1
|
Obadi M, Li Y, Xu B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J Food Sci 2023; 88:3626-3648. [PMID: 37548645 DOI: 10.1111/1750-3841.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Fresh wet noodles (FWNs) are popular among people and have attracted increasing attention because of their characteristics of freshness, chewiness, good taste, and better maintenance of noodle flavor. However, due to the high moisture content and abundance of nutrients in FWN, they are prone to spoilage, which shortens their shelf life and reduces their quality, greatly restricting their large-scale production. Therefore, seeking effective preservation methods to prolong the shelf life is a major breakthrough for the industrialization of FWN. The present review provides a comprehensive overview of the main factors that contribute to the spoilage and degradation of FWN. These factors encompass microorganisms, moisture content, nutritional composition, enzymes, and storage temperature. Moreover, the recent developments in novel shelf-life extension technology applied to FWN, such as chemical preservatives, natural preservatives, physical treatment technologies, and composite preservation technology, are presented and discussed. From the literature reviewed, the application of technologies, such as adding preservatives, modified atmosphere packaging, microwave, cold plasma, ozone, and other technologies, has a certain effect on improving the shelf life of FWN, but the single preservation technology still has some deficiencies. In order to further improve the preservation efficiency, using two or more preservation methods is an important direction for future research on the preservation technology of FWN.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhou Y, Li X. Effect of addition sites on bioaugmentation of tea polyphenols-NZVI/PE composite packing: Nitrogen removal efficiency and service life. CHEMOSPHERE 2022; 290:133258. [PMID: 34914945 DOI: 10.1016/j.chemosphere.2021.133258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Although efficient improvement of the nitrogen removal from wastewater by adding iron was achieved in wastewater process, the influence mechanism of addition sites is unclear. The study was based on the A/O-MBR treating simulated domestic wastewater, and tea polyphenol-nano zero-valent iron/polyethylene packing (TP-NZVI/PE) was added into the anoxic tank, aerobic tank and membrane effluent end of the process, respectively. The effect of the different addition sites on the nitrogen removal performance of A/O-MBR was investigated. Combine with the corrosion rate of NZVI on the packing surface to optimize TP-NZVI/PE addition site. The enhancement mechanism of TP-NZVI/PE under different addition site was explored through the calculation of the materials balance (carbon, nitrogen, phosphorus). The results showed that the pollutant removal of A/O-MBR was significantly increased with the TP-NZVI/PE added. In particular, the TP-NZVI/PE was added into the aerobic tank, and the pollutant removal rate was increased 31.71% (TN) and 53.00% (total phosphorus), respectively. Meanwhile, the service life of TP-NZVI/PE in the aerobic tank was 66 days. The anti-oxidation and dispersion of NZVI was improved with the encapsulation of tea polyphenols and support of packing, and it also played a certain slow-release effect, so that the service life of NZVI was further prolonged in aerobic condition. Combined with the material balance analysis, the result showed that the environmental structure made diversity in the aerobic tank by added the TP-NZVI/PE, and the simultaneous nitrification and denitrification process was achieved. The dependence of the denitrification process on the carbon source was greatly reduced. Besides, it promoted the adsorption and chemical precipitation process of the system for phosphor pollutant and achieved the denitrifying phosphorus removal performance.
Collapse
Affiliation(s)
- Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| |
Collapse
|
3
|
Zhang Q, Zhang J, Zhang J, Xu D, Li Y, Liu Y, Zhang X, Zhang R, Wu Z, Weng P. Antimicrobial Effect of Tea Polyphenols against Foodborne Pathogens: A Review. J Food Prot 2021; 84:1801-1808. [PMID: 34086921 DOI: 10.4315/jfp-21-043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Food contamination by foodborne pathogens is still widespread in many countries around the world, and food safety is a major global public health issue. Therefore, novel preservatives that can guarantee safer food are in high demand. Contrary to artificial food preservatives, tea polyphenols (TPs) are getting wide attention as food additives for being "green," "safe," and "healthy." TPs come from many sources, and the purification technology is sophisticated. Compared with other natural antibacterial agents, the antibacterial effect of TPs is more stable, making them excellent natural antibacterial agents. This review includes a systematic summary of the important chemical components of TPs and the antibacterial mechanisms of TPs against various foodborne pathogens. The potential applications of TPs are also discussed. These data provide a theoretical basis for the in-depth study of TPs. HIGHLIGHTS
Collapse
Affiliation(s)
- Qianling Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiaqi Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Duo Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yajuan Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
4
|
Fan L, Ismail BB, Hou F, Guo M, Ding T, Liu D. Thermosonication pretreatment enhances the killing of germinated Bacillus spores adhered to stainless steel surface. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
González-Angulo M, Clauwers C, Harastani R, Tonello C, Jaime I, Rovira J, Michiels CW. Evaluation of factors influencing the growth of non-toxigenic Clostridium botulinum type E and Clostridium sp. in high-pressure processed and conditioned tender coconut water from Thailand. Food Res Int 2020; 134:109278. [PMID: 32517944 DOI: 10.1016/j.foodres.2020.109278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
Abstract
Bacterial spores survive high pressure processing (HPP). Group II Clostridium botulinum is an obligate anaerobe spore-forming pathogen that can produce the botulinum neurotoxin under refrigeration. This study assessed nontoxigenic type E C. botulinum and Group II Clostridium sp. growth in raw and HPP (550 MPa, 3 min, 10 °C) Thai coconut water (CCW; pH 5.2). No spore germination or growth occurred in HPP CCW inoculated with 105 CFU/ml after 61 days regardless of oxygen concentration (<0.5 - 11 mg/l) or storage temperature (4 and 20 °C). Spore concentration decreased by 3.0 ± 0.1 log CFU/ml in a worst-case scenario consisting of non-HPP filter-sterilized CCW (pH 7.0) under anoxic incubation at 30 °C during 61 days, suggesting spore germination followed by cellular death. Supplementing filter-sterilized CCW (pH 7.0) with selected germinants and free amino acids did not support spore development, but the addition of nutrient-rich laboratory media (TPGY broth) at low concentrations (6.25%) promoted growth, suggesting that a lack of nutrients prevents C. botulinum development in CCW. Further risk assessment will require evaluating other CCW varieties and toxin production.
Collapse
Affiliation(s)
- Mario González-Angulo
- Hiperbaric, S.A., C/ Condado de Treviño, 6, 09001 Burgos, Spain; Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Charlien Clauwers
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Rania Harastani
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Carole Tonello
- Hiperbaric, S.A., C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Isabel Jaime
- Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Chris W Michiels
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
7
|
Ultrasound pretreatment enhances the inhibitory effects of nisin/carvacrol against germination, outgrowth and vegetative growth of spores of Bacillus subtilis ATCC6633 in laboratory medium and milk: Population and single-cell analysis. Int J Food Microbiol 2019; 311:108329. [DOI: 10.1016/j.ijfoodmicro.2019.108329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022]
|
8
|
Omardien S, Drijfhout JW, Zaat SA, Brul S. Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front Microbiol 2018; 9:2277. [PMID: 30319583 PMCID: PMC6168669 DOI: 10.3389/fmicb.2018.02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
The mode of action of four cationic amphipathic antimicrobial peptides (AMPs) was evaluated against the non-pathogenic, Gram-positive, spore-forming bacterium, Bacillus subtilis. The AMPs were TC19, TC84, BP2, and the lantibiotic Nisin A. TC19 and TC84 were derived from the human thrombocidin-1. Bactericidal peptide 2 (BP2) was derived from the human bactericidal permeability increasing protein (BPI). We employed structured illumination microscopy (SIM), fluorescence microscopy, Alexa 488-labeled TC84, B. subtilis mutants producing proteins fused to the green fluorescent protein (GFP) and single-cell live imaging to determine the effects of the peptides against spores. TC19, TC84, BP2, and Nisin A showed to be bactericidal against germinated spores by perturbing the inner membrane, thus preventing outgrowth to vegetative cells. Single cell live imaging showed that the AMPs do not affect the germination process, but the burst time and subsequent generation time of vegetative cells. Alexa 488-labeled TC84 suggested that the TC84 might be binding to the dormant spore-coat. Therefore, dormant spores were also pre-coated with the AMPs and cultured on AMP-free culture medium during single-cell live imaging. Pre-coating of the spores with TC19, TC84, and BP2 had no effect on the germination process, and variably affected the burst time and generation time. However, the percentage of spores that burst and grew out into vegetative cells was drastically lower when pre-coated with Nisin A, suggesting a novel application potential of this lantibiotic peptide against spores. Our findings contribute to the understanding of AMPs and show the potential of AMPs as eventual therapeutic agents against spore-forming bacteria.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | | | - Sebastian A Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Roshan N, Riley T, Hammer K. Effects of natural products on several stages of the spore cycle ofClostridium difficile in vitro. J Appl Microbiol 2018; 125:710-723. [DOI: 10.1111/jam.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/29/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- N. Roshan
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
| | - T.V. Riley
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
- Department of Microbiology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
- School of Veterinary & Life Sciences; Murdoch University; Murdoch WA Australia
- School of Medical & Health Sciences; Edith Cowan University; Joondalup WA Australia
| | - K.A. Hammer
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
| |
Collapse
|
10
|
Omardien S, Ter Beek A, Vischer N, Montijn R, Schuren F, Brul S. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX. Sci Rep 2018; 8:9128. [PMID: 29904100 PMCID: PMC6002552 DOI: 10.1038/s41598-018-27529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/05/2018] [Indexed: 11/12/2022] Open
Abstract
An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander Ter Beek
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Norbert Vischer
- Swammerdam Institute for Life Sciences, Department of Bacterial Cell Biology and Physiology, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Roy Montijn
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Frank Schuren
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Sakanoue H, Yasugi M, Miyake M. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores. Microbiol Immunol 2018; 62:418-424. [PMID: 29727026 DOI: 10.1111/1348-0421.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Sublethal heating of spores has long been known to stimulate or activate germination; however, the underlying mechanisms are not yet fully understood. In this study, the entire germination-to-outgrowth process of spores from Clostridium perfringens, an anaerobic sporeformer, was visualized at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduces the time from completion of germination to the beginning of the first cell division, indicating that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process.
Collapse
Affiliation(s)
- Hideyo Sakanoue
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mayo Yasugi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masami Miyake
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
12
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Kakagianni M, Aguirre JS, Lianou A, Koutsoumanis KP. Effect of storage temperature on the lag time of Geobacillus stearothermophilus individual spores. Food Microbiol 2017. [PMID: 28648296 DOI: 10.1016/j.fm.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lag times (λ) of Geobacillus stearothermophilus single spores were studied at different storage temperatures ranging from 45 to 59 °C using the Bioscreen C method. A significant variability of λ was observed among individual spores at all temperatures tested. The storage temperature affected both the position and the spread of the λ distributions. The minimum mean value of λ (i.e. 10.87 h) was observed at 55 °C, while moving away from this temperature resulted in an increase for both the mean and standard deviation of λ. A Cardinal Model with Inflection (CMI) was fitted to the reverse mean λ, and the estimated values for the cardinal parameters Tmin, Tmax, Topt and the optimum mean λ of G. stearothermophilus were found to be 38.1, 64.2, 53.6 °C and 10.3 h, respectively. To interpret the observations, a probabilistic growth model for G. stearothermophilus individual spores, taking into account λ variability, was developed. The model describes the growth of a population, initially consisting of N0 spores, over time as the sum of cells in each of the N0 imminent subpopulations originating from a single spore. Growth simulations for different initial contamination levels showed that for low N0 the number of cells in the population at any time is highly variable. An increase in N0 to levels exceeding 100 spores results in a significant decrease of the above variability and a shorter λ of the population. Considering that the number of G. stearothermophilus surviving spores in the final product is usually very low, the data provided in this work can be used to evaluate the probability distribution of the time-to-spoilage and enable decision-making based on the "acceptable level of risk".
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Juan S Aguirre
- Laboratorio de Microbiología y Probioticos, INTA, Universidad de Chile, Avenida El Líbano 5524, Macul, Santiago, Chile
| | - Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
14
|
Trunet C, Carlin F, Coroller L. Investigating germination and outgrowth of bacterial spores at several scales. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
‘Omics’ for microbial food stability: Proteomics for the development of predictive models for bacterial spore stress survival and outgrowth. Int J Food Microbiol 2017; 240:11-18. [DOI: 10.1016/j.ijfoodmicro.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
|
16
|
Inhibition of nutrient- and high pressure-induced germination of Bacillus cereus spores by plant essential oils. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|