1
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Wagner M, Stessl B. Sampling the Food-Processing Environment: Taking Up the Cudgel for Preventive Quality Management in Food Processing (FP). Methods Mol Biol 2021; 2220:233-242. [PMID: 32975779 DOI: 10.1007/978-1-0716-0982-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Listeria monitoring program for Austrian dairies and cheese factories was established in 1988. The aim was to control the entrance of L. monocytogenes into the food-processing environment (FPE), preventing the contamination of food under processing. The Austrian Listeria monitoring program comprises four levels of investigation, dealing with routine monitoring of samples and consequences of finding a positive sample. Preventive quality control concepts attempt to detect a foodborne hazard along the food-processing chain, prior to food delivery, retailing, and consumption. The implementation of a preventive food safety concept provokes a deepened insight by the manufacturers into problems concerning food safety. The development of preventive quality assurance strategies contributes to the national food safety status and protects public health.
Collapse
Affiliation(s)
- Martin Wagner
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria.
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Bahrami A, Davis S, Mousavi Khaneghah A, Williams L. The efficiency of technologies used for epidemiological characterization of Listeria monocytogenes isolates : an update. Crit Rev Food Sci Nutr 2020; 62:1079-1091. [PMID: 33092402 DOI: 10.1080/10408398.2020.1835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characterization of pathogenic bacteria by providing information regarding the identification and source-tracking of the causes of outbreaks is vital for the epidemiological investigations of foodborne diseases. The knowledge of transmission of Listeria monocytogenes (L. monocytogenes) strains from the environment, directly or indirectly (through food processing facilities) to the final food products, due to the complexity of evaluating numerous, affecting parameters is quite limited. The food trade globalization also adds difficulties in tracking the association between the infection occurrence and causative pathogens, aiming to prevent their spread. The occurrence of listeriosis, a notifiable disease throughout the world, can either be sporadic or outbreak-related. Due to the importance of foodborne outbreaks from a public health aspect and its correspondence enormous economic losses, cross-linked surveillance studies regarding the contamination of foods by L. monocytogenes, besides identifying clusters and tracing the sources of infections on an international-scale to prevent and control L. monocytogenes outbreaks sounds very crucial. Contrary to the conventional typing methods, molecular-based techniques, such as whole-genome sequencing, owing to the capacity to discriminate L. monocytogenes strains down to single nucleotide differences, provide an accurate characterization of strains and tracking the causes of outbreaks. However, routinely using molecular-based methods depends on the required improvements in the affordability, proper timing, and preparing reliable, standardized bioinformatics facilities. This work was conducted to critically review the practical potential of diverse typing methods have been used for the characterization of L. monocytogenes and discuss how they might change the future of efforts for control of listeriosis.
Collapse
Affiliation(s)
- Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Shurrita Davis
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
4
|
Di Ciccio P, Rubiola S, Grassi MA, Civera T, Abbate F, Chiesa F. Fate of Listeria monocytogenes in the Presence of Resident Cheese Microbiota on Common Packaging Materials. Front Microbiol 2020; 11:830. [PMID: 32499762 PMCID: PMC7243358 DOI: 10.3389/fmicb.2020.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Literature data regarding the survival of microorganisms on materials used for food package purposes are scarce. The aim of the current study is to assess the survival of Listeria monocytogenes on different packaging materials for dairy products during extended storage at different temperatures. Three packaging materials (5 × 5 cm) were contaminated with a cocktail of five strains of Listeria monocytogenes suspended in a cheese homogenate, including the cheese's native microbial population. Contaminated samples were incubated at 37°, 12°, and 4°C and periodically analyzed up to 56 days. The evolution of the total viable count and pathogen population was evaluated. At 37°C, the results showed that Listeria monocytogenes was no longer detected on polyethylene-coated nylon (B) by day 4 and on polyethylene-coated parchment (A) and greaseproof paper (C) by day 7. Interestingly, the initial cell population (ranging between 2.5 and 2.7 log CFU/cm2) of Listeria monocytogenes increased to 3 log CFU/cm2 within 4 days of storage at 12°C on A and C. During storage, the number remained fairly constant at 12°C and 4°C on two materials (A-C) and decreased slowly on the third one (B). This study shows that survival of Listeria monocytogenes on packaging materials for dairy products will be higher when stored at 4 or 12°C compared to 37°C. The survival of Listeria monocytogenes on the packaging materials raises concerns of cross-contamination during food handling and preparation at catering and retail premises and within the home, highlighting the importance of treating the packaging materials as a potential source of cross-contamination. These initial findings may aid in quantifying risks associated with contamination of food packaging materials.
Collapse
Affiliation(s)
| | - Selene Rubiola
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | | - Tiziana Civera
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario della Annunziata, Messina, Italy
| | - Francesco Chiesa
- Department of Veterinary Science, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int J Food Microbiol 2019; 314:108360. [PMID: 31678600 DOI: 10.1016/j.ijfoodmicro.2019.108360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Due to a higher probability for violation of hygiene measures, reconstruction work is a substantial food safety challenge for food business operators (FBOs). Here, we monitored a Listeria monocytogenes contamination scenario during a timely enduring reconstruction period that aimed at an expansion of the main building of a leading meat processing facility. Reconstruction took place while food production was ongoing. We used a longitudinal sampling scheme targeting 40 floor water drains distributed over the food processing environment (FPE) over a five year period. The population structure of L. monocytogenes was determined by PCR-serogrouping, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). While the first sampling deciphered a baseline of contamination (45%), intensified sanitation measures decreased L. monocytogenes prevalence before commencement of work (5%). The reconstruction activities increased the prevalence of L. monocytogenes in the FPE (20.5%) and changed the population structure to a higher proportion of disease-associated genotypes (61%). During the first sampling ST121 was prevalent throughout the FPE, even in the packaging area. After the second and third sampling, following increased application of hypochlorite during sanitation, ST121 was only present in the raw material preparation area. A resilient flora was detected during three sampling events (ST8, ST9 and ST37) which might have not been exposed to daily cleaning in the floor drains. After the accomplishment of reconstruction work, the L. monocytogenes population structure shifted to the condition initially found (45% and 20.5% during the first and sixth sampling event). This paper indicates that reconstruction phases are high risk episodes for food safety in FPEs. Special precautions must be taken to avoid cross-contamination of products since reconstruction is usually ongoing for extended periods of time.
Collapse
|
7
|
Rodríguez-López P, Rodríguez-Herrera JJ, Vázquez-Sánchez D, López Cabo M. Current Knowledge on Listeria monocytogenes Biofilms in Food-Related Environments: Incidence, Resistance to Biocides, Ecology and Biocontrol. Foods 2018; 7:E85. [PMID: 29874801 PMCID: PMC6025129 DOI: 10.3390/foods7060085] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Although many efforts have been made to control Listeria monocytogenes in the food industry, growing pervasiveness amongst the population over the last decades has made this bacterium considered to be one of the most hazardous foodborne pathogens. Its outstanding biocide tolerance capacity and ability to promiscuously associate with other bacterial species forming multispecies communities have permitted this microorganism to survive and persist within the industrial environment. This review is designed to give the reader an overall picture of the current state-of-the-art in L. monocytogenes sessile communities in terms of food safety and legislation, ecological aspects and biocontrol strategies.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Department of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), 6, Eduardo Cabello, 36208 Vigo, Spain.
| | - Juan José Rodríguez-Herrera
- Department of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), 6, Eduardo Cabello, 36208 Vigo, Spain.
| | - Daniel Vázquez-Sánchez
- "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), 11, Av. Pádua Dias, 13418-900 São Paulo, Brazil.
| | - Marta López Cabo
- Department of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), 6, Eduardo Cabello, 36208 Vigo, Spain.
| |
Collapse
|
8
|
Wagner M, Skandamis P, Allerberger F, Schoder D, Lassnig C, Müller M, Rychli K. The impact of shelf life on exposure as revealed from quality control data associated with the quargel outbreak. Int J Food Microbiol 2018; 279:64-69. [PMID: 29738927 DOI: 10.1016/j.ijfoodmicro.2018.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 01/06/2023]
Abstract
A cluster of 34 human cases of listeriosis was traced to consumption of contaminated quargel cheese, a sour milk specialty sold in Austria, Germany and Czech Republic. Here, we try to assess how many portions were consumed by the Austrian population at a certain contamination level (CL). In total, 1623 cheese lots were produced during the outbreak period resulting in >3 million portions of cheese delivered to the market. From 650 sets of quality control data provided by the food business operator, we reconstructed the contamination scenario over time and identified 84 lots that were found to be positive. With regard to another sixteen lots, a CL was found ranging from one to 3,84 log10 CFU L. monocytogenes/g, measured in product stored between one to 23 days after production. However the number of storage days at home before consumption is unknown. To resolve this issue, we modelled the theoretical CL of the product if consumed either 20, 30, 40 or 50 days post production. We found that 10 lots (approx. 27,350 portions) would have been contaminated at CLs higher than 3 log10 CFU L. monocytogenes/g if all cheese had been consumed after 20 days of storage. This number shifts to 20 lots (approx. 54,700 portions) after 30 days of storage. If all cheese had been consumed at the end of shelf life (50 days of storage), theoretically 242,5 lots would have exceeded a CL of 6 log10 CFU L. monocytogenes/g. We concluded that the extended shelf life given to the product was a driver of the outbreak scenario. It is stunning to note that so few cases were reported in spite of consumers' massive exposure to L. monocytogenes. We hypothesized that a low pathogenicity of both quargel outbreak clones (QOC1 and QOC2) could have contributed to this discrepancy. Our hypothesis was falsified since both strains QOC1 and QOC2 are fully virulent in an oral infection mouse model, showing even higher pathogenicity than the reference strain EGDe.
Collapse
Affiliation(s)
- Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria.
| | - Panos Skandamis
- Laboratory for Food Quality Control and Hygiene, Department of Food Science & Technology, Iera Odos 75, Agricultural University of Athens, Greece
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Spargelfeldgasse 191, 1220 Vienna, Austria
| | - Dagmar Schoder
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics and Biomodels Austria, Department for Biomedical Sciences, Department for Pathobiology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria, Department for Biomedical Sciences, Department for Pathobiology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Kathrin Rychli
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria
| |
Collapse
|
9
|
Muhterem-Uyar M, Ciolacu L, Wagner KH, Wagner M, Schmitz-Esser S, Stessl B. New Aspects on Listeria monocytogenes ST5-ECVI Predominance in a Heavily Contaminated Cheese Processing Environment. Front Microbiol 2018; 9:64. [PMID: 29472901 PMCID: PMC5810274 DOI: 10.3389/fmicb.2018.00064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
The eradication of Listeria monocytogenes from food chains is still a great challenge for the food industry and control authorities since some clonal complexes (CCs) are either better adapted to food processing environments (FPEs) or are globally widespread. In this work, we focus on the in-house evolution of L. monocytogenes genotypes collected from a heavily contaminated FPE whose contamination pattern underwent a massive and yet unexplained change. At the beginning of the sampling in 2010, a high variety of most likely transient L. monocytogenes genotypes was detected belonging to sequence type (ST) 1, ST7, ST21, ST37. After several efforts to intensify the hygiene measures, the variability was reduced to L. monocytogenes ST5 that was dominant in the following years 2011 and 2012. We aimed to elucidate possible genetic mechanisms responsible for the high abundance and persistence of ST5 strains in this FPE. Therefore, we compared the genomes of six L. monocytogenes ST5 strains to the less frequently occurring transient L. monocytogenes ST37 and ST204 from the same FPE as well as the highly abundant ST1 and ST21 isolated in 2010. Whole genome analysis indicated a high degree of conservation among ST5 strains [average nucleotide identity (ANI) 99.93-99.99%; tetranucleotide correlation 0.99998-0.99999]. Slight differences in pulsed field gel electrophoresis (PFGE) patterns of two ST5 isolates could be explained by genetic changes in the tRNA-Arg-TCT prophages. ST5 and ST204 strains harbored virtually identical 91 kbp plasmids related to plasmid group 2 (pLM80 and pLMUCDL175). Interestingly, highly abundant genotypes present in the FPE in 2010 did not harbor any plasmids. The ST5 plasmids harbored an efflux pump system (bcrABC cassette) and heavy metal resistance genes possibly providing a higher tolerance to disinfectants. The pLM80 prototype plasmids most likely provide important genetic determinants for a better survival of L. monocytogenes in the FPE. We reveal short-term evolution of L. monocytogenes strains within the same FPE over a 3 year period and our results suggest that plasmids are important for the persistence of ST5 strains in this FPE.
Collapse
Affiliation(s)
- Meryem Muhterem-Uyar
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luminita Ciolacu
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
Kim NH, Lee NY, Kim MG, Kim HW, Cho TJ, Joo IS, Heo EJ, Rhee MS. Microbiological criteria and ecology of commercially available processed cheeses according to the product specification and physicochemical characteristics. Food Res Int 2018; 106:468-474. [PMID: 29579949 DOI: 10.1016/j.foodres.2018.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Although global cheese manufacturers release a variety of products onto the market, research on the microbiological quality and safety of cheese has focused mainly on conventional cheeses made from milk. Here, this study aimed to investigate commercially processed cheese products produced by mixing conventional cheeses after melting. Two approaches were used: a summary and comparison of legal definitions and standards/regulations regarding the microbiological criteria used by major cheese traders in the global market (Australia/New Zealand, China, European Union, Japan, Mexico, Republic of Korea, and the United States) and a comprehensive microbiological analysis of commercial products (n = 800), along with an assessment of salinity, pH, water activity, and heating conditions. The results of the literature search showed that major importing countries (China, Japan, Mexico, and the Republic of Korea) have stricter microbiological criteria for commercially available cheese products than major exporters (Australia/New Zealand, EU, and the USA). The former set limits with respect to the number of total coliforms in the product. Microbiological analyses were designed according to global standards and recommendations. No test sample contained detectable levels of Clostridium perfringens, enterohemorrhagic Escherichia coli, Listeria monocytogenes, Salmonella, or Staphylococcus aureus. In addition, no coliform bacteria (including E. coli) were detected. Overall, 79.9% of the samples contained detectable aerobic plate counts (1.0-7.8 log CFU/g); these levels varied significantly according to product type (grated cheese > chunks; cream cheese > portions or sliced) (p < .05). There was no significant association between microbe levels and salinity, water activity, pH, and heating conditions. The results can be used to develop a comprehensive database about commercially processed cheese products available in the global market and, as such, may be helpful for both national authorities and cheese manufacturers when considering novel strategic management plans for microbiological quality and safety.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Na Young Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hye Won Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Sun Joo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do 28159, Republic of Korea
| | - Eun Jung Heo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do 28159, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Oxaran V, Lee SHI, Chaul LT, Corassin CH, Barancelli GV, Alves VF, de Oliveira CAF, Gram L, De Martinis ECP. Listeria monocytogenes incidence changes and diversity in some Brazilian dairy industries and retail products. Food Microbiol 2017; 68:16-23. [PMID: 28800821 DOI: 10.1016/j.fm.2017.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes can cause listeriosis, a severe foodborne disease. In Brazil, despite very few reported cases of listeriosis, the pathogen has been repeatedly isolated from dairies. This has led the government to implement specific legislation to reduce the hazard. Here, we determined the incidence of L. monocytogenes in five dairies and retail products in the Southeast and Midwest regions of Brazil over eight months. Of 437 samples, three samples (0.7%) from retail and only one sample (0.2%) from the dairies were positive for L. monocytogenes. Thus, the contamination rate was significantly reduced as compared to previous studies. MultiLocus Sequence Typing (MLST) was used to determine if contamination was caused by new or persistent clones leading to the first MLST profile of L. monocytogenes from the Brazilian dairy industry. The processing environment isolate is of concern being a sequence-type (ST) 2, belonging to the lineage I responsible for the majority of listeriosis outbreaks. Also, ST3 and ST8 found in commercialized cheese have previously been reported in outbreaks. Despite the lower incidence, dairy products still pose a potential health risk and the occurrence of L. monocytogenes in dairies and retail products emphasize the need for continuous surveillance of this pathogen in the Brazilian dairy industry.
Collapse
Affiliation(s)
- Virginie Oxaran
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sarah Hwa In Lee
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Luíza Toubas Chaul
- FF/UFG, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Carlos Humberto Corassin
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | | |
Collapse
|
12
|
In Lee SH, Barancelli GV, de Camargo TM, Corassin CH, Rosim RE, da Cruz AG, Cappato LP, de Oliveira CAF. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Res Int 2016; 91:88-91. [PMID: 28290331 DOI: 10.1016/j.foodres.2016.11.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
The persistence of Listeria monocytogenes in food industry environments has been associated to the ability of specific isolates to produce biofilms. This study aimed to evaluate the biofilm production of 85 L. monocytogenes strains previously isolated from samples of cheese, brine and the environment of two cheese processing plants located in São Paulo, Brazil. The L. monocytogenes isolates belonged to serotypes 4b, 1/2b and 1/2c, yielded 30 different pulsotypes by pulsed-field gel electrophoresis (PFGE), and were submitted to biofilm-formation assays on polystyrene microplates and stainless steel coupons incubated statically at 35±0.5°C for 48h. All isolates from different sources showed ability to produce biofilms on polystyrene microplates, from which 21 (24.7%) also produced biofilms on stainless steel. Four isolates (4.7%) belonging to four different pulsotypes were classified as strong biofilms-producers on polystyrene microplates, while isolates belonging to four pulsotypes previously evaluated as persistent had weak or moderate ability to produce biofilms on polystyrene microplates. No relationship between the serotypes or pulsotypes and their biofilm-forming ability was observed. This study highlights the high variability in the biofilm production among L. monocytogenes strains collected from cheese and cheese-production environment, also indicating that strong biofilm-formation ability is not a key factor for persistence of specific isolates in cheese processing plants.
Collapse
Affiliation(s)
- Sarah Hwa In Lee
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Giovana Verginia Barancelli
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Department of Agro-Industry, Food and Nutrition, CEP 13418-900 Piracicaba, SP, Brazil
| | - Tarsila Mendes de Camargo
- University of São Paulo, School of Pharmaceutical Sciences, Department of Clinical Analyses, São Paulo, SP CEP 05508-900, Brazil
| | - Carlos Humberto Corassin
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Roice Eliana Rosim
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Adriano Gomes da Cruz
- Federal Institute of Rio de Janeiro (IFRJ), Food Department, CEP 20270-021 Rio de Janeiro, RJ, Brazil
| | - Leandro Pereira Cappato
- Federal Rural University of Rio de Janeiro (UFRRJ), Food Technology Department, CEP 23890-000 Rio de Janeiro, RJ, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
13
|
Zhang J, Cao G, Xu X, Allard M, Li P, Brown E, Yang X, Pan H, Meng J. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China. Front Microbiol 2016; 7:1138. [PMID: 27499751 PMCID: PMC4956650 DOI: 10.3389/fmicb.2016.01138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis.
Collapse
Affiliation(s)
- Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Guojie Cao
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention Shanghai, China
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Eric Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Xiaowei Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Haijian Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Jianghong Meng
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| |
Collapse
|
14
|
Screening and characterisation of bacteriophage P100 insensitive Listeria monocytogenes isolates in Austrian dairy plants. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ariza-Miguel J, Fernández-Natal MI, Soriano F, Hernández M, Stessl B, Rodríguez-Lázaro D. Molecular Epidemiology of Invasive Listeriosis due to Listeria monocytogenes in a Spanish Hospital over a Nine-Year Study Period, 2006-2014. BIOMED RESEARCH INTERNATIONAL 2015; 2015:191409. [PMID: 26539467 PMCID: PMC4619764 DOI: 10.1155/2015/191409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 02/04/2023]
Abstract
We investigated the pathogenicity, invasiveness, and genetic relatedness of 17 clinical Listeria monocytogenes stains isolated over a period of nine years (2006-2014). All isolates were phenotypically characterised and growth patterns were determined. The antimicrobial susceptibility of L. monocytogenes isolates was determined in E-tests. Invasion assays were performed with epithelial HeLa cells. Finally, L. monocytogenes isolates were subtyped by PFGE and MLST. All isolates had similar phenotypic characteristics (β-haemolysis and lecithinase activity), and three types of growth curve were observed. Bacterial recovery rates after invasion assays ranged from 0.09% to 7.26% (1.62 ± 0.46). MLST identified 11 sequence types (STs), and 14 PFGE profiles were obtained, indicating a high degree of genetic diversity. Genetic studies unequivocally revealed the occurrence of one outbreak of listeriosis in humans that had not previously been reported. This outbreak occurred in October 2009 and affected three patients from neighbouring towns. In conclusion, the molecular epidemiological analysis clearly revealed a cluster (three human cases, all ST1) of not previously reported listeriosis cases in northwestern Spain. Our findings indicate that molecular subtyping, in combination with epidemiological case analysis, is essential and should be implemented in routine diagnosis, to improve the tracing of the sources of outbreaks.
Collapse
Affiliation(s)
| | - María Isabel Fernández-Natal
- Department of Clinical Microbiology, Complejo Asistencial Universitario de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - David Rodríguez-Lázaro
- Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
- Microbiology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
16
|
Yong HI, Kim HJ, Park S, Kim K, Choe W, Yoo SJ, Jo C. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Jami M, Ghanbari M, Zunabovic M, Domig KJ, Kneifel W. Listeria monocytogenesin Aquatic Food Products-A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12092] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mansooreh Jami
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Mahdi Ghanbari
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Marija Zunabovic
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Konrad J. Domig
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Wolfgang Kneifel
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| |
Collapse
|
19
|
Rückerl I, Muhterem-Uyar M, Muri-Klinger S, Wagner KH, Wagner M, Stessl B. L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling. Int J Food Microbiol 2014; 189:98-105. [PMID: 25136788 DOI: 10.1016/j.ijfoodmicro.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/17/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where contamination of the processed product is unlikely. Drying of surfaces after cleaning is highly recommended to facilitate the L. monocytogenes eradication.
Collapse
Affiliation(s)
- I Rückerl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - M Muhterem-Uyar
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - S Muri-Klinger
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - K-H Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - M Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Molecular Food Analysis, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - B Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
20
|
Rychli K, Müller A, Zaiser A, Schoder D, Allerberger F, Wagner M, Schmitz-Esser S. Genome sequencing of Listeria monocytogenes "Quargel" listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential. PLoS One 2014; 9:e89964. [PMID: 24587155 PMCID: PMC3935953 DOI: 10.1371/journal.pone.0089964] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/25/2014] [Indexed: 12/18/2022] Open
Abstract
A large listeriosis outbreak occurred in Austria, Germany and the Czech Republic in 2009 and 2010. The outbreak was traced back to a traditional Austrian curd cheese called “Quargel” which was contaminated with two distinct serovar 1/2a Listeria monocytogenes strains (QOC1 and QOC2). In this study we sequenced and analysed the genomes of both outbreak strains in order to investigate the extent of genetic diversity between the two strains belonging to MLST sequence types 398 (QOC2) and 403 (QOC1). Both genomes are highly similar, but also display distinct properties: The QOC1 genome is approximately 74 kbp larger than the QOC2 genome. In addition, the strains harbour 93 (QOC1) and 45 (QOC2) genes encoding strain-specific proteins. A 21 kbp region showing highest similarity to plasmid pLMIV encoding three putative internalins is integrated in the QOC1 genome. In contrast to QOC1, strain QOC2 harbours a vip homologue, which encodes a LPXTG surface protein involved in cell invasion. In accordance, in vitro virulence assays revealed distinct differences in invasion efficiency and intracellular proliferation within different cell types. The higher virulence potential of QOC1 in non-phagocytic cells may be explained by the presence of additional internalins in the pLMIV-like region, whereas the higher invasion capability of QOC2 into phagocytic cells may be due to the presence of a vip homologue. In addition, both strains show differences in stress-related gene content. Strain QOC1 encodes a so-called stress survival islet 1, whereas strain QOC2 harbours a homologue of the uncharacterized LMOf2365_0481 gene. Consistently, QOC1 shows higher resistance to acidic, alkaline and gastric stress. In conclusion, our results show that strain QOC1 and QOC2 are distinct and did not recently evolve from a common ancestor.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anneliese Müller
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Schoder
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecularbiological Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|