1
|
Thomas GA, Paradell Gil T, Müller CT, Rogers HJ, Berger CN. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol 2024; 117:104389. [PMID: 37919001 DOI: 10.1016/j.fm.2023.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Gareth A Thomas
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teresa Paradell Gil
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cedric N Berger
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
2
|
Ngernpimai S, Srijampa S, Thongmee P, Teerasong S, Puangmali T, Maleewong W, Chompoosor A, Tippayawat P. Insight into the Covalently Oriented Immobilization of Antibodies on Gold Nanoparticle Probes to Improve Sensitivity in the Colorimetric Detection of Listeria monocytogenes. Bioconjug Chem 2022; 33:2103-2112. [DOI: 10.1021/acs.bioconjchem.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawinee Ngernpimai
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patsara Thongmee
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patcharaporn Tippayawat
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Labanska M, van Amsterdam S, Jenkins S, Clarkson JP, Covington JA. Preliminary Studies on Detection of Fusarium Basal Rot Infection in Onions and Shallots Using Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22145453. [PMID: 35891126 PMCID: PMC9315870 DOI: 10.3390/s22145453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
The evaluation of crop health status and early disease detection are critical for implementing a fast response to a pathogen attack, managing crop infection, and minimizing the risk of disease spreading. Fusarium oxysporum f. sp. cepae, which causes fusarium basal rot disease, is considered one of the most harmful pathogens of onion and accounts for considerable crop losses annually. In this work, the capability of the PEN 3 electronic nose system to detect onion and shallot bulbs infected with F. oxysporum f. sp. cepae, to track the progression of fungal infection, and to discriminate between the varying proportions of infected onion bulbs was evaluated. To the best of our knowledge, this is a first report on successful application of an electronic nose to detect fungal infections in post-harvest onion and shallot bulbs. Sensor array responses combined with PCA provided a clear discrimination between non-infected and infected onion and shallot bulbs as well as differentiation between samples with varying proportions of infected bulbs. Classification models based on LDA, SVM, and k-NN algorithms successfully differentiate among various rates of infected bulbs in the samples with accuracy up to 96.9%. Therefore, the electronic nose was proved to be a potentially useful tool for rapid, non-destructive monitoring of the post-harvest crops.
Collapse
Affiliation(s)
- Malgorzata Labanska
- The Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sarah van Amsterdam
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK; (S.v.A.); (S.J.); (J.P.C.)
| | - Sascha Jenkins
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK; (S.v.A.); (S.J.); (J.P.C.)
| | - John P. Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK; (S.v.A.); (S.J.); (J.P.C.)
| | | |
Collapse
|
4
|
Lepe-Balsalobre E, Rubio-Sánchez R, Ubeda C, Lepe JA. Volatile compounds from in vitro metabolism of seven Listeria monocytogenes isolates belonging to different clonal complexes. J Med Microbiol 2022; 71. [PMID: 35723974 DOI: 10.1099/jmm.0.001553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms produce a wide variety of volatile organic compounds (VOCs) as products of their metabolism and some of them can be specific VOCs linked to the microorganism's identity, which have proved to be helpful for the diagnosis of infection via odour fingerprinting. The aim of this study was to determine the VOCs produced and consumed to characterize the volatile metabolism of seven isolates of different clonal complexes (CCs) of Listeria monocytogenes. For this purpose, dichloromethane extracts from the thioglycolate broth medium were analysed by gas chromatography coupled to mass spectrometry (GC/MS). Also, multivariate analyses were applied to the data obtained. Results showed that all the isolates of L. monocytogenes produced de novo isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3-(methylthio)-1-propanol, acetic acid, isobutyric acid, butanoic acid, and isovaleric acid. Significant differences were found among isolates for the production amount of these volatiles, which allowed their differentiation. Thus, CC4 (ST-219/CT-3650) and CC87 (ST-87/CT-4557) showed an active volatile compounds metabolism with high consumption nitrogen and sulphur compounds and production of alcohols and acids, and CC8 (ST-8/CT-8813) and CC3 (ST-3/CT-8722) presented a less active volatile metabolism. Moreover, within the VOCs determined, huge differences were found in the production of butanol among the seven isolates analysed, being probably a good biomarker to discriminate among isolates belonging to different CCs. Hence, the analysis of volatile profile generated by the growth of L. monocytogenes in vitro could be a useful tool to differentiate among CCs isolates.
Collapse
Affiliation(s)
| | | | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - José Antonio Lepe
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Infectious Diseases. Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (IBIS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| |
Collapse
|
5
|
Abdelgawad KF, Awad AHR, Ali MR, Ludlow RA, Chen T, El-Mogy MM. Increasing the Storability of Fresh-Cut Green Beans by Using Chitosan as a Carrier for Tea Tree and Peppermint Essential Oils and Ascorbic Acid. PLANTS (BASEL, SWITZERLAND) 2022; 11:783. [PMID: 35336665 PMCID: PMC8954194 DOI: 10.3390/plants11060783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The quality of fresh-cut green beans deteriorates rapidly in storage, which contributes to increased food waste and lower perceived customer value. However, chitosan (Cs) and certain plant essential oils show promise in reducing postharvest quality loss during storage. Here, the effect of Cs and the combinations of Cs + tea tree oil (TTO), Cs +x peppermint oil (PMO), and Cs + ascorbic acid (AsA) on the quality of fresh-cut green bean pods (FC-GB) is studied over a 15-d storage period at 5 °C. All four FC-GB treatments reduced weight loss and maintained firmness during storage when compared to uncoated FC-GB. Furthermore, all treatments showed higher total chlorophyll content, AsA, total phenolic compounds, and total sugars compared to the control. The best treatment for reducing microbial growth was a combination of Cs + AsA. Additionally, the combination of Cs with TTO, PMO, or AsA showed a significant reduction in the browning index and increased the antioxidant capacity of FC-GB up to 15 d postharvest.
Collapse
Affiliation(s)
- Karima F. Abdelgawad
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| | - Asmaa H. R. Awad
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| | - Marwa R. Ali
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff CF10 3AX, UK;
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China;
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| |
Collapse
|
6
|
Zhai X, Wang X, Wang X, Zhang H, Ji Y, Ren D, Lu J. An efficient method using ultrasound to accelerate aging in crabapple (Malus asiatica) vinegar produced from fresh fruit and its influencing mechanism investigation. ULTRASONICS SONOCHEMISTRY 2021; 72:105464. [PMID: 33493927 PMCID: PMC7823218 DOI: 10.1016/j.ultsonch.2021.105464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
In this study, a kind of crabapple vinegar was developed by the method of mixed bacteria fermentation. It showed that the total acids and total esters in the vinegar increased by 30.51% and 22.67%, respectively. Simultaneously, ultrasound was used to treat the vinegar to shorten the time of aging. In addition, the HS-SPME-GC-MS results show that some volatile components had increased significantly, such as total esters, aldehydes and heterocycles. Combining OAV with radar chart of aroma active ingredients, the order of contribution to the characteristic aroma of crabapple vinegar was esters > alcohols > others > acids. Finally, ultrasonic cavitation and hydroxyl radicals were measured to further prove it could accelerate chemical reaction of crabapple vinegar. The results of FTIR showed that the hydrogen-bonded molecules had increased, while free molecules with irritating taste (such as ethanol and acetic acid) had decreased, which made the taste of crabapple vinegar softer. Results have showed that ultrasound is a promising technique for shortening aging time and it also provides the possibility to improve the taste of fruit vinegar.
Collapse
Affiliation(s)
- Xinyu Zhai
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xu Wang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xiaoyi Wang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Haoran Zhang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yucheng Ji
- Keyouqianqi Hengjia Fruit Industry Co., Ltd., Inner Mongolia 137716, People's Republic of China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, Beijing 100015, People's Republic of China.
| |
Collapse
|
7
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
8
|
Ma J, Veltman B, Tietel Z, Tsror L, Liu Y, Eltzov E. Monitoring of infection volatile markers using CMOS-based luminescent bioreporters. Talanta 2020; 219:121333. [PMID: 32887066 DOI: 10.1016/j.talanta.2020.121333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
Over the past two decades, whole-cell biosensors (WCBs) have been widely used in the environmental field, with only few applications proposed for use in agricultural. This study describes the development and optimization of a WCB for the detection of volatile organic compounds (VOCs) that is produced specifically by infected potato tubers. First, the effect of calcium-alginate matrix formation (beads vs. tablets) on the membrane uniformity and sensing efficiency was evaluated. Then, important parameters in the immobilization process were examined for their effect on the sensitivity to the presence of VOCs. The highest sensitivity to the target VOC was obtained by 20 min polymerization of bacterial suspension with optical density of 0.2 at 600 nm, dissolved in low-viscosity sodium alginate (1.5% w/v) and exposure to VOC at 4 °C. After optimization, the lowest limit of detection for three infection-sourced VOCs (nonanal, 3-methyl-1-butanol, and 1-octen-3-ol) was 0.17-, 2.03-, and 2.09-mg/L, respectively, and the sensor sensitivity was improved by 8.9-, 3.1- and 2-fold, respectively. Then, the new optimized immobilization protocol was implemented for the CMOS-based application, which increased the sensor sensitivity to VOC by 3-fold during real-time measurement. This is the first step in creating a sensor for real-time monitoring of crop quality by identifying changes in VOC patterns.
Collapse
Affiliation(s)
- Junning Ma
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boris Veltman
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zipora Tietel
- Food Quality and Safety, Agricultural Research Organization, Gilat Research Center, MP Negev, Israel
| | - Leah Tsror
- Department of Plant Pathology, Institute of Plant Protection, Agricultural Research Organization, Gilat Research Center, Negev, Israel
| | - Yang Liu
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Agro-Nanotechnology Research Center, Agriculture Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
9
|
More AS, Ranadheera CS, Fang Z, Warner R, Ajlouni S. Biomarkers associated with quality and safety of fresh-cut produce. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Chow CF. Bimetallic-based food sensors for meat spoilage: Effects of the accepting metallic unit in Fe(II)CNM A (M A = Pt(II) or Au(I)) on device selectivity and sensitivity. Food Chem 2019; 300:125190. [PMID: 31330375 DOI: 10.1016/j.foodchem.2019.125190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Technologies for monitoring meat spoilage are important to ensuring consumer safety. As dimethyl sulfide (DMS) is a reliable marker for meat freshness, sensitive and selective DMS sensors are of great interest. Herein, two trinuclear cyano-bridged bimetallic donor-acceptor ensembles, FeII(bpy)2(CN)2-[PtII(DMSO)Cl2]2 (1) and FeII(bpy)2(CN)2-[AuICl]2, were synthesized, and corresponding solid-supported sensors were fabricated to determine the effect of the acceptor metal (MA) on DMS detection. Changing MA from AuI to PtII improved the sensitivity and selectivity owing to changes in the relative thermodynamic stabilities of the complex and MA-DMS adduct. When applied to real meat samples, 1 exhibited a linear spectroscopic response to DMS, even in the presence of interfering compounds, with a method detection limit of 1.0 ppm. The total bacteria count and gas chromatography-mass spectrometry results revealed that the spectroscopic signal generated by 1 correlated with the microbial growth level and DMS concentration during meat spoilage.
Collapse
Affiliation(s)
- Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Ghasemi-Varnamkhasti M, Apetrei C, Lozano J, Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Forney CF, Fan L, Bezanson GS, Ells TC, LeBlanc DI, Fillmore S. Impact of Listeria Inoculation and Aerated Steam Sanitization on Volatile Emissions of Whole Fresh Cantaloupes. J Food Sci 2018; 83:1017-1024. [PMID: 29660130 DOI: 10.1111/1750-3841.14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 11/30/2022]
Abstract
Rapid methods to detect bacterial pathogens on food and strategies to control them are needed to mitigate consumer risk. This study assessed volatile emissions from whole cantaloupe melons (Cucumis melo) as an indicator of Listeria contamination and in response to steam vapor decontamination. Cantaloupe were inoculated with Listeria innocua, a nonpathogenic surrogate for L. monocytogenes, then exposed to 85 °C steam for 240 s (4 min) followed by rapid chilling and storage for 0, 7, 10, or 14 days at 4, 7, or 10 °C. Volatile emissions from whole melons were collected on Carbopack B/Carboxen 1000 headspace collection tubes and analyzed by gas chromatography-mass spectroscopy following thermal desorption. Introduction of L. innocua to cantaloupe rind resulted in a reduction of aromatic compound emission. However, this response was not unique to Listeria contamination in that steam vapor treatment also reduced emission of these compounds. As well, steam vapor treatment diminished the number of viable Listeria and indigenous microflora while causing physiological injury to melon rind. Heat treatment had no significant effects on flesh firmness, color, titratable acidity, or soluble solids, but the production of typical aroma volatiles during postharvest ripening was inhibited. No unique volatile compounds were detected in Listeria contaminated melons. While changes in volatile emissions were associated with Listeria inoculation, they could not be differentiated from heat treatment effects. Results indicate that volatile emissions cannot be used as a diagnostic tool to identify Listeria contamination in whole cantaloupe melons. PRACTICAL APPLICATION The detection of pathogen contamination on fresh produce is a continuing challenge. Using a nondestructive screening method, the presence of surrogate Listeria innocua on fresh whole cantaloupes was shown to alter the emissions of aromatic volatiles from whole cantaloupes. However, these altered emissions were not found to be unique to Listeria spp. and therefore cannot be used as a definitive indicator of Listeria contamination.
Collapse
Affiliation(s)
- Charles F Forney
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Gregory S Bezanson
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Timothy C Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Denyse I LeBlanc
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
13
|
|
14
|
Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X. Recombinase Polymerase Amplification-Based Assay for Rapid Detection of Listeria monocytogenes in Food Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0775-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|