1
|
Magagna G, Gori M, Russini V, De Angelis V, Spinelli E, Filipello V, Tranquillo VM, De Marchis ML, Bossù T, Fappani C, Tanzi E, Finazzi G. Evaluation of the Virulence Potential of Listeria monocytogenes through the Characterization of the Truncated Forms of Internalin A. Int J Mol Sci 2023; 24:10141. [PMID: 37373288 DOI: 10.3390/ijms241210141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Gori
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Veronica De Angelis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Elisa Spinelli
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Vito Massimo Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
2
|
Fernández-Gómez P, Cobo-Díaz JF, Oliveira M, González-Raurich M, Alvarez-Ordóñez A, Prieto M, Walsh JL, Sivertsvik M, Noriega-Fernández E, López M. Susceptibility and transcriptomic response to plasma-activated water of Listeria monocytogenes planktonic and sessile cells. Food Microbiol 2023; 113:104252. [PMID: 37098419 DOI: 10.1016/j.fm.2023.104252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Plasma-Activated Water (PAW) was generated from tap water using a surface dielectric barrier discharge at different discharge power (26 and 36 W) and activation time (5 and 30 min). The inactivation of a three-strain Listeria monocytogenes cocktail in planktonic and biofilm state was evaluated. PAW generated at 36 W-30 min showed the lowest pH and the highest hydrogen peroxide, nitrates, nitrites contents and effectiveness against cells on planktonic state, resulting in 4.6 log reductions after a 15-min treatment. Although the antimicrobial activity in biofilms formed on stainless steel and on polystyrene was lower, increasing the exposure time to 30 min allowed an inactivation >4.5 log cycles. The mechanisms of action of PAW were investigated using chemical solutions that mimic its physico-chemical characteristics and also RNA-seq analysis. The main transcriptomic changes affected carbon metabolism, virulence and general stress response genes, with several overexpressed genes belonging to the cobalamin-dependent gene cluster.
Collapse
|
3
|
Yu C, Dong H, Li Q, Wang X, Mao F, Qian M, Niu J, Cheng X, Liao C. Biological Characteristics of Listeria monocytogenes Following Deletion of TatD-like Protein Gene. Curr Microbiol 2023; 80:118. [PMID: 36853439 DOI: 10.1007/s00284-023-03229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
TatD is the subunit of the twin-arginine translocation (Tat) pathway. Members of TatD family are multifunctional, conserved and widely presented proteins in most prokaryotes. It has been reported that Tat can affect bacterial motility in some bacteria. This study was conducted to determine the contribution of the TatD protein (herein named LmTatD) to the regulation of flagella in Listeria monocytogenes. We constructed an LmTatD gene mutant in L. monocytogenes strain 10403 s and evaluated its biological characteristics. The results showed no difference in growth or morphology between the wild-type strain and the ΔLmTatD mutant. Intriguingly, the ΔLmTatD mutant showed impaired swimming motility and flagella structure but increased biofilm formation. Comparative proteomic analysis using tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC‒MS/MS) was performed to determine differentially expressed proteins (DEPs). The results revealed that 134 proteins out of 2228 total proteins identified were differentially expressed, among which 18 proteins were upregulated and 116 proteins were downregulated in the ΔLmTatD mutant. Analysis of DEPs indicated that the reduced expression levels of the proteins related to flagellar assembly in the ΔLmTatD mutant correlate with its characteristics. Compared to the wild-type strain, the most downregulated proteins in the ΔLmTatD mutant included FlaA, FliD, FliR, FlgD, FlgL, and FlgG. Collectively, our data suggest that although LmTatD is not required for growth in L. monocytogenes, loss of LmTatD reduces flagellar production and motility by regulating flagellar assembly-related protein expression.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Hefan Dong
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Qi Li
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fuchao Mao
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Man Qian
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Junhui Niu
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Xiangchao Cheng
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China
| | - Chengshui Liao
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, China.
| |
Collapse
|
4
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
5
|
Magagna G, Finazzi G, Filipello V. Newly Designed Primers for the Sequencing of the inlA Gene of Lineage I and II Listeria monocytogenes Isolates. Int J Mol Sci 2022; 23:ijms232214106. [PMID: 36430584 PMCID: PMC9698914 DOI: 10.3390/ijms232214106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a major human foodborne pathogen responsible for listeriosis. The virulence factor Internalin A (inlA) has a key role in the invasion of L. monocytogenes into the human intestinal epithelium, and the presence of premature stop-codons (PMSC) mutations in the inlA gene sequence is correlated with attenuated virulence. The inlA sequencing process is carried out by dividing the gene into three sections which are then reassembled to obtain the full gene. The primers available however were only able to entirely amplify the lineage II isolates. In this study, we present a set of new primers which allow inlA sequencing of isolates belonging to both lineages, since lineage I isolates are the ones most frequently associated to clinical cases. Using newly designed primers, we assessed the presence of inlA PMSCs in food, food processing environments and clinical isolates.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
- Correspondence: ; Tel.: +39-0302-2906-11
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
- Centro di Referenza Nazionale per i Rischi Emergenti in Sicurezza Alimentare—CRESA, Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
6
|
Camargo AC, McFarland AP, Woodward JJ, Nero LA. The magnitude of cell invasion and cell-to-cell spread of Listeria monocytogenes is correlated with serotype-specific traits. Int J Food Microbiol 2022; 382:109906. [DOI: 10.1016/j.ijfoodmicro.2022.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
|
7
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
8
|
Iglesias MA, Kroning IS, Ramires T, Cunha CEP, Moreira GMSG, Camargo AC, Mendonça M, Nero LA, Conceição FR, Lopes GV, DA Silva WP. Genetic Profiles and Invasion Ability of Listeria monocytogenes Isolated from Bovine Carcasses in Southern Brazil. J Food Prot 2022; 85:591-596. [PMID: 34995347 DOI: 10.4315/jfp-21-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the southern region of Rio Grande do Sul, Brazil, based on pulsed-field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), internalin A (InlA) expression by Western blot, and identification of mutation points in inlA. PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroup IIb, n = 2, and serogroup IVb, n = 5; lineage II: serogroup IIc, n = 5). Isolates with indistinguishable genetic profiles through this method were obtained from different slaughterhouses and sampling steps, with as much as a 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%; lineage I, n = 6, and lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%; lineage I, n = 1, and lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA that led to premature stop codon type 19 at position 326 (GAA → TAA). The results demonstrated that most L. monocytogenes isolates from lineage I expressed InlA and were the most invasive in HCT, indicating their high virulence potential, whereas most isolates from lineage II showed attenuated invasion because of nonexpression of InlA or the presence of premature stop codon type 19 in inlA. The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can persist or be reintroduced in beef processing facilities in the studied region and that differences in their virulence potential are based on their lineages and serogroups. HIGHLIGHTS
Collapse
Affiliation(s)
- Mariana A Iglesias
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isabela S Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carlos E P Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gustavo M S G Moreira
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anderson C Camargo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal Rural do Agreste de Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Wladimir Padilha DA Silva
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
10
|
Agostinho Davanzo EF, dos Santos RL, Castro VHDL, Palma JM, Pribul BR, Dallago BSL, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HMB, Rodrigues DDP, Lincopan N, Perecmanis S, Santana AP. Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goiás, Brazil. PLoS One 2021; 16:e0259687. [PMID: 34767604 PMCID: PMC8589217 DOI: 10.1371/journal.pone.0259687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/23/2021] [Indexed: 10/26/2022] Open
Abstract
Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6')-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.
Collapse
Affiliation(s)
| | | | | | - Joana Marchesini Palma
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Bruno Rocha Pribul
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | - Bruna Fuga
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Margareti Medeiros
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | | | | | - Dália dos Prazeres Rodrigues
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Nilton Lincopan
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Simone Perecmanis
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Angela Patrícia Santana
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
11
|
Characterisation of Listeria monocytogenes food-associated isolates to assess environmental fitness and virulence potential. Int J Food Microbiol 2021; 350:109247. [PMID: 34023680 DOI: 10.1016/j.ijfoodmicro.2021.109247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
The ability of Listeria monocytogenes isolates to survive within the food production environment (FPE), as well as virulence, varies greatly between strains. There are specific genetic determinants that have been identified which can strongly influence a strains ability to survive in the FPE and/or within human hosts. In this study, we assessed the FPE fitness and virulence potential, including efficacy of selected hygiene or treatment intervention, against 52 L. monocytogenes strains isolated from various food and food environment sources. Phenotypic tests were performed to determine the minimum inhibitory concentration of cadmium chloride and benzalkonium chloride and the sensitivities to five clinically relevant antibiotics. A genomic analysis was also performed to identify resistance genes correlating to the observed phenotypic resistance profiles, along with genetic determinants of interest which may elude to the FPE fitness and virulence potential. A transposon element containing a novel cadmium resistance gene, cadA7, a Tn916 variant insert in the hypervariable Listeria genomic island 1 region and an LGI2 variant were identified. Resistance to cadmium and disinfectants was prevalent among isolates in this study, although no resistance to clinically important antimicrobials was observed. Potential hypervirulent strains containing full length inlA, LIPI-1 and LIPI-3 were also identified in this study. Cumulatively, the results of this study show a vast array of FPE survival and pathogenicity potential among food production-associated isolates, which may be of concern for food processing operators and clinicians regarding L. monocytogenes strains colonising and persisting within the FPE, and subsequently contaminating food products then causing disease in at risk population groups.
Collapse
|
12
|
Alvarez-Molina A, Cobo-Díaz JF, López M, Prieto M, de Toro M, Alvarez-Ordóñez A. Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. Int J Food Microbiol 2021; 340:109043. [PMID: 33454520 DOI: 10.1016/j.ijfoodmicro.2021.109043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
The food processing environments of a newly opened meat processing facility were sampled in ten visits carried out during its first 1.5 years of activity and analyzed for the presence of Listeria monocytogenes. A total of 18 L. monocytogenes isolates were obtained from 229 samples, and their genomes were sequenced to perform comparative genomic analyses. An increase in the frequency of isolation of L. monocytogenes and in the diversity of sequence types (STs) detected was observed along time. Although the strains isolated belonged to six different STs (ST8, ST9, ST14, ST37, ST121 and ST155), ST9 was the most abundant (8 out of 18 strains). Low (0 and 2) single nucleotide polymorphism (SNP) distances were found between two pairs of ST9 strains isolated in both cases 3 months apart from the same processing room (Lm-1267 and Lm-1705, with a 2 SNPs distance in the core genome; Lm-1265 and Lm-1706, with a 0 SNPs distance), which suggests that these strains may be persistent L. monocytogenes strains in the food processing environment. Most strains showed an in silico attenuated virulence potential either through the truncation of InlA (in 67% of the isolates) or the absence of other virulence factors involved in cell adhesion or invasion. Twelve of the eighteen L. monocytogenes isolates contained a plasmid, which ranged in size from 4 to 87 Kb and harbored stress survival, in addition to heavy metals and biocides resistance determinants. Identical or highly similar plasmids were identified for various sets of L. monocytogenes ST9 isolates, which suggests the clonal expansion and persistence of plasmid-containing ST9 strains in the processing environments of the meat facility. Finally, the analysis of the L. monocytogenes genomes available in the NCBI database, and their associated metadata, evidenced that strains from ST9 are more frequently reported in Europe, linked to foods, particularly to meat and pork products, and less represented among clinical isolates than other L. monocytogenes STs. It also showed that the ST9 strains here isolated were more closely related to the European isolates, which clustered together and separated from ST9 North American isolates.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Biomedical Research Center of La Rioja (CIBIR), Logroño, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
13
|
|
14
|
Medeiros M, Castro VHLD, Mota ALADA, Pereira MG, De Martinis ECP, Perecmanis S, Santana AP. Assessment of Internalin A Gene Sequences and Cell Adhesion and Invasion Capacity of Listeria monocytogenes Strains Isolated from Foods of Animal and Related Origins. Foodborne Pathog Dis 2020; 18:243-252. [PMID: 33337940 DOI: 10.1089/fpd.2020.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of global relevance that causes outbreaks and sporadic cases of listeriosis, acquired through the consumption of contaminated products, including milk or meat products and ready-to-eat meat products subjected to intensive handling. The objective of the present study was to classify L. monocytogenes isolated from various food-related sources in the Federal District of Brazil and surrounding areas to sequence internalin A (inlA) genes from these isolates and assess their adhesion and invasion capacity using Caco-2 cells. In addition, 15 were classified as group I, 3 as group II, and 7 classified as group IV. Premature stop codons (PMSCs) at the nucleotide position 976 (GAA→TAA) of the inlA gene were identified in 5 of the 25 isolates. Adhesion and invasion tests in Caco-2 cells showed that all the isolates were capable of adhesion and cellular invasion, with isolates containing PMSCs exhibiting on average higher invasion capacity than those without PMSCs (p = 0.041) and a median of adhesion very distinctive from those without stop codons. These results are the first report of PMSCs in the inlA gene of L. monocytogenes from the Federal District of Brazil and Brazil.
Collapse
Affiliation(s)
- Margareti Medeiros
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Virgilio Hipolito Lemos de Castro
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Ana Lourdes Arrais de Alencar Mota
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | | | | | - Simone Perecmanis
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Angela Patricia Santana
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
15
|
Ramires T, Kleinubing NR, Iglesias MA, Vitola HRS, Núncio ASP, Kroning IS, Moreira GMSG, Fiorentini ÂM, da Silva WP. Genetic diversity, biofilm and virulence characteristics of Listeria monocytogenes in salmon sushi. Food Res Int 2020; 140:109871. [PMID: 33648189 DOI: 10.1016/j.foodres.2020.109871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022]
Abstract
Sushi is a ready-to-eat (RTE) food prepared from raw or cooked fish that is widely consumed worldwide. Listeria monocytogenes is the foodborne pathogen most commonly associated with RTE and fish products. The aim of the present study was to evaluate the presence of L. monocytogenes in salmon sushi commercialized in Pelotas city, Brazil, and to evaluate the genetic diversity, biofilm-forming ability in stainless steel, and virulence characteristics of the isolates. Four sampling events were carried out in seven specialized sushi establishments totaling 28 sushi pools. Listeria monocytogenes was detected in six samples (21.4%) from two establishments (28.6%). All isolates belonged to serotype 4b and carried the prfA, plcA, plcB, hlyA, mpl, actA, inlA, inlC, inlJ, and iap genes. The inlB gene was not detected in two isolates. The PFGE analysis grouped the isolates into four pulsotypes. All isolates had the ability to form biofilm on stainless steel and the average of biofilm formation counts varied between 6.4 and 7.2 log CFU.cm-2. The isolates harbored the biofilm-related genes agrA, agrB, agrC, agrD, and prfA, with the exception of two isolates that did not harbor the agrD gene. The presence of L. monocytogenes in RTE sushi is a concern, demonstrating that sushi consumption may be a risk of human listeriosis. Furthermore, it was possible to identify the persistence of this pathogen for at least one month (pulsotypes III and IV), in two establishments (A and G), highlighting the need for improving the cleaning and sanitation procedures in establishments that commercialize RTE sushi.
Collapse
Affiliation(s)
- Tassiana Ramires
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariana Almeida Iglesias
- Center of Technological Development, Biotechnology Department, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Helena Reissig Soares Vitola
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Adriana Souto Pereira Núncio
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Isabela Schneid Kroning
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil; Center of Technological Development, Biotechnology Department, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Bustamante F, Maury-Sintjago E, Leal FC, Acuña S, Aguirre J, Troncoso M, Figueroa G, Parra-Flores J. Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods. Microorganisms 2020; 8:microorganisms8111669. [PMID: 33121209 PMCID: PMC7694154 DOI: 10.3390/microorganisms8111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them.
Collapse
Affiliation(s)
- Fernanda Bustamante
- Environmental and Public Health Laboratory, Universidad del Bío-Bío, Regional Secreatariat of the Ministry of Health in Maule, Talca 3461637, Chile;
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Fabiola Cerda Leal
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago 8820808, Chile;
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
- Correspondence:
| |
Collapse
|
17
|
Yang Q, Xu H, Zhang Y, Liu Y, Lu X, Feng X, Tan J, Zhang S, Zhang W. Single primer isothermal amplification coupled with SYBR Green II: Real-time and rapid visual method for detection of Listeria monocytogenes in raw chicken. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl Environ Microbiol 2020; 86:AEM.02493-19. [PMID: 31900305 PMCID: PMC7054086 DOI: 10.1128/aem.02493-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.). Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes. Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10−7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C. IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).
Collapse
|
19
|
Filipello V, Mughini-Gras L, Gallina S, Vitale N, Mannelli A, Pontello M, Decastelli L, Allard MW, Brown EW, Lomonaco S. Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiol 2020; 89:103433. [PMID: 32138991 DOI: 10.1016/j.fm.2020.103433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
Listeriosis is a foodborne illness characterized by a relatively low morbidity, but a large disease burden due to the severity of clinical manifestations and the high case fatality rate. Increased listeriosis notifications have been observed in Europe since the 2000s. However, the reasons for this increase are largely unknown, with the sources of sporadic human listerioris often remaining elusive. Here we inferred the relative contributions of several putative sources of Listeria monocytogenes strains from listerioris patients in Northern Italy (Piedmont and Lombardy regions), using two established source attribution models (i.e. 'Dutch' and 'STRUCTURE') in comparative fashion. We compared the Multi-Locus Sequence Typing and Multi-Virulence-Locus Sequence Typing profiles of strains collected from beef, dairy, fish, game, mixed foods, mixed meat, pork, and poultry. Overall, 634 L. monocytogenes isolates were collected from 2005 to 2016. In total, 40 clonal complexes and 51 virulence types were identified, with 36% of the isolates belonging to possible epidemic clones (i.e. genetically related strains from unrelated outbreaks). Source attribution analysis showed that 50% of human listerioris cases (95% Confidence Interval 44-55%) could be attributed to dairy products, followed by poultry and pork (15% each), and mixed foods (15%). Since the contamination of dairy, poultry and pork products are closely linked to primary production, expanding actions currently limited to ready-to-eat products to the reservoir level may help reducing the risk of cross-contamination at the consumer level.
Collapse
Affiliation(s)
- Virginia Filipello
- University of Turin. Largo P, Braccini, 2, 10095, Grugliasco, Italy; Isituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Via A. Bianchi, 9, 25124, Brescia, Italy.
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Center for Infectious Disease Control, Antonie van Leeuwenhoeklaan, 9, 3721 MA, Bilthoven, Netherlands; Utrecht University, Institute for Risk Assessment Sciences (IRAS), Yalelaan 2, 3584, CM, Utrecht, the Netherlands.
| | - Silvia Gallina
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | - Nicoletta Vitale
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | | | | | - Lucia Decastelli
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | - Marc W Allard
- US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| | - Eric W Brown
- US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| | - Sara Lomonaco
- University of Turin. Largo P, Braccini, 2, 10095, Grugliasco, Italy; US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| |
Collapse
|
20
|
Prevalence of Premature Stop Codons (PMSCs) in Listeria monocytogenes isolated from clinical and food samples in Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Upham J, Chen S, Boutilier E, Hodges L, Eisebraun M, Croxen MA, Fortuna A, Mallo GV, Garduño RA. Potential Ad Hoc Markers of Persistence and Virulence in Canadian Listeria monocytogenes Food and Clinical Isolates. J Food Prot 2019; 82:1909-1921. [PMID: 31633427 DOI: 10.4315/0362-028x.jfp-19-028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Listeria monocytogenes gene inlA, encoding a surface virulence protein, was examined for the presence of premature stop codon (PMSC) mutations in 82 isolates obtained by the Canadian Food Inspection Agency (CFIA) from foods and food contact surfaces. These mutations were coanalyzed for the presence of stress survival islet 1 (SSI-1) and for the abilities of the isolates to invade Caco-2 intestinal epithelial cells and form biofilms on polystyrene. PMSC mutations were present in one-third of the isolates (predominantly those of serogroup 1/2a), and their presence was correlated with a noninvasive phenotype. The presence of SSI-1 and the ability to form biofilms were also linked to the 1/2a serogroup. Serogroup 4b isolates lacked inlA PMSC mutations and were invasive, but neither formed biofilms nor carried SSI-1. To expand upon these experimental findings, an in silico analysis was performed on L. monocytogenes genomes from Canadian databases of 278 food isolates and 607 clinical isolates. The prevalence of inlA PMSC mutations in genomes of food isolates was significantly higher (P < 0.0001) than that in clinical isolates. Also, a three-codon deletion in inlA associated with a hyperinvasive phenotype was more prevalent in genomes from clinical isolates (primarily of clonal complex 6, serogroup 4b) than in those from food isolates (P < 0.001). In contrast, SSI-1 was significantly overrepresented (P < 0.001) in genomes from food isolates. We propose the hypothesis that SSI-1 and inlA play a role in the evolution of Canadian L. monocytogenes strains into either a virulent (represented by serogroup 4b clinical isolates) or an environmentally persistent (represented by serogroup 1/2a food isolates) phenotype. The combined presence of SSI-1 and inlA PMSC mutations have potential for use as genetic markers for risk assessment when L. monocytogenes is recovered from foods, indicating low potential for pathogenesis.
Collapse
Affiliation(s)
- Jacqueline Upham
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Stephen Chen
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Elizabeth Boutilier
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Lisa Hodges
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Mikaela Eisebraun
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Matthew A Croxen
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Alex Fortuna
- Pathogen Preparedness and Test Development Unit, Public Health Ontario Laboratories, Toronto, Ontario, Canada M5G 1M1
| | - Gustavo V Mallo
- Pathogen Preparedness and Test Development Unit, Public Health Ontario Laboratories, Toronto, Ontario, Canada M5G 1M1
| | - Rafael A Garduño
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
22
|
Manso B, Melero B, Stessl B, Fernández-Natal I, Jaime I, Hernández M, Wagner M, Rovira J, Rodríguez-Lázaro D. Characterization of Virulence and Persistence Abilities of Listeria monocytogenes Strains Isolated from Food Processing Premises. J Food Prot 2019; 82:1922-1930. [PMID: 31633423 DOI: 10.4315/0362-028x.jfp-19-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the characterization of 15 Listeria monocytogenes strains isolated from various food processing plants by multivirulence locus sequence typing to determine virulence types (VTs) and epidemic clones. Molecular mechanisms involved in adaptation to food processing environments and related to virulence were also studied. Phenotypic behaviors associated with various antimicrobials, biofilm formations, and invasiveness were assessed. There were 11 VTs among the 15 L. monocytogenes strains. Strains belonging to six VTs were stress survival islet 1 (SSI-1) and one strain of VT94 was SSI-2. Tn6188 was found in VT6 and VT94 strains, and bcrABC cassette genes were identified in VT21, VT60, and VT63 strains. Only one strain, in VT20, showed llxS, whereas a full-size inlA was detected in strains belonging to VT8, VT20, VT21, and VT63. VT10, VT20, VT21, VT60, and VT63 strains were the most tolerant to studied disinfectants. A VT6 strain showed the strongest biofilm formation ability in polyvinyl chloride, and strains belonging to VT10, VT11, VT20, and VT94 had moderate abilities. Antimicrobial sensitivity tests showed that all the L. monocytogenes strains were multidrug resistant. F tests revealed that only strains of VT10, VT60, and VT94 were significantly noninvasive (P < 0.05) in Caco-2 cells. Our findings illustrate how L. monocytogenes isolates exploit diverse mechanisms to adapt to adverse conditions. Consequently, detailed characterization of L. monocytogenes isolates is required for comprehensive elimination of this pathogenic bacterium in food processing environments.
Collapse
Affiliation(s)
- Beatriz Manso
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatriz Melero
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Isabel Fernández-Natal
- Complejo Asistencial, University of León, Leon, Spain.,Institute of Biomedicine (IBIOMED), University of León, Leon, Spain
| | - Isabel Jaime
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Marta Hernández
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.]).,Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Valladolid, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Jordi Rovira
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - David Rodríguez-Lázaro
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| |
Collapse
|
23
|
Mohammadzadeh R, Azadegan A, Kalani BS. Listeriolysin S may inhibit the anti-listerial properties of Lactobacillus plantarum. Microb Pathog 2019; 137:103744. [PMID: 31521800 DOI: 10.1016/j.micpath.2019.103744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
Abstract
Listeriosis is a serious infection linked to the consumption of food contaminated with Listeria monocytogenes. Outbreaks and mortality rates associated with this infection make it a significant public health concern. As biocontrol agents, probiotics such as Lactobacillus plantarum had been of interest for the promotion of antilisterial activities. However, a recent bacteriocin from epidemic L. monocytogenes strains called listeriolysin S (LLS) has been identified with the ability to target the prokaryotic cells that may hinder the anti-listerial properties of L. plantarum. The present study was designed to investigate the interplay between serotypes 4b (lineage I, LLS-producing strain) and 1/2a (NCTC7973, lineage II, non LLS-producing strain) L. monocytogenes and L. plantarum ATCC13643. According to the results of the co-culture assay, L. plantarum significantly reduced the growth of LLS- L. monocytogenes. However, there was a significant reduction in the growth of L. plantarum when co-cultured with LLS + L. monocytogenes. Moreover, according to the results of the culture assay using Caco-2 cell line, there was a significant reduced intracellular count of LLS- L. monocytogenes after L. plantarum exposure, whereas, no major differences were observed in the intracellular count of LLS + L. monocytogenes. These results suggest that L. plantarum may be unable to inhibit infections caused by LLS-producing L. monocytogenes. Also, phylogenetic studies showed the presence of LLS-like proteins in several environmental isolates including L. innocua which suggests a role for LLS in survival and bacterial colonization in harsh conditions. In overall, the ability of LLS to target certain bacterial cells should be taken into consideration during the development of anti-listerial probiotics. Future experiments are required to elucidate the exact mechanisms by which LLS achieves bacterial killing.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Azadegan
- Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Phylogenetically Defined Isoforms of Listeria monocytogenes Invasion Factor InlB Differently Activate Intracellular Signaling Pathways and Interact with the Receptor gC1q-R. Int J Mol Sci 2019; 20:ijms20174138. [PMID: 31450632 PMCID: PMC6747193 DOI: 10.3390/ijms20174138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/19/2023] Open
Abstract
The pathogenic Gram-positive bacterium Listeria monocytogenes has been evolving into a few phylogenetic lineages. Phylogenetically defined substitutions were described in the L. monocytogenes virulence factor InlB, which mediates active invasion into mammalian cells via interactions with surface receptors c-Met and gC1q-R. InlB internalin domain (idInlB) is central to interactions with c-Met. Here we compared activity of purified recombinant idInlB isoforms characteristic for L. monocytogenes phylogenetic lineage I and II. Size exclusion chromatography and intrinsic fluorescence were used to characterize idInlBs. Western blotting was used to study activation of c-Met-dependent MAPK- and PI3K/Akt-pathways. Solid-phase microplate binding and competition assay was used to quantify interactions with gCq1-R. Isogenic recombinant L. monocytogenes strains were used to elucidate the input of idInlB isoforms in HEp-2 cell invasion. Physicochemical parameters of idInlB isoforms were similar but not identical. Kinetics of Erk1/2 and Akt phosphorylation in response to purified idInlBs was lineage specific. Lineage I but not lineage II idInlB specifically bound gC1q-R. Antibody against gC1q-R amino acids 221–249 inhibited invasion of L. monocytogenes carrying lineage I but not lineage II idInlB. Taken together, obtained results suggested that phylogenetically defined substitutions in idInlB provide functional distinctions and might be involved in phylogenetically determined differences in virulence potential.
Collapse
|
25
|
Kalani BS, Najafi M, Mohammadzadeh R, Razavi S, Ohadi E, Irajian G. Targeting Listeria monocytogenes consensus sequence of internalin genes using an antisense molecule. Microb Pathog 2019; 136:103689. [PMID: 31445122 DOI: 10.1016/j.micpath.2019.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
As an intracellular pathogen, Listeria monocytogenes can enter host cells where it can replicate and escape detection and eradication by the host immune response making the clearance of infection very challenging. Furthermore, with the advent of antimicrobial resistance, the need for alternative targets is inevitable. Internalin proteins are crucial to this bacterium as they contribute to bacterial entry to the systemic circulation. In this study, we targeted a highly conserved region of these proteins by an antisense sequence that was covalently conjugated to the cell penetrating peptides (CPP) to overcome the challenging delivery barriers. Then, we evaluated the efficiency of this construct in vitro. We also assessed the antigenicity, cytotoxicity, and probability of apoptosis induction by this construct. The studied CPP-PNA inhibited bacterial growth and suppressed the mRNA expression of internalins in a dose-dependent manner. In addition, at all studied concentrations, CPP-PNA significantly reduced the invasion rate of L. monocytogenes in the examined cell lines. Moreover, different concentrations of CPP-PNA did not have a significant antigenic, cytotoxic, and apoptotic properties compared to the control. These results suggest the effectiveness of CPP-antisense in targeting the mRNAs of internalins for various research, therapeutic and preventive purposes. However, additional research is required to evaluate the potency, safety, and pharmacokinetics of this compound for the prevention and treatment of listeriosis.
Collapse
Affiliation(s)
- Behrooz Sadeghi Kalani
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Su X, Cao G, Zhang J, Pan H, Zhang D, Kuang D, Yang X, Xu X, Shi X, Meng J. Characterization of internalin genes in Listeria monocytogenes from food and humans, and their association with the invasion of Caco-2 cells. Gut Pathog 2019; 11:30. [PMID: 31198443 PMCID: PMC6558679 DOI: 10.1186/s13099-019-0307-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Internalins are surface proteins that are utilized by Listeria monocytogenes to facilitate its invasion into human intestinal epithelial cells. The expression of a full-length InlA is one of essential virulence factors for L. monocytogenes to cross the intestinal barrier in order to invade epithelial cells. Results In this study, the gene sequences of inlA in 120 L. monocytogenes isolates from food (n = 107) and humans (n = 13) were analyzed. Premature stop codon (PMSC) mutations in inlA were identified in 51 isolates (50 from food and 1 from human). Six mutation types of PMSCs were identified. Among the 51 isolates with PMSCs in inlA, there were 44 serogroup 1/2c, 3c isolates from food, of which seven belonged to serogroups 1/2a, 3a. A total of 153,382 SNPs in 2247 core genes from 42 genomes were identified and used to construct a phylogenetic tree. Serotype 1/2c isolates with inlA PMSC mutations were grouped together. Cell culture studies on 21 isolates showed that the invasion to Caco-2 cells was significantly reduced among isolates with inlA PMSC mutations compared to those without PMSC mutations (P < 0.01). The PMSC mutations in inlA correlated with the inability of the L. monocytogenes isolates to invade Caco-2 cells (Pearson’s coefficient 0.927, P < 0.01). Conclusion Overall, the study has revealed the reduced ability of L. monocytogenes to invade human intestinal epithelial cells in vitro was linked to the presence of PMSC mutations in inlA. Isolates with PMSC mutations shared the same genomic characteristics indicating the genetic basis on the potential virulence of L. monocytogenes invasion. Electronic supplementary material The online version of this article (10.1186/s13099-019-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xudong Su
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Guojie Cao
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| | - Jianmin Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Haijian Pan
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Daofeng Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dai Kuang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaowei Yang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xuebin Xu
- 3Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336 China
| | - Xianming Shi
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianghong Meng
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
27
|
Tamburro M, Sammarco ML, Ripabelli G. High resolution melting analysis for the characterization of lineage II Listeria monocytogenes serovars 1/2a and 1/2c based on single nucleotide polymorphisms identification within the Listeria Pathogenicity Island-1 and inlAB operon: a novel approach for epidemiological surveillance. J Appl Microbiol 2018; 125:1920-1937. [PMID: 30187619 DOI: 10.1111/jam.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 08/18/2018] [Indexed: 01/16/2023]
Abstract
AIMS A high resolution melting (HRM) assay was developed for characterizing lineage II Listeria monocytogenes based on the amplification and the melting profiles analysis of 81 fragments targeting the region from the prs to ldh loci, including the Listeria Pathogenicity Island-1 (LIPI-1) genes and the inlAB operon. METHODS AND RESULTS Real-time PCR and HRM protocols were standardized using 10 replicate assays from L. monocytogenes EGD-e reference strain (serovar 1/2a). Twenty wild-type isolates of serovar 1/2a and two of serovar 1/2c were tested, and differences between EGD-e strain and the wild-type isolates were defined if the melting temperature (Tm ) of an amplicon was not within the lower and the upper limits calculated from replicate testing on EGD-e. The analysis revealed 17 and 19 HRM profiles with respect to prs/LIPI-1/ldh and inlAB target regions (Simpson's Index of Diversity 0·979 and 0·983) respectively. The 1/2c cultures showed 98·1% similarity to melting characteristics with EGD-e, whilst 1/2a isolates had the greatest heterogeneity that was related to inlA, inlB and actA genes. Sequencing of amplicons generating different Tm values from EGD-e confirmed the presence of point mutations. CONCLUSIONS This method was useful for L. monocytogenes subtyping based on single nucleotide polymorphisms detection through the melting behaviour analysis of main virulence genes. SIGNIFICANCE AND IMPACT OF THE STUDY The study underlines the effectiveness of HRM in differentiating L. monocytogenes strains with high discriminatory power, thus rendering it useful for epidemiological surveillance.
Collapse
Affiliation(s)
- M Tamburro
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - M L Sammarco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - G Ripabelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|