1
|
Wang C, Liu S, Wang Z, Wang M, Pang H, Liu Y, Chang H, Sui Z. Rapid and Accurate Quantification of Viable Lactobacillus Cells in Infant Formula by Flow Cytometry Combined with Propidium Monoazide and Signal-Enhanced Fluorescence In Situ Hybridization. Anal Chem 2024; 96:1093-1101. [PMID: 38204177 DOI: 10.1021/acs.analchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| |
Collapse
|
2
|
Hayashi N, Arai R, Minato T, Fujita Y. Factorial Analysis of Variance of the Inhibiting Effects of Iso-Alpha Acids, Alpha Acids, and Sulfur Dioxide on the Growth of Beer-Spoilage Bacteria in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2093091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobuyuki Hayashi
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Ritsuko Arai
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Toshiko Minato
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Yasuhiro Fujita
- Institute for Future Beverages, Kirin Holdings Company, Limited, Yokohama, Japan
| |
Collapse
|
3
|
Bucka-Kolendo J, Sokołowska B, Winiarczyk S. Influence of High Hydrostatic Pressure on the Identification of Lactobacillus by MALDI-TOF MS- Preliminary Study. Microorganisms 2020; 8:E813. [PMID: 32481763 PMCID: PMC7356497 DOI: 10.3390/microorganisms8060813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we assessed the ability of MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) to identify microbial strains subjected to high hydrostatic pressure (HHP) as a stress factor. Protein changes induced by HHP can affect the identification of microorganisms when the identification technique is based on the protein profile. We evaluated two methods, namely MALDI-TOF MS and 16S rDNA sequencing, as a valuable tool to identify Lactobacillus species isolated from spoiled food, juices and beers. The data obtained from the protein mass fingerprint analysis of some of the lactobacilli strains showed differences in unpressured and pressured mass spectrum profiles (MSPs), which influenced the results of the identification. Four out of 13 strains (30%) showed different MSP results for unpressured and pressured samples and these results did not overlap with the 16S rDNA identification results. The 16S rDNA sequencing method revealed that five unpressured strains (38%) and four pressured strains (40%) were identified correctly by MALDI-TOF MS. Both methods showed compatible results in 38% of unpressured strains and in 30% of pressured strains. Stress factors, cultivation methods or the natural environment from which the bacteria were derived can affect their protein profile and thus change the mass spectrum. It is necessary to expand the database with a wide range of mass spectra dedicated to a high-throughput study of the microorganisms derived from different environments.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Institute of Agriculture and Food Biotechnology, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Institute of Agriculture and Food Biotechnology, 02-532 Warsaw, Poland;
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Stanisław Winiarczyk
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| |
Collapse
|
4
|
Shaw B, Reekers C, Fenske W, Fugate D, Brock M, Fredericks J. Rapid Identification of Fermentation Spoilage Microbes Using Molecular Beacons and a Two-Step Direct DNA Amplification Protocol. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1712644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Benjamin Shaw
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| | - Corrine Reekers
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| | - William Fenske
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| | - Dylan Fugate
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| | - Martin Brock
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| | - Jamie Fredericks
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, U.S.A
| |
Collapse
|
5
|
Kajala I, Bergsveinson J, Friesen V, Redekop A, Juvonen R, Storgårds E, Ziola B. Lactobacillus backii and Pediococcus damnosus isolated from 170-year-old beer recovered from a shipwreck lack the metabolic activities required to grow in modern lager beer. FEMS Microbiol Ecol 2019; 94:4604776. [PMID: 29126241 DOI: 10.1093/femsec/fix152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
In 2010, bottles of beer containing viable bacteria of the common beer-spoilage species Lactobacillus backii and Pediococcus damnosus were recovered from a shipwreck near the Åland Islands, Finland. The 170-year quiescent state maintained by the shipwreck bacteria presented a unique opportunity to study lactic acid bacteria (LAB) evolution vis-a-vis growth and survival in the beer environment. Three shipwreck bacteria (one L. backii strain and two P. damnosus strains) and modern-day beer-spoilage isolates of the same two species were genome sequenced, characterized for hop iso-α-acid tolerance, and growth in degassed lager and wheat beer. In addition, plasmid variants of the modern-day P. damnosus strain were analyzed for the effect of plasmid-encoded genes on growth in lager beer. Coding content on two plasmids was identified as essential for LAB growth in modern lager beer. Three chromosomal regions containing genes related to sugar transport and cell wall polysaccharides were shared by pediococci able to grow in beer. Our results show that the three shipwreck bacteria lack the necessary plasmid-located genetic content to grow in modern lager beer, but carry additional genes related to acid tolerance and biofilm formation compared to their modern counterparts.
Collapse
Affiliation(s)
- Ilkka Kajala
- VTT Technical Research Centre of Finland Ltd, PL 1000, 02044 VTT, Espoo, Finland
| | - Jordyn Bergsveinson
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Royal University Hospital, Box 17, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Vanessa Friesen
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Royal University Hospital, Box 17, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Anna Redekop
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Royal University Hospital, Box 17, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Riikka Juvonen
- VTT Technical Research Centre of Finland Ltd, PL 1000, 02044 VTT, Espoo, Finland
| | - Erna Storgårds
- VTT Technical Research Centre of Finland Ltd, PL 1000, 02044 VTT, Espoo, Finland
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Royal University Hospital, Box 17, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
6
|
De Roos J, De Vuyst L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:25-38. [PMID: 30246252 DOI: 10.1002/jsfa.9291] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Acidic beers, such as Belgian lambic beers and American and other coolship ales, are becoming increasingly popular worldwide thanks to their refreshing acidity and fruity notes. The traditional fermentation used to produce them does not apply pure yeast cultures but relies on spontaneous, environmental inoculation. The fermentation and maturation process is carried out in wooden barrels and can take up to three years. It is characterized by different microbial species belonging to the enterobacteria, acetic acid bacteria, lactic acid bacteria, and yeasts. This review provides an introduction to the technology and four fermentation strategies of beer production, followed by the microbiology of acidic beer production, focusing on the main microorganisms present during the long process used for the production of Belgian lambic beers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Rating of the industrial application potential of yeast strains by molecular characterization. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Lauterbach A, Usbeck JC, Behr J, Vogel RF. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PLoS One 2017; 12:e0181694. [PMID: 28792944 PMCID: PMC5549903 DOI: 10.1371/journal.pone.0181694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own “in-house strains”. During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable “brewing yeast” spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.
Collapse
Affiliation(s)
- Alexander Lauterbach
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Julia C. Usbeck
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
9
|
Grochalová M, Konečná H, Stejskal K, Potěšil D, Fridrichová D, Srbová E, Ornerová K, Zdráhal Z. Deep coverage of the beer proteome. J Proteomics 2017; 162:119-124. [DOI: 10.1016/j.jprot.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
|
10
|
Zhao Y, Knøchel S, Siegumfeldt H. Heterogeneity between and within Strains of Lactobacillus brevis Exposed to Beer Compounds. Front Microbiol 2017; 8:239. [PMID: 28261191 PMCID: PMC5308056 DOI: 10.3389/fmicb.2017.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
This study attempted to investigate the physiological response of six Lactobacillus brevis strains to hop stress, with and without the addition of Mn2+ or ethanol. Based on the use of different fluorescent probes, cell viability and intracellular pH (pHi) were assessed by fluorescence microscopy combined with flow cytometry, at the single cell level. The combined approach was faster than the traditional colony based method, but also provided additional information about population heterogeneity with regard to membrane damage and cell size reduction, when exposed to hop compounds. Different physiological subpopulations were detected under hop stress in both hop tolerant and sensitive strains. A large proportion of cells were killed in all the tested strains, but a small subpopulation from the hop tolerant strains eventually recovered as revealed by pHi measurements. Furthermore, a short term protection against hop compounds was obtained for both hop tolerant and sensitive strains, by addition of high concentration of Mn2+. Addition of ethanol in combination with hop compounds caused an additional short term increase in damaged subpopulation, but the subsequent growth suggested that the presence of ethanol provides a slight cross resistance toward hop compounds.
Collapse
Affiliation(s)
- Yu Zhao
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Susanne Knøchel
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Henrik Siegumfeldt
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| |
Collapse
|
11
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
13
|
The Identification of Novel Diagnostic Marker Genes for the Detection of Beer Spoiling Pediococcus damnosus Strains Using the BlAst Diagnostic Gene findEr. PLoS One 2016; 11:e0152747. [PMID: 27028007 PMCID: PMC4814128 DOI: 10.1371/journal.pone.0152747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 01/21/2023] Open
Abstract
As the number of bacterial genomes increases dramatically, the demand for easy to use tools with transparent functionality and comprehensible output for applied comparative genomics grows as well. We present BlAst Diagnostic Gene findEr (BADGE), a tool for the rapid prediction of diagnostic marker genes (DMGs) for the differentiation of bacterial groups (e.g. pathogenic / nonpathogenic). DMG identification settings can be modified easily and installing and running BADGE does not require specific bioinformatics skills. During the BADGE run the user is informed step by step about the DMG finding process, thus making it easy to evaluate the impact of chosen settings and options. On the basis of an example with relevance for beer brewing, being one of the oldest biotechnological processes known, we show a straightforward procedure, from phenotyping, genome sequencing, assembly and annotation, up to a discriminant marker gene PCR assay, making comparative genomics a means to an end. The value and the functionality of BADGE were thoroughly examined, resulting in the successful identification and validation of an outstanding novel DMG (fabZ) for the discrimination of harmless and harmful contaminations of Pediococcus damnosus, which can be applied for spoilage risk determination in breweries. Concomitantly, we present and compare five complete P. damnosus genomes sequenced in this study, finding that the ability to produce the unwanted, spoilage associated off-flavor diacetyl is a plasmid encoded trait in this important beer spoiling species.
Collapse
|
14
|
Turvey ME, Weiland F, Meneses J, Sterenberg N, Hoffmann P. Identification of beer spoilage microorganisms using the MALDI Biotyper platform. Appl Microbiol Biotechnol 2016; 100:2761-73. [DOI: 10.1007/s00253-016-7344-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|