Resour 2016; 36:377-88. [PMID: 27433109 PMCID: PMC4942553 DOI: 10.5851/kosfa.2016.36.3.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 11/06/2022] Open
Abstract
Objective of the present study is to investigate the effect of coated edible films with chitosan solutions enriched with essential oil (EO) on the chemical, microbial and sensory properties of Kashar cheese during ripening time. Generally, no differences were found in total aerobic mesophilic bacteria, streptococci and lactoccocci counts among cheeses but these microorganism counts increased during 60 and 90 d storage especially in C1 (uncoated sample) as compared with coated samples. Antimicrobial effectiveness of the films against moulds was measured on 30, 60, and 90 d of storage. In addition of fish EO into chitosan edible films samples were showed to affect significantly decreased the moulds (p<0.05) as 1.15 Log CFU/g in C4 (with fish oil (1% w/v) fortified chitosan film) on the 90(th) d, while in C1 as 3.89 Log CFU/g on the 90(th) d of ripening. Compared to other cheese samples, C2 (coated with chitosan film) and C4 coated cheese samples revealed higher levels of water-soluble nitrogen and ripening index at the end of storage. C2 coated cheese samples were preferred more by the panellists while C4 coated cheese samples received the lowest scores.
Collapse
Affiliation(s)
- Filiz Yangilar
- Department of Nutrition and Dietetics, School of Health, Erzincan University, 24100, Erzincan, Turkey
| |
Collapse
|
30
|
|
31
|
Duran M, Aday MS, Zorba NND, Temizkan R, Büyükcan MB, Caner C. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.01.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Molognoni L, de Sá Ploêncio LA, Valese AC, De Dea Lindner J, Daguer H. A simple and fast method for the inspection of preservatives in cheeses and cream by liquid chromatography- electrospray tandem mass spectrometry. Talanta 2016; 147:370-82. [DOI: 10.1016/j.talanta.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022]
|
33
|
Ollé Resa CP, Gerschenson LN, Jagus RJ. Starch edible film supporting natamycin and nisin for improving microbiological stability of refrigerated argentinian Port Salut cheese. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Moatsou G, Moschopoulou E, Beka A, Tsermoula P, Pratsis D. Effect of natamycin-containing coating on the evolution of biochemical and microbiological parameters during the ripening and storage of ovine hard-Gruyère-type cheese. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Fišera M, Valášek P, Mlček J, Fojtíková L, Fišerová L. Determination of Natamycin in Fermented Dry Salami Casings. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Miroslav Fišera
- Department of Food Analysis and Chemistry; Faculty of Technology; Tomas Bata University in Zlín; Nám T. G. Masaryka 275 CZ-762 72 Zlín Czech Republic
| | - Pavel Valášek
- Department of Food Analysis and Chemistry; Faculty of Technology; Tomas Bata University in Zlín; Nám T. G. Masaryka 275 CZ-762 72 Zlín Czech Republic
| | - Jiří Mlček
- Department of Food Analysis and Chemistry; Faculty of Technology; Tomas Bata University in Zlín; Nám T. G. Masaryka 275 CZ-762 72 Zlín Czech Republic
| | - Lenka Fojtíková
- Department of Food Analysis and Chemistry; Faculty of Technology; Tomas Bata University in Zlín; Nám T. G. Masaryka 275 CZ-762 72 Zlín Czech Republic
| | - Lenka Fišerová
- Faculty of Chemistry; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
36
|
Li YF, Jin J, Guo Q, Ha YM, Li QP. Complexation of synthetic CDM-AM copolymer with natamycin and carbendazim to improve solubility and fungicidal activity. Carbohydr Polym 2015; 125:288-300. [PMID: 25857986 DOI: 10.1016/j.carbpol.2015.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The β-cyclodextrin-acrylamide (CDM-AM) copolymer was prepared from acrylamide and β-CD maleate (CDM) using K2S2O8 as initiator. The effects of the CDM-AM copolymer on the solubility and fungicidal activity of natamycin (NM) and carbendazim (MBC) were investigated. The stability constant of NM·CDM-AM and MBC·CDM-AM complexes at 303 K were of 10,725.45 M(-1) and 3000.89 M(-1), respectively. The complexes were characterized using phase solubility diagrams, NMR spectra and FT-IR spectra. The analysis of the biological activities of these two complexes indicated that they possessed enhancing fungicidal activities compared to NM and MBC alone.
Collapse
Affiliation(s)
- Yong-Fu Li
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Jing Jin
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Qin Guo
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Yi-Ming Ha
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China.
| | - Qing-Peng Li
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| |
Collapse
|
37
|
|
38
|
|
39
|
Natamycin based sol–gel antimicrobial coatings on polylactic acid films for food packaging. Food Chem 2014; 165:342-7. [DOI: 10.1016/j.foodchem.2014.05.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/03/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022]
|
40
|
Carocho M, Barreiro MF, Morales P, Ferreira ICFR. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr Rev Food Sci Food Saf 2014; 13:377-399. [PMID: 33412697 DOI: 10.1111/1541-4337.12065] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/08/2014] [Indexed: 12/19/2022]
Abstract
The pressing issue to feed the increasing world population has created a demand to enhance food production, which has to be cheaper, but at the same time must meet high quality standards. Taste, appearance, texture, and microbiological safety are required to be preserved within a foodstuff for the longest period of time. Although considerable improvements have been achieved in terms of food additives, some are still enveloped in controversy. The lack of uniformity in worldwide laws regarding additives, along with conflicting results of many studies help foster this controversy. In this report, the most important preservatives, nutritional additives, coloring, flavoring, texturizing, and miscellaneous agents are analyzed in terms of safety and toxicity. Natural additives and extracts, which are gaining interest due to changes in consumer habits are also evaluated in terms of their benefits to health and combined effects. Technologies, like edible coatings and films, which have helped overcome some drawbacks of additives, but still pose some disadvantages, are briefly addressed. Future trends like nanoencapsulation and the development of "smart" additives and packages, specific vaccines for intolerance to additives, use of fungi to produce additives, and DNA recombinant technologies are summarized.
Collapse
Affiliation(s)
- Márcio Carocho
- Mountain Research Center (CIMO) ESA, Polytechnic Inst. of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.,Dept. of Nutrition and Bromatology II, Faculty of Pharmacy, Complutense Univ. of Madrid, Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Inst. of Bragança, Campus Santa Apolónia Apartado 1134, 5301-857 Bragança, Portugal
| | - Patricia Morales
- Dept. of Nutrition and Bromatology II, Faculty of Pharmacy, Complutense Univ. of Madrid, Pza Ramón y Cajal s/n, E-28040 Madrid s/n, E-28040 Madrid, Spain
| | - Isabel C F R Ferreira
- Mountain Research Center (CIMO) ESA, Polytechnic Inst. of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal
| |
Collapse
|