1
|
Alfonzo A, Alongi D, Prestianni R, Pirrone A, Naselli V, Viola E, De Pasquale C, La Croce F, Gaglio R, Settanni L, Francesca N, Moschetti G. Enhancing the quality and safety of Nocellara del Belice green table olives produced using the Castelvetrano method. Food Microbiol 2024; 120:104477. [PMID: 38431323 DOI: 10.1016/j.fm.2024.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
The Castelvetrano method is the most widely used among the various table olive processing styles in Sicily. After debittering, the product is stored at low temperatures to prevent the growth of undesirable microorganisms. In an effort to enhance the production process, yeast isolates underwent genotypic characterization and technological screening. The screening process identified two yeast strains Candida norvegica OC10 and Candida boidinii LC1, which can grow at low temperatures and tolerate high pH values (up to 10) and salinity [10% (w/v)]. During the monitoring period, the inoculated trials showed limited presence of spoilage/pathogenic microorganisms. Additionally, the yeasts limited oxidative phenomena and softening of the drupes. The organic compounds detected were higher in the inoculated trials than in the control, and cold storage induced aromatic decay, which was less pronounced in the trial inoculated with C. norvegica. Sensory analysis revealed that the inoculated trials scored higher in sweetness, hardness and crispness.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Davide Alongi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Claudio De Pasquale
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Francesco La Croce
- Geolive Belice S.r.l., S.S. 115 Km Dir, Marinella, Castelvetrano, 91022, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy.
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| |
Collapse
|
2
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Alan Y. Chemical changes of potential probiotic Lactiplantibacillus plantarum and Lactobacillus pentosus starter cultures in natural Gemlik type black olive fermentation. Food Chem 2024; 434:137472. [PMID: 37722330 DOI: 10.1016/j.foodchem.2023.137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The aim of this study was to determine the ability of probiotic Lactiplantibacillus plantarum and Lactobacillus pentosus starter cultures to maintain Olea europaea L. cv. Gemlik fermentation and some chemical changes occurred by HPLC. It was observed that starter cultures decreased the pH by increasing the acidity of the fermentation medium. In addition, it was determined that the number of yeast-mold (Y-M) and aerobic mesophilic bacteria (AMB) were lower than the number of lactic acid bacteria (LAB) in the samples with starter cultures. As the fermentation period progressed, it was observed that the amount and variety of phenolic substances increased, albeit slightly, in the brined olive samples to which the starter culture was added. Alcohols, biogenic amines, sugars and organic acids increased or decreased in all samples. During the fermentation gallic acid, apigenin, kaempferol, curcumin, vanillin, caffeic acid, salicylic acid, putrescine, triamine, spermidine and maleic acid could not be detected.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, Turkey.
| |
Collapse
|
4
|
Tzamourani AP, Taliadouros V, Paraskevopoulos I, Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Front Microbiol 2023; 14:1301325. [PMID: 38179455 PMCID: PMC10765506 DOI: 10.3389/fmicb.2023.1301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The selection of native yeast for alcoholic fermentation in wine focuses on ensuring the success of the process and promoting the quality of the final product. The purpose of this study was firstly to create a large collection of new yeast isolates and categorize them based on their oenological potential. Additionally, the geographical distribution of the most dominant species, Saccharomyces cerevisiae, was further explored. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of non-desirable metabolites such as acetic acid and H2S, β-glucosidase production and resistance to the antimicrobial agent; SO2. In parallel, S. cerevisiae isolates were typed at strain level by interdelta - PCR genomic fingerprinting. S. cerevisiae strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized grape must. Glucose and fructose consumption was monitored daily and at the final point a free sorting task was conducted to categorize the samples according to their organoleptic profile. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygosaccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. According to phenotypic typing, most isolates were neutral to killer toxin test and exhibited low acetic acid production. Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. Strain level typing reported 20 different S. cerevisiae strains from which 65% indicated fermentative capacity and led to dry wines. Sensory evaluation results clearly discriminated the produced wines and consequently, the proposed yeast categorization was confirmed. A novel approach that employs biostatistical tools for a rapid screening and classification of indigenous wine yeasts with oenological potential, allowing a more efficient preliminary selection or rejection of isolates is proposed.
Collapse
Affiliation(s)
- Aikaterini P. Tzamourani
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Vasileios Taliadouros
- Department of Statistics and Insurance Science, University of Piraeus, Piraeus, Greece
| | - Ioannis Paraskevopoulos
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| |
Collapse
|
5
|
Tsoungos A, Pemaj V, Slavko A, Kapolos J, Papadelli M, Papadimitriou K. The Rising Role of Omics and Meta-Omics in Table Olive Research. Foods 2023; 12:3783. [PMID: 37893676 PMCID: PMC10606081 DOI: 10.3390/foods12203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Table olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.
Collapse
Affiliation(s)
- Anastasios Tsoungos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Violeta Pemaj
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
6
|
Duguma HT, Mamuye M, Berecha G, Kolk JVD. Purdue improved crop storage bag for kocho fermentation; Ethiopian traditional fermented food from Enset ( Ensete ventricosum). Heliyon 2023; 9:e19301. [PMID: 37681173 PMCID: PMC10480599 DOI: 10.1016/j.heliyon.2023.e19301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Enset (Ensete ventricosm) is a multipurpose crop serving millions of Ethiopians as an alternative food source. However, the traditional kocho preparation is labor-intensive and results in poor quality. This study evaluated Purdue improved crop storage (PICS) bag as an alternative to an underground pit for kocho fermentation. The experiment was arranged in a factorial design with two fermentation systems (underground pit and PICS bag) and three fermentation times (30, 45 & 60 days) with 5 replications. Physico-chemical, proximate composition, microbial, and sensory evaluations of kocho were conducted following standard procedures. The results have revealed that protein and moisture contents were increased with fermentation time while crude fiber, carbohydrate, and total energy were decreased regardless of fermentation systems. The microbial results have demonstrated a reduction with extended fermentation but no significant difference between PICS and the underground pit. The sensory results have shown that PICS bag-fermented kocho has better overall sensory acceptability regardless of fermentation time. Generally, PICS bag-fermented kocho for 60 days has shown overall better kocho quality. The finding revealed that PICS bags could be used as an alternative to the traditional underground pit for better kocho quality. Further validation of the PICS bag as a fermentation container with various enset varieties and seasons with extended fermentation time is needed.
Collapse
Affiliation(s)
- Haile Tesfaye Duguma
- College of Agriculture and Veterinary Medicine, Jimma University, Ethiopia
- School of Packaging, Michigan State University, USA
| | - Melkamu Mamuye
- College of Agriculture and Veterinary Medicine, Jimma University, Ethiopia
| | - Gezahegn Berecha
- College of Agriculture and Veterinary Medicine, Jimma University, Ethiopia
| | | |
Collapse
|
7
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol 2023; 113:104286. [PMID: 37098427 DOI: 10.1016/j.fm.2023.104286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Microbial community and volatilome of brines were monitored during the spontaneous fermentations of Spanish-style and Natural-style green table olives from Manzanilla cultivar. Fermentation of olives in the Spanish style was carried out by lactic acid bacteria (LAB) and yeasts, whereas halophilic Gram-negative bacteria and archaea, along with yeasts, drove the fermentation in the Natural style. Clear differences between the two olive fermentations regarding physicochemical and biochemical features were found. Lactobacillus, Pichia, and Saccharomyces were the dominant microbial communities in the Spanish style, whereas Allidiomarina, Halomonas, Saccharomyces, Pichia, and Nakazawaea predominated in the Natural style. Numerous qualitative and quantitative differences in individual volatiles between both fermentations were found. The final products mainly differed in total amounts of volatile acids and carbonyl compounds. In addition, in each olive style, strong positive correlations were found between the dominant microbial communities and various volatile compounds, some of them previously reported as aroma-active compounds in table olives. The findings from this study provide a better understanding of each fermentation process and may help the development of controlled fermentations using starter cultures of bacteria and/or yeasts for the production of high-quality green table olives from Manzanilla cultivar.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| |
Collapse
|
8
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods 2023; 12:2386. [PMID: 37372597 DOI: 10.3390/foods12122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial and biochemical changes in the brine during the spontaneous fermentation of Gordal, Hojiblanca and Manzanilla olive cultivars processed according to the natural style were monitored. The microbial composition was assessed through a metagenomic study. Sugars, ethanol, glycerol, organic acids and phenolic compounds were quantified by standard methods. In addition, the volatile profiles, contents of phenolic compounds in the olives and quality parameters of the final products were compared. Fermentation in Gordal brines was conducted by lactic acid bacteria (mainly Lactobacillus and Pediococcus) and yeasts (mainly Candida boidinii, Candida tropicalis and Wickerhamomyces anomalus). In Hojiblanca and Manzanilla brines, halophilic Gram-negative bacteria (e.g., Halomonas, Allidiomarina and Marinobacter) along with yeasts (mainly, Saccharomyces) were responsible for the fermentation. Higher acidity and lower pH values were reached in Gordal brines compared to Hojiblanca and Manzanilla. After 30 days of fermentation, no sugars were detected in Gordal brine, but residual amounts were found in the brines from Hojiblanca (<0.2 g/L glucose) and Manzanilla (2.9 g/L glucose and 0.2 g/L fructose). Lactic acid was the main acid product in Gordal fermentation, whereas citric acid was the predominant organic acid in the Hojiblanca and Manzanilla brines. Manzanilla brine samples showed a greater concentration of phenolic compounds than Hojiblanca and Gordal brines. After a 6-month fermentation, Gordal olives were superior compared to the Hojiblanca and Manzanilla varieties regarding product safety (lower final pH and absence of Enterobacteriaceae), content of volatile compounds (richer aroma), content of bitter phenolics (lower content of oleuropein, which resulted in less perceived bitterness) and color parameters (more yellow and lighter color, indicating a higher visual appraisal). The results of the present study will contribute to a better understanding of each fermentation process and could help to promote natural-style elaborations using the above-mentioned olive cultivars.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
9
|
Liu W, Wang X, Ren J, Zheng C, Wu H, Meng F, Ling K, Qi X, Zhou M, Wang Y, Gu R, Han L, Zhang Y. Preparation, characterization, identification, and antioxidant properties of fermented acaí ( Euterpe oleracea). Food Sci Nutr 2023; 11:2925-2941. [PMID: 37324839 PMCID: PMC10261820 DOI: 10.1002/fsn3.3274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 09/20/2024] Open
Abstract
Fermentation technology was used to prepare the acaí (Euterpe oleracea) fermentation liquid. The optimal fermentation parameters included a strain ratio of Lactobacillus paracasei: Leuconostoc mesenteroides: Lactobacillus plantarum = 0.5:1:1.5, a fermentation time of 6 days, and a nitrogen source supplemental level of 2.5%. In optimal conditions, the ORAC value of the fermentation liquid reached the highest value of 273.28 ± 6.55 μmol/L Trolox, which was 55.85% higher than the raw liquid. In addition, the FRAP value of the acaí, as well as its scavenging ability of DPPH, hydroxyl, and ABTS free radicals, increased after fermentation. Furthermore, after fermentation treatment, the microstructure, basic physicochemical composition, amino acid composition, γ-aminobutyric acid, a variety of volatile components, and so on have changed. Therefore, fermentation treatment can significantly improve the nutritional value and flavor of the acaí. This provides a theoretical basis for the comprehensive utilization of acaí.
Collapse
Affiliation(s)
- Wen‐Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & ValorizingCollege of Engineering, China Agricultural UniversityBeijingPeople's Republic of China
| | - Xue Wang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Cheng‐Dong Zheng
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Han‐Shuo Wu
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Fan‐Tong Meng
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Kong Ling
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Xiu‐Yu Qi
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Ming Zhou
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Yue Wang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Rui‐Zeng Gu
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Lu‐Jia Han
- Engineering Laboratory for Agro Biomass Recycling & ValorizingCollege of Engineering, China Agricultural UniversityBeijingPeople's Republic of China
| | - Yong‐Jiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| |
Collapse
|
10
|
Gounari Z, Bonatsou S, Ferrocino I, Cocolin L, Papadopoulou OS, Panagou EZ. Exploring yeast diversity of dry-salted naturally black olives from Greek retail outlets with culture dependent and independent molecular methods. Int J Food Microbiol 2023; 398:110226. [PMID: 37120943 DOI: 10.1016/j.ijfoodmicro.2023.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
In the present study, the physicochemical (pH, water activity, moisture content, salt concentration) classical plate counts (total viable counts, yeasts, lactic acid bacteria, Staphylococcus aureus, Pseudomonas spp., Enterobacteriaceae) and amplicon sequencing of naturally black dry-salted olives obtained from different retail outlets of the Greek market were investigated. According to the results, the values of the physicochemical characteristics presented great variability among the samples. Specifically, pH and water activity (aw) values ranged between 4.0 and 5.0, as well as between 0.58 and 0.91, respectively. Moisture content varied between 17.3 and 56.7 % (g Η2Ο/100 g of olive pulp), whereas salt concentration ranged from 5.26 to 9.15 % (g NaCl/100 g of olive pulp). No lactic acid bacteria, S. aureus, Pseudomonas spp. and Enterobacteriaceae were detected. The mycobiota consisted of yeasts that were further characterized and identified by culture-dependent (rep-PCR, ITS-PCR, and RFLP) and amplicon target sequencing (ATS). Pichia membranifaciens, Candida sorbosivorans, Citeromyces nyonsensis, Candida etchelsii, Wickerhamomyces subpelliculosus, Candida apicola, Wickerhamomyces anomalus, Torulaspora delbrueckii and Candida versatilis were the dominant species according to ITS sequencing (culture-dependent), while ATS revealed the dominance of C. etchelsii, Pichia triangularis, P. membranifaciens, and C. versatilis among samples. The results of this study demonstrated considerable variability in quality attributes among the different commercial samples of dry-salted olives, reflecting a lack of standardization in the processing of this commercial style. However, the majority of the samples were characterized by satisfactory microbiological and hygienic quality and complied with the requirements of the trade standard for table olives of the International Olive Council (IOC) for this processing style in terms of salt concentration. In addition, the diversity of yeast species was elucidated for the first time in commercially available products, increasing our knowledge on the microbial ecology of this traditional food. Further investigation into the technological and multifunctional traits of the dominant yeast species may result in better control during dry-salting and enhance the quality and shelf-life of the final product.
Collapse
Affiliation(s)
- Zoe Gounari
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Stamatoula Bonatsou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Ilario Ferrocino
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Olga S Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, Lycovrissi 14123, Attiki, Greece
| | - Efstathios Z Panagou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece.
| |
Collapse
|
11
|
Mougiou N, Tsoureki A, Didos S, Bouzouka I, Michailidou S, Argiriou A. Microbial and Biochemical Profile of Different Types of Greek Table Olives. Foods 2023; 12:foods12071527. [PMID: 37048348 PMCID: PMC10094447 DOI: 10.3390/foods12071527] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, Kalamon, Amfissis, and Konservolia, fermented either by Greek style (in brine or salt-drying) or by Spanish style, in order to evaluate their microbial communities. Moreover, analytical methods were used to evaluate their biochemical properties. The prevailing bacterial species of all olives belonged to Lactobacillaceae, Leuconostocaceae, and Erwiniaceae families, while the most abundant yeasts were of the Pichiaceae family. Principal coordinates analysis showed a clustering of samples cured by salt-drying and of samples stored in brine, regardless of their cultivar. The biochemical evaluation of total phenol content, antioxidant activity, hydroxytyrosol, oleuropein, oleocanthal, and oleacein showed that salt-dried olives had low amounts of hydroxytyrosol, while Spanish-style green olives had the highest amounts of oleocanthal. All the other values exhibited various patterns, implying that more than one factor affects the biochemical identity of the final product. The protocols applied in this study can provide useful insights for the final product, both for the producers and the consumers.
Collapse
Affiliation(s)
- Niki Mougiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Spyros Didos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| | - Ioanna Bouzouka
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Medicine, Aristotle University of Thessaloniki, 54154 Thessaloniki, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| |
Collapse
|
12
|
Assessment of Starters of Lactic Acid Bacteria and Killer Yeasts: Selected Strains in Lab-Scale Fermentations of Table Olives (Olea europaea L.) cv. Leccino. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Olives debittering, organoleptic quality and safety can be improved with yeasts and lactic acid bacteria (LABs) selected strain starters, that allow for better fermentation control with respect to natural fermentation. Two selected killer yeasts (Wickerhamomyces anomalus and Saccharomyces cerevisiae) and Lactobacillus plantarum strains were tested for olive (cv. Leccino) fermentation to compare different starter combinations and strategies; the aim was to assess their potential in avoiding pretreatments and the use of excessive salt in the brines and preservatives. Lactobacilli, yeasts, molds, Enterobacteriaceae and total aerobic bacteria were detected, as well as pH, soluble sugars, alcohols, organic acids, phenolic compounds, and rheological properties of olives. Sugars were rapidly consumed in the brines and olives; the pH dropped quickly, then rose until neutrality after six months. The oleuropein final levels in olives were unaffected by the treatments. The use of starters did not improve the LABs’ growth nor prevent the growth of Enterobacteriaceae and molds. The growth of undesirable microorganisms could have been induced by the availability of selective carbon source such as mannitol, whose concentration in olive trees rise under drought stress. The possible role of climate change on the quality and safety of fermented foods should be furtherly investigated. The improvement of olives’ nutraceutical value can be induced by yeasts and LABs starters due to the higher production of hydroxytyrosol.
Collapse
|
13
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
14
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
15
|
Ramires FA, Bleve G, De Domenico S, Leone A. Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food. Foods 2022; 11:3974. [PMID: 36553715 PMCID: PMC9778331 DOI: 10.3390/foods11243974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method used in Asian countries for processing a high-salt-containing raw material. Aspergillus oryzae was used to drive the first fermentation, conducted in solid-state conditions, of a jellyfish-based product, here named Jelly paste. The second fermentation was performed by inoculating the Jelly paste with different selected bacteria and yeasts, leading to a final product named fermented Jellyfish paste. For the first time, a set of safety parameters necessary for monitoring and describing a jellyfish-based fermented food was established. The new fermented products obtained by the use of Debaryomyces hansenii BC T3-23 yeast strain and the Bacillus amyloliquefaciens MS3 bacterial strain revealed desirable nutritional traits in terms of protein, lipids and total phenolic content, as well as valuable total antioxidant activity. The obtained final products also showed a complex enzyme profile rich in amylase, protease and lipase activities, thus making them characterized by unique composite sensory odor descriptors (umami, smoked, dried fruit, spices).
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Stefania De Domenico
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Dipartimento di Biologia e Scienze Biologiche e Ambientali (DiSTeBA), Campus Ecotekne, Università del Salento, 73100 Lecce, Italy
| | - Antonella Leone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
16
|
Fermentation of cv. Kalamata Natural Black Olives with Potential Multifunctional Yeast Starters. Foods 2022; 11:foods11193106. [PMID: 36230182 PMCID: PMC9563747 DOI: 10.3390/foods11193106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to explore the inoculated fermentation of cv. Kalamata natural black olives using selected strains of yeast cultures with multifunctional potential. For this purpose, five yeast starters belonging to Candida boidinii (four starters) and Saccharomyces cerevisiae (one starter), previously isolated from table olive fermentation of the same variety and screened for their technological characteristics and probiotic potential, were inoculated in brines at the beginning of fermentation. Microbial populations (lactic acid bacteria, yeasts, and Enterobacteriaceae), pH, titratable acidity, organic acids, and ethanol were monitored during fermentation for a period of 5 months. At the same time, the survival of each starter was assessed by culture-dependent molecular identification at the beginning (0 days), middle (75 days), and final stages (150 days) of fermentation in the brines and olives (at the end of the process only). The results revealed the coexistence of yeasts and lactic acid bacteria (LAB) throughout fermentation in most processes and also the absence of Enterobacteriaceae after the first 20 days of brining. The population of yeasts remained 2 log cycles below LAB counts, except for in the inoculated treatment with C. boidinii Y28, where the yeast starter prevailed from day 60 until the end of the fermentation, as well as in the inoculated treatment with C. boidinii Y30, where no LAB could be detected in the brines after 38 days. At the end of the process, LAB ranged between 4.6 and 6.8 log10 CFU/mL, while yeasts were close to 5.0 log10 CFU/mL, except for the inoculated fermentation with C. boidinii Y27 and spontaneous fermentation (control), in which the yeast counts were close to 3.5 log10 CFU/mL. At the end of fermentation, the recovery percentage of C. boidinii Y27 was 50% in the brines and 45% in the olives. C. boidinii Y28 and S. cerevisiae Y34 could be recovered at 25% and 5% in the brine, respectively, whereas neither starter could be detected in the olives. For C. boidinii Y30, the recovery percentage was 25% in the brine and 10% in the olives. Finally, C. boidinii Y31 could not be detected in the brines and survived at a low percentage (10%) in the olives.
Collapse
|
17
|
Penland M, Pawtowski A, Pioli A, Maillard MB, Debaets S, Deutsch SM, Falentin H, Mounier J, Coton M. Brine salt concentration reduction and inoculation with autochthonous consortia: Impact on Protected Designation of Origin Nyons black table olive fermentations. Food Res Int 2022; 155:111069. [DOI: 10.1016/j.foodres.2022.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
|
18
|
Cecchi L, Migliorini M, Giambanelli E, Canuti V, Bellumori M, Mulinacci N, Zanoni B. Exploitation of virgin olive oil by-products (Olea europaea L.): phenolic and volatile compounds transformations phenomena in fresh two-phase olive pomace ('alperujo') under different storage conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2515-2525. [PMID: 34676895 PMCID: PMC9298029 DOI: 10.1002/jsfa.11593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Much effort has recently been spent for re-using virgin olive oil by-products as nutraceutical ingredients for human diet thanks to their richness in bioactive phenols, but their management is not easy for producers. We aimed to provide useful information for a better management of fresh olive pomace before drying, by studying the phenolic and volatile compounds transformations phenomena of fresh olive pomace stored under different conditions planned to simulate controlled and uncontrolled temperature conditions in olive oil mills. RESULTS The evolution of the phenolic and volatile compounds was studied by high-performance liquid chromatography-diode array detector mass spectrometry (HPLC-DAD-MS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The phenolic profile varied rapidly during storage: the verbascoside content decreased about 70% after 17 days even at 4 °C, while the content of simple phenols such as hydroxytyrosol and caffeic acid increased over time. The low temperature was able to slow down these phenomena. A total of 94 volatile organic compounds (VOCs) were detected in the fresh olive pomace, with a prevalence of lipoxygenase (LOX) VOCs (78%), mainly aldehydes (19 490.9 μg kg-1 ) despite the higher number of alcohols. A decrease in LOX volatiles and a quick development of the ones linked to off-flavors (carboxylic acids, alcohols, acetates) were observed, in particular after 4 days of storage at room temperature. Only storage at 4 °C allowed these phenomena to be slowed down. CONCLUSION To preserve the natural phenolic phytocomplex of fresh olive pomace before drying and to avoid off-flavors development, storage in open containers must be avoided and a short storage in cold rooms (7-10 days) is to be preferred. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBAUniversity of FlorenceFlorenceItaly
| | | | | | - Valentina Canuti
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| | | | | | - Bruno Zanoni
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| |
Collapse
|
19
|
Vaccalluzzo A, Celano G, Pino A, Calabrese FM, Foti P, Caggia C, Randazzo C. Metagenetic and Volatilomic Approaches to Elucidate the Effect of Lactiplantibacillus plantarum Starter Cultures on Sicilian Table Olives. Front Microbiol 2022; 12:771636. [PMID: 35281313 PMCID: PMC8914321 DOI: 10.3389/fmicb.2021.771636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to evaluate the effect of selected Lactiplantibacillus plantarum strains on both microbiota composition and volatile organic compound profile of Sicilian table olives. Two mixed cultures, named O1 and O2, were set up for pilot-plan scale fermentations at 5% of NaCl. Uninoculated table olives at 5 and 8% (C5 and C8) of salt were used as control. The fermentation process was monitored until 80 days through a dual approach, which included both classical microbiological and 16S amplicon-based sequencing and volatilomics analyses. Compared with control samples (C5 and C8), experimental samples, inoculated with starter cultures (O1 and O2), exhibited a faster acidification with a more pronounced drop in pH. Metagenetics data revealed significant differences of microbiota composition among samples, highlighting the dominance of lactobacilli in both experimental samples; a high occurrence of Enterobacter genus only in control samples with 5% of NaCl; and the presence of Bacteroides, Faecalibacterium, Klebsiella, and Raoultella genera only in control samples with 8% of NaCl. Furthermore, microbiota composition dynamics, through the fermentation process, significantly affected the volatile organic compounds of the final products, whereas no compounds involved in off-odors metabolites were detected in all samples investigated. In conclusion, the addition of the proposed starter cultures and the use of low concentrations of sodium chloride positively affected the microbiota and volatile organic compounds, ensuring the microbiological safety and the pleasant flavors of the final product.
Collapse
Affiliation(s)
- Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
| | | | - Paola Foti
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
| | - Cinzia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
- *Correspondence: Cinzia Randazzo,
| |
Collapse
|
20
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
21
|
Ait Chabane F, Tamendjari A, Rovellini P, Romero C, Medina E. Chemical parameters and antioxidant activity of turning color natural-style table olives of the Sigoise cultivar. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0559201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A chemical characterization of turning color table olives of the Sigoise variety was made through their processing as natural-style. Polyphenols, sugars, tocopherols, fatty acids, and antioxidant activity in the olives were monitored throughout the elaboration process. Oleuropein, salidroside, hydroxytyrosol 4-glucoside, rutin, ligustroside and verbascoside showed a decrease of 16.90-83.34%, while hydroxytyrosol increased during the first months of brining. Glucose was consumed by 90% due to the metabolism of the fermentative microbiota. The tocopherol content remained stable during the process and only the α-tocopherol decreased. The fatty acids were not affected. The loss in antioxidant compounds resulted in a decrease in the percentage of DPPH radical inhibition from 75.91% in the raw fruit to 44.20% after 150 days of brining. Therefore, the turning color natural table olives of the Sigoise variety are a good source of bioactive compounds.
Collapse
|
22
|
Effect of different lactic acid bacteria on nitrite degradation, volatile profiles, and sensory quality in Chinese traditional paocai. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Volatile Composition of Industrially Fermented Table Olives from Greece. Foods 2021; 10:foods10051000. [PMID: 34063279 PMCID: PMC8147446 DOI: 10.3390/foods10051000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives represent one of the most important fermented products in Greece. Their highly appreciated flavor is directly associated with the volatile composition. However, extensive data on the volatile profile of table olives from Greek cultivars are scarce in the literature. For this reason, the volatile components of industrially fermented table olives from Kalamata, Conservolea and Halkidiki cultivars grown in different geographical areas within Greece were determined using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. More than 100 volatile compounds were identified and distributed over different chemical classes. All samples were rich in esters, alcohols and acids, whereas the samples of cv. Halkidiki were also characterized by increased levels of volatile phenols. Both qualitative and quantitative differences were observed, which resulted in the discrimination of the table olives according to olive cultivar and growing location. To the best of our knowledge, this is the first systematic study on the volatile profiles of table olives from Greek cultivars that also highlights the pronounced effect of olives’ growing location.
Collapse
|
24
|
Montaño A, Cortés-Delgado A, Sánchez AH, Ruiz-Barba JL. Production of volatile compounds by wild-type yeasts in a natural olive-derived culture medium. Food Microbiol 2021; 98:103788. [PMID: 33875216 DOI: 10.1016/j.fm.2021.103788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The production of volatile compounds in naturally fermented green table olives from Manzanilla cultivar was investigated. A total of 62 volatile compounds were detected after 24 weeks of fermentation. To clarify the contribution of yeasts to the formation of these compounds, such microorganisms were isolated from the corresponding fermenting brines. Five major yeast strains were identified: Nakazawaea molendinolei NC168.1, Zygotorulaspora mrakii NC168.2, Pichia manshurica NC168.3, Candida adriatica NC168.4, and Candida boidinii NC168.5. When these yeasts were grown as pure cultures in an olive-derived culture medium, for 7 days at 25 °C, the number of volatiles produced ranged from 22 (P. manshurica NC168.3) to 60 (C. adriatica NC168.4). Contribution of each yeast strain to the qualitative volatile profile of fermenting brines ranged from 19% (P. manshurica NC168.3) to 48% (Z. mrakii NC168.2 and C. adriatica NC168.4). It was concluded that C. adriatica NC168.4 presented the best aromatic profile, being a solid candidate to be part of a novel starter culture to enhance the organoleptic properties of naturally fermented green table olives.
Collapse
Affiliation(s)
- Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| |
Collapse
|
25
|
Simões LA, Cristina de Souza A, Ferreira I, Melo DS, Lopes LAA, Magnani M, Schwan RF, Dias DR. Probiotic properties of yeasts isolated from Brazilian fermented table olives. J Appl Microbiol 2021; 131:1983-1997. [PMID: 33704882 DOI: 10.1111/jam.15065] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the probiotic potential of yeasts isolated from naturally fermented Brazilian table olives. METHODS AND RESULTS Eighteen yeast strains were tested in terms of: safety; survival of gastrointestinal and digestion conditions; antimicrobial activity; cellular hydrophobicity; autoaggregation ability and adhesion to epithelial cells; coaggregation and inhibition of pathogenic bacteria adhesion. Six yeasts showed favourable results for all probiotic attributes: Saccharomyces cerevisiae CCMA 1746, Pichia guilliermondii CCMA 1753, Candida orthopsilosis CCMA 1748, Candida tropicalis CCMA 1751, Meyerozyma caribbica CCMA 1758 and Debaryomyces hansenii CCMA 1761. These yeasts demonstrated resistance to 37°C, pH 2·0 and bile salts, and survived in vitro digestion (≥106 CFU per ml). Furthermore, the yeasts exhibited a hydrophobic cell surface (42·5-92·2%), autoaggregation capacity (41·0-91·0%) and adhesion to Caco-2 (62·0-82·8%) and HT-29 (57·6-87·3%) epithelial cell lines. Also, the strains showed antimicrobial activity against Salmonella Enteritidis as well as the ability to coaggregate and reduce the adhesion of this pathogen to intestinal cells. CONCLUSIONS Autochthonous yeasts from naturally fermented Brazilian table olives have probiotic properties, with potential for development of new probiotic food products. SIGNIFICANCE AND IMPACT OF STUDY These data are important and contribute to the knowledge of new potential probiotic yeasts capable of surviving gastrointestinal tract conditions and inhibiting pathogenic bacteria.
Collapse
Affiliation(s)
- L A Simões
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - A Cristina de Souza
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - I Ferreira
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - D S Melo
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - L A A Lopes
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - M Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - R F Schwan
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - D R Dias
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
26
|
Tzamourani AP, Di Napoli E, Paramithiotis S, Economou‐Petrovits G, Panagiotidis S, Panagou EZ. Microbiological and physicochemical characterisation of green table olives of Halkidiki and Conservolea varieties processed by the Spanish method on industrial scale. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aikaterini P. Tzamourani
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| | - Elisa Di Napoli
- Department of Agricultural, Forest and Food Sciences University of Torino Largo Paolo Braccini 2 Grugliasco, Torino10095Italy
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Athens Greece
| | | | - Stavros Panagiotidis
- PELOPAC S.A. Block 38, NB1A Street, Thessaloniki Industrial Area Sindos57022Greece
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| |
Collapse
|
27
|
Penland M, Deutsch SM, Falentin H, Pawtowski A, Poirier E, Visenti G, Le Meur C, Maillard MB, Thierry A, Mounier J, Coton M. Deciphering Microbial Community Dynamics and Biochemical Changes During Nyons Black Olive Natural Fermentations. Front Microbiol 2020; 11:586614. [PMID: 33133054 PMCID: PMC7578400 DOI: 10.3389/fmicb.2020.586614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
French PDO Nyons black table olives are produced according to a traditional slow spontaneous fermentation in brine. The manufacture and unique sensorial properties of these olives thus only rely on the autochthonous complex microbiota. This study aimed at unraveling the microbial communities and dynamics of Nyons olives during a 1.5-year-long spontaneous fermentation to determine the main microbial drivers and link microbial species to key metabolites. Fermentations were monitored at a local producer plant at regular time intervals for two harvests and two olive types (organically and conventionally grown) using culture-dependent and metabarcoding (ITS2 for fungi, V3-V4 region for bacteria) approaches. Olives and brines were also sampled for volatiles, organic acids and phenolic compounds. No major differences in microbiota composition were observed according to olive type or harvest period. Throughout the fermentation, yeasts were clearly the most dominant. ITS2 sequencing data revealed complex fungal diversity dominated by Citeromyces nyonsensis, Wickerhamomyces anomalus, Zygotorulaspora mrakii, Candida boidinii and Pichia membranifaciens species. Bacterial communities were dominated by the Celerinatantimonas genus, while lactic acid bacteria remained scarce. Clear shifts in microbial communities and biochemical profiles were observed during fermentation and, by correlating metabolites and microbiota changes, four different phases were distinguished. During the first 7 days, phase I, a fast decrease of filamentous fungal and bacterial populations was observed. Between days 21 and 120, phase II, W. anomalus and C. nyonsensis for fungi and Celerinatantimonas diazotrophica for bacteria dominated the fermentation and were linked to the pH decrease and citric acid production. Phase III, between 120 and 183 days, was characterized by an increase in acids and esters and correlated to increased abundances of Z. mrakii, P. membranifaciens and C. boidinii. During the last months of fermentation, phase IV, microbial communities were dominated by P. membranifaciens and C. boidinii. Both species were strongly correlated to an increase in fruity esters and alcohol abundances. Overall, this study provides an in-depth understanding about microbial species succession and how the microbiota shapes the final distinct olive characteristics. It also constitutes a first step to identify key drivers of this fermentation.
Collapse
Affiliation(s)
- Marine Penland
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France.,STLO, INRAE, Institut Agro, Rennes, France
| | | | | | - Audrey Pawtowski
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Elisabeth Poirier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Giorgia Visenti
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Christophe Le Meur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | | | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| |
Collapse
|
28
|
Argyri K, Doulgeraki AI, Manthou E, Grounta A, Argyri AA, Nychas GJE, Tassou CC. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020; 8:microorganisms8081241. [PMID: 32824085 PMCID: PMC7464643 DOI: 10.3390/microorganisms8081241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Current information from conventional microbiological methods on the microbial diversity of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive analysis of their microbial community, providing microbial identity of table olive varieties and their designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity of fermented olives of two main Greek varieties collected from different regions-green olives, cv. Halkidiki, from Kavala and Halkidiki and black olives, cv. Konservolia, from Magnesia and Fthiotida-via conventional microbiological methods and NGS. Total viable counts (TVC), lactic acid bacteria (LAB), yeast and molds, and Enterobacteriaceae were enumerated. Microbial genomic DNA was directly extracted from the olives' surface and subjected to NGS for the identification of bacteria and yeast communities. Lactobacillaceae was the most abundant family in all samples. In relation to yeast diversity, Phaffomycetaceae was the most abundant yeast family in Konservolia olives from the Magnesia region, while Pichiaceae dominated the yeast microbiota in Konservolia olives from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing multivariate analysis allowed for the first time the discrimination of cv. Konservolia and cv. Halkidiki table olives according to their geographical origin.
Collapse
Affiliation(s)
- Konstantina Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| | - Evanthia Manthou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - George-John E. Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| |
Collapse
|
29
|
FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiol 2020; 92:103606. [PMID: 32950142 DOI: 10.1016/j.fm.2020.103606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
Table olives are considered the most widespread fermented food in the Mediterranean area and their consumption is expanding all over the world. This fermented vegetable can be considered as a natural functional food thanks to their high nutritional value and high content of bioactive compounds that contribute to the health and well-being of consumers. The presence of bioactive compounds is strongly influenced by a complex microbial consortium, traditionally exploited through culture-dependent approaches. Recently, the rapid spread of omics technologies has represented an important challenge to better understand the function, the adaptation and the exploitation of microbial diversity in different complex ecosystems, such as table olives. This review provides an overview of the potentiality of omics technologies to in depth investigate the microbial composition and the metabolic processes that drive the table olives fermentation, affecting both sensorial profile and safety properties of the final product. Finally, the review points out the role of omics approaches to raise at higher sophisticated level the investigations on microbial, gene, protein, and metabolite, with huge potential for the integration of table olives composition with functional assessments.
Collapse
|
30
|
A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020; 9:foods9070948. [PMID: 32709144 PMCID: PMC7404733 DOI: 10.3390/foods9070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation.
Collapse
|
31
|
Ramires FA, Durante M, Maiorano G, Migoni D, Rampino P, Fanizzi FP, Perrotta C, Mita G, Grieco F, Bleve G. Industrial scale bio-detoxification of raw olive mill wastewaters by the use of selected microbial yeast and bacterial strains to obtain a new source for fertigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110574. [PMID: 32421563 DOI: 10.1016/j.jenvman.2020.110574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The Olive Mill Wastewaters (OMWs) are one of the most important agro-industrial wastes of the Mediterranean Countries and the disposal by draining them onto land has been proved to be damaging for soils, plants and groundwater due to their polluting power. The present report describes a new method for bio-detoxification of undiluted fresh OMW based on the driven selection of aerobic yeasts and bacteria. The identified yeast Candida boidinii A5y and the bacterium Paenibacillus albidus R32b strains allowed the treatment of freshly produced raw OMW characterized by very high COD value and phenolic content, when applied as sequential inoculum. The treated OMW showed the absence of antimicrobial effects and a strongly reduction of phytotoxic activity on the germination of several plant seeds. The process was successfully validated on an industrial scale without any pre-treatment, dilution and/or supplementation of the raw waste. Bio-detoxified OMW produced by this sustainable and low-cost process would be suitable for new non-chemical fertigation or soilless applications. The described procedure represents a virtuous example of circular economy efficaciously applied for a depleting agri-food resource.
Collapse
Affiliation(s)
- F A Ramires
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - M Durante
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - G Maiorano
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - D Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - P Rampino
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - C Perrotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - G Mita
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - F Grieco
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - G Bleve
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
32
|
Anagnostopoulos DA, Kamilari E, Tsaltas D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front Microbiol 2020; 11:1128. [PMID: 32547528 PMCID: PMC7273852 DOI: 10.3389/fmicb.2020.01128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Table olives are one of the most well-known traditionally fermented products, and their global consumption is exponentially increasing. In direct brining, table olives are produced spontaneously, without any debittering pre-treatment. Up to date, fermentation process remains empirical and inconstant, as it is affected by the physicochemical attributes of the fruit, tree and fruit management of pro and post-harvest. In the present study, whole and cracked Picual table olives were fermented at industrial scale for 120 days, using three distinct methods (natural fermentation, inoculation with lactic acid bacteria (LAB) at a 7 or a 10% NaCl concentration). Microbial, physicochemical and sensorial alterations monitored during the whole process, and several differences were observed between treatments. Results indicated that in all treatments, the dominant microflora were LAB. Yeasts also detected in noteworthy populations, especially in non-inoculated samples. However, LAB population was significantly higher in inoculated compared to non-inoculated samples. Microbial profiles identified by metagenomic approach showed meaningful differences between spontaneous and inoculated treatments. As a result, the profound dominance of starter culture had a severe effect on olives fermentation, resulting in lower pH and higher acidification, which was mainly caused by the higher levels of lactic acid produced. Furthermore, the elimination of Enterobacteriaceae was shortened, even at lower salt concentration. Although no effect observed concerning the quantitated organoleptic parameters such as color and texture, significantly higher levels in terms of antioxidant capacity were recorded in inoculated samples. At the same time, the degradation time of oleuropein was shortened, leading to the production of higher levels of hydroxytyrosol. Based on this evidence, the establishment of starter culture driven Picual olives fermentation is strongly recommended. It is crucial to mention that the inoculated treatment with reducing sodium content was highly appreciated by the sensory panel, enhancing the hypothesis that the production of Picual table olives at reduced NaCl levels is achievable.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
33
|
Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms 2020; 8:microorganisms8050672. [PMID: 32384669 PMCID: PMC7284738 DOI: 10.3390/microorganisms8050672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
Kalamata natural black olives are one of the most economically important Greek varieties. The microbial ecology of table olives is highly influenced by the co-existence of bacteria and yeasts/fungi, as well as the physicochemical parameters throughout the fermentation. Therefore, the aim of this study was the identification of bacterial and yeast/fungal microbiota of both olives and brines obtained from 29 cv. Kalamata olive samples industrially fermented in the two main producing geographical regions of Greece, namely Aitoloakarnania and Messinia/Lakonia. The potential microbial biogeography association between certain taxa and geographical area was also assessed. The dominant bacterial family identified in olive and brine samples from both regions was Lactobacillaceae, presenting, however, higher average abundances in the samples from Aitoloakarnania compared to Messinia/Lakonia. At the genus level, Lactobacillus, Celerinatantimonas, Propionibacterium and Pseudomonas were the most abundant. In addition, the yeasts/fungal communities were less diverse compared to those of bacteria, with Pichiaceae being the dominant family and Pichia, Ogataea, and Saccharomyces being the most abundant genera. To the best of our knowledge, this is the first report on the microbiota of both olives and brines of cv. Kalamata black olives fermented on an industrial scale between two geographical regions of Greece using metagenomics analysis.
Collapse
|
34
|
Medina E, García‐García P, Romero C, Castro A, Brenes M. Aerobic industrial processing of Empeltre cv. natural black olives and product characterisation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Medina
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Pedro García‐García
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Concepción Romero
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Antonio Castro
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Manuel Brenes
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| |
Collapse
|
35
|
Chytiri A, Tasioula-Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:926-935. [PMID: 31523827 DOI: 10.1002/jsfa.10019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/22/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The effects were studied of different inoculation strategies for selected starters -yeasts and lactic acid bacteria (LAB) - used for the fermentation process of two Greek olive cultivars, Conservolea and Kalamàta. The LAB strains applied were Leuconostoc mesenteroides K T5-1 and L. plantarum A 135-5; the selected yeast strains were S. cerevisiae KI 30-16 and Debaryomyces hansenii A 15-44 for Kalamàta and Conservolea olives, respectively. RESULTS Table olive fermentation processes were monitored by performing microbiological analyses, and by monitoring changes in pH, titratable acidity and salinity, sugar consumption, and the evolution of volatile compounds. Structural modifications occurring in phenolic compounds of brine were investigated during the fermentation using liquid chromatography / diode array detection / electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MSn ) and quantified by high-performance liquid chromatography (HPLC) using a diode array detector. Phenolic compounds in processed Kalamàta olive brines consisted of phenolic acids, verbascoside, caffeoyl-6-secologanoside, comselogoside, and the dialdehydic form of decarboxymethylelenolic acid linked to hydroxytyrosol, whereas oleoside and oleoside 11-methyl ester were identified only in Conservolea olive brines. CONCLUSION Volatile profile and sensory evaluation revealed that the 'MIX' (co-inoculum of yeast and LAB strain) inoculation strategy led to the most aromatic and acceptable Kalamàta olives. For the Conservolea table olives, the 'YL' treatment gave the most aromatic and the overall most acceptable product. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Agathi Chytiri
- Department of Chemistry, Section of Industrial and Food Chemistry, University of Ioannina, Ioannina, Greece
| | - Maria Tasioula-Margari
- Department of Chemistry, Section of Industrial and Food Chemistry, University of Ioannina, Ioannina, Greece
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Vasiliki G Kontogianni
- Department of Chemistry, Section of Industrial and Food Chemistry, University of Ioannina, Ioannina, Greece
| | - Aristeidis Kallimanis
- Department of Chemistry, Section of Industrial and Food Chemistry, University of Ioannina, Ioannina, Greece
| | - Michael G Kontominas
- Department of Chemistry, Section of Industrial and Food Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
36
|
Do Best-Selected Strains Perform Table Olive Fermentation Better than Undefined Biodiverse Starters? A Comparative Study. Foods 2020; 9:foods9020135. [PMID: 32012829 PMCID: PMC7073759 DOI: 10.3390/foods9020135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Twenty-seven Lactobacillus pentosus strains, and the undefined starter for table olives from which they were isolated, were characterised for their technological properties: tolerance to low temperature, high salt concentration, alkaline pH, and olive leaf extract; acidifying ability; oleuropein degradation; hydrogen peroxide and lactic acid production. Two strains with appropriate technological properties were selected. Then, table olive fermentation in vats, with the original starter, the selected strains, and without starter (spontaneous fermentation) were compared. Starters affected some texture profile parameters. The undefined culture resulted in the most effective Enterobacteriaceae reduction, acidification and olive debittering, while the selected strains batch showed the lowest antioxidant activity. Our results show that the best candidate strains cannot guarantee better fermentation performance than the undefined biodiverse mix from which they originate.
Collapse
|
37
|
Anagnostopoulos DA, Goulas V, Xenofontos E, Vouras C, Nikoloudakis N, Tsaltas D. Benefits of the Use of Lactic Acid Bacteria Starter in Green Cracked Cypriot Table Olives Fermentation. Foods 2019; 9:foods9010017. [PMID: 31878011 PMCID: PMC7023104 DOI: 10.3390/foods9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023] Open
Abstract
Table olives are one of the most established Mediterranean vegetables, having an exponential increase consumption year by year. In the natural-style processing, olives are produced by spontaneous fermentation, without any chemical debittering. This natural fermentation process remains empirical and variable since it is strongly influenced by physicochemical parameters and microorganism presence in olive drupes. In the present work, Cypriot green cracked table olives were processed directly in brine (natural olives), using three distinct methods: spontaneous fermentation, inoculation with lactic acid bacteria at a 7% or a 10% NaCl concentration. Sensory, physicochemical, and microbiological alterations were monitored at intervals, and major differences were detected across treatments. Results indicated that the predominant microorganisms in the inoculated treatments were lactic acid bacteria, while yeasts predominated in control. As a consequence, starter culture contributed to a crucial effect on olives fermentation, leading to faster acidification and lower pH. This was attributed to a successful lactic acid fermentation, contrasting the acetic and alcoholic fermentation observed in control. Furthermore, it was established that inhibition of enterobacteria growth was achieved in a shorter period and at a significantly lower salt concentration, compared to the spontaneous fermentation. Even though no significant variances were detected in terms of the total phenolic content and antioxidant capacity, the degradation of oleuropein was achieved faster in inoculated treatments, thus, producing higher levels of hydroxytyrosol. Notably, the reduction of salt concentration, in combination with the use of starter, accented novel organoleptic characteristics in the final product, as confirmed from a sensory panel; hence, it becomes obvious that the production of Cypriot table olives at reduced NaCl levels is feasible.
Collapse
|
38
|
Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol 2019; 84:103250. [DOI: 10.1016/j.fm.2019.103250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 11/24/2022]
|
39
|
Abstract
Purpose
This paper is a systemic review on enset plant’s role in Ethiopian people’s life as the source of food. This paper aims to summarize the traditional processing and preparation methods of enset-based foods and their nutritional composition.
Design/methodology/approach
Available scientific articles were collected and reviewed for enset plant evaluation, description, enset plant’s role in Ethiopian people’s food security, post harvesting and traditional processing of enset plants, microbiology of the fermented enset foods, different foods reported from enset, nutritional profile of the three food from enset base (kocho, bulla and amicho) and other non-food applications of enset plant.
Findings
Enset plant has a predominant role in people living in the southern part of Ethiopia. This plant is drought-tolerant and provides many non-food applications. Harvesting of the enset plant, preparing for fermentation and food preparations follow the traditional route by using the indigenous knowledge and practices. Limited studies have been reported on the microbiology of the enset fermentation, but various types of microbes have been reported. In case of nutritional composition, foods from enset are reported to contain high carbohydrate and minerals content, such as calcium, potassium and zinc, but limited protein content; they are also the best source of the essential amino acids such as lysine and leucine. Limited data are available on vitamins, anti-oxidant and fatty acids profiles of enset-based foods. The existing data indicate variations, and the reasons for variability are discussed in this paper.
Originality/value
Scientific reviews on enset food nutrition profile and related issues are scarce; this paper will compile information about enset plant-based foods for researchers for their future research.
Collapse
|
40
|
Bioactive Compounds and Stability of a Typical Italian Bakery Products " Taralli" Enriched with Fermented Olive Paste. Molecules 2019; 24:molecules24183258. [PMID: 31500173 PMCID: PMC6766877 DOI: 10.3390/molecules24183258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Olive paste (OP) is a novel by-product of olive mill industry composed of water, olive pulp, and skin. Due to its richness in bioactive compounds, OP exploitation for human consumption has recently been proposed. Starter driven fermented OP is characterized by a well-balanced lipid profile, rich in mono and polyunsaturated fatty acids, and a very good oxidative stability due to the high concentration of fat-soluble antioxidants. These characteristics make OP particularly suitable as a functional ingredient for food/feed industry, as well as for the formulation of nutraceutical products. New types of taralli were produced by adding 20% of fermented OP from black olives (cv Cellina di Nardò and Leccino) to the dough. The levels of bioactive compounds (polyphenols, triterpenic acids, tocochromanols, and carotenoids), as well as the fatty acid profile, were monitored during 180 days of storage and compared with control taralli produced with the same flour without OP supplementation. Taralli enriched with fermented OP showed significantly higher levels of bioactive compounds than conventional ones. Furthermore, enriched taralli maintained a low amount of saturated fatty acids and high levels of polyphenols, triterpenic acids, tocochromanols, and carotenoids, compared to the initial value, up to about 90 days in the usual conditions of retailer shelves.
Collapse
|
41
|
Yang X, Hu W, Jiang A, Xiu Z, Ji Y, Guan Y, Sarengaowa, Yang X. Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100421] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
López-López A, Cortés-Delgado A, de Castro A, Sánchez AH, Montaño A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res Int 2019; 125:108568. [PMID: 31554036 DOI: 10.1016/j.foodres.2019.108568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
The present study revealed the effects of each step of black ripe olive processing (preservation, darkening, packing + sterilization) and storage on the volatile composition of two olive cultivars (Manzanilla and Hojiblanca). The preservation step enriched the volatile profile of the olives, mainly in ethyl acetate, methyl acetate, and ethanol. The darkening step produced the total or partial elimination of 55-65% of the volatiles identified before this step. Around 70% of the volatiles in the final products corresponded to compounds that were formed or increased significantly as a result of the sterilization treatment at 121 °C. Although differences in the volatile compositions and contents between Manzanilla and Hojiblanca were found, the dominant volatiles in both cultivars were benzaldehyde, dimethyl sulfide and ethyl acetate. Storage for 8 months had little influence on their volatile profiles, although the stability of individual volatiles in Manzanilla was better than that in the Hojiblanca cultivar.
Collapse
Affiliation(s)
- Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Utrera road, km 1, 41013 Seville, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Utrera road, km 1, 41013 Seville, Spain.
| | - Antonio de Castro
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Utrera road, km 1, 41013 Seville, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Utrera road, km 1, 41013 Seville, Spain.
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Utrera road, km 1, 41013 Seville, Spain.
| |
Collapse
|
43
|
Effect of brine composition on yeast biota associated with naturally fermented Nocellara messinese table olives. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Tufariello M, Anglana C, Crupi P, Virtuosi I, Fiume P, Di Terlizzi B, Moselhy N, Attay HA, Pati S, Logrieco AF, Mita G, Bleve G. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2504-2512. [PMID: 30379330 DOI: 10.1002/jsfa.9460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Table olive fermentation is an unpredictable process and frequently performed using traditional practices often inadequate to obtain products with acceptable quality and safety standards. In the present study, the efficacy of selected yeast strains as starters to drive fermentations of green and black table olives by the Greek method was investigated. Pilot-scale production by spontaneous fermentation as a control, olives started with previously selected Saccharomyces cerevisiae strains and fermentation driven by commercial S. cerevisiae baker's yeast strain were carried out for each of Manzanilla, Picual and Kalamàta table olive cultivars. RESULTS Time of fermentation was significantly shortened to 40 days to complete the transformation process for all three tested cultivars. Inoculated table olives were enhanced in their organoleptic and nutritional properties in comparison with corresponding samples obtained by spontaneous fermentation. The use of starters was also able to improve safety traits of table olives in terms of biogenic amine reduction as well as absence of undesired microorganisms at the end of the process. CONCLUSIONS Autochthonous, but also non-autochthonous, yeasts can be used to start and control table olive fermentations and can significantly improve quality and safety aspects of table olives produced by many smallholder farmers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Chiara Anglana
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Pasquale Crupi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | | | | | | | | | | | - Sandra Pati
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Antonio F Logrieco
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| |
Collapse
|
45
|
Tufariello M, Durante M, Veneziani G, Taticchi A, Servili M, Bleve G, Mita G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front Nutr 2019; 6:3. [PMID: 30805344 PMCID: PMC6371699 DOI: 10.3389/fnut.2019.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8-12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Miriana Durante
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Gianluca Veneziani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Agnese Taticchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| |
Collapse
|
46
|
Caponio F, Difonzo G, Calasso M, Cosmai L, De Angelis M. Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Res Int 2019; 116:1306-1317. [DOI: 10.1016/j.foodres.2018.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
47
|
Fermentation of enset ( Ensete ventricosum ) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamics. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Campus M, Değirmencioğlu N, Comunian R. Technologies and Trends to Improve Table Olive Quality and Safety. Front Microbiol 2018; 9:617. [PMID: 29670593 PMCID: PMC5894437 DOI: 10.3389/fmicb.2018.00617] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Collapse
Affiliation(s)
- Marco Campus
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Nurcan Değirmencioğlu
- Department of Food Processing, Bandirma Vocational High School, Bandirma Onyedi Eylül University, Bandirma, Turkey
| | - Roberta Comunian
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
49
|
Bonatsou S, Karamouza M, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Papadimitriou K, Tsakalidou E, Nychas GJE, Panagou EΖ. Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int J Food Microbiol 2018; 271:48-59. [DOI: 10.1016/j.ijfoodmicro.2018.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
|
50
|
Porru C, Rodríguez-Gómez F, Benítez-Cabello A, Jiménez-Díaz R, Zara G, Budroni M, Mannazzu I, Arroyo-López FN. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol 2018; 69:33-42. [DOI: 10.1016/j.fm.2017.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023]
|