1
|
Detert K, Währer J, Nieselt K, Schmidt H. Broad time-dependent transcriptional activity of metabolic genes of E. coli O104:H4 strain C227/11Φcu in a soil microenvironment at low temperature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:582-596. [PMID: 37644642 PMCID: PMC10667640 DOI: 10.1111/1758-2229.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.
Collapse
Affiliation(s)
- Katharina Detert
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Jonathan Währer
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
2
|
Detert K, Schmidt H. Sporadic Detection of Escherichia coli O104:H4 Strain C227/11Φcu in the Edible Parts of Lamb's Lettuce Cultured in Contaminated Agricultural Soil Samples. Microorganisms 2023; 11:2072. [PMID: 37630632 PMCID: PMC10457958 DOI: 10.3390/microorganisms11082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.
Collapse
Affiliation(s)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany;
| |
Collapse
|
3
|
Detert K, Schmidt H. Survival of Enterohemorrhagic Escherichia coli O104:H4 Strain C227/11Φcu in Agricultural Soils Depends on rpoS and Environmental Factors. Pathogens 2021; 10:pathogens10111443. [PMID: 34832598 PMCID: PMC8620961 DOI: 10.3390/pathogens10111443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
The consumption of contaminated fresh produce caused outbreaks of enterohemorrhagic (EHEC) Escherichia coli. Agricultural soil might be a reservoir for EHEC strains and represent a contamination source for edible plants. Furthermore, the application of manure as fertilizer is an important contamination route. Thus, the German fertilizer ordinance prohibits the use of manure 12 weeks before crop harvest to avoid pathogen transmission into the food chain. In this study, the survival of E. coli O104:H4 strain C227/11Φcu in soil microenvironments with either diluvial sand or alluvial loam at two temperatures was investigated for more than 12 weeks. It was analyzed whether the addition of cattle manure extends EHEC survival in these microenvironments. The experiments were additionally performed with isogenic ΔrpoS and ΔfliC deletion mutants of C227/11Φcu. The survival of C227/11Φcu was highest at 4 °C, whereas the soil type had a minor influence. The addition of cattle manure increased the survival at 22 °C. Deletion of rpoS significantly decreased the survival period under all cultivation conditions, whereas fliC deletion did not have any influence. The results of our study demonstrate that EHEC C227/11Φcu is able to survive for more than 12 weeks in soil microenvironments and that RpoS is an important determinant for survival.
Collapse
|
4
|
Transmission of Escherichia coli from Manure to Root Zones of Field-Grown Lettuce and Leek Plants. Microorganisms 2021; 9:microorganisms9112289. [PMID: 34835415 PMCID: PMC8622635 DOI: 10.3390/microorganisms9112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Pathogenic Escherichia coli strains are responsible for food-borne disease outbreaks upon consumption of fresh vegetables and fruits. The aim of this study was to establish the transmission route of E. coli strain 0611, as proxy for human pathogenic E. coli, via manure, soil and plant root zones to the above-soil plant compartments. The ecological behavior of the introduced strain was established by making use of a combination of cultivation-based and molecular targeted and untargeted approaches. Strain 0611 CFUs and specific molecular targets were detected in the root zones of lettuce and leek plants, even up to 272 days after planting in the case of leek plants. However, no strain 0611 colonies were detected in leek leaves, and only in one occasion a single colony was found in lettuce leaves. Therefore, it was concluded that transmission of E. coli via manure is not the principal contamination route to the edible parts of both plant species grown under field conditions in this study. Strain 0611 was shown to accumulate in root zones of both species and metagenomic reads of this strain were retrieved from the lettuce rhizosphere soil metagenome library at a level of Log 4.11 CFU per g dry soil.
Collapse
|
5
|
Huang Y, Qiu L, Mi X, Zhang Z, Xu D, Tao X, Xing K, Wu Q, Wei H. Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-κB and HIF-1α signaling pathways in mice. Food Funct 2021; 11:3459-3470. [PMID: 32239008 DOI: 10.1039/c9fo02803j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tea consumption has been found to be associated with low incidence of inflammatory bowel disease in Asian countries. However, there is very limited knowledge of such potential protection and its underlying mechanism. Ripened Pu-erh tea (RPT) belongs to the variety of microbial fermented tea, but its function regarding anti-inflammation remains unclear. In the present study, we investigated the effects of RPT on dextran sulfate sodium (DSS)-induced colitis in mice. The results demonstrated that RPT significantly relieved the loss of body weight, disease severity and shortening of colon length, and remarkably inhibited the secretion of pro-inflammatory cytokines by lessening the infiltration of inflammatory cells. Furthermore, we found that RPT suppressed the activation of the NF-κB pathway and down-regulated the expression of HIF-1α. Thus, it was concluded that RPT attenuated the progress of colitis via suppressing the HIF-1α/NF-κB signaling pathways thus reducing inflammation. This suggests that RPT may be a potential anti-inflammatory nutraceutical for the prevention and treatment of colonic colitis.
Collapse
Affiliation(s)
- Yina Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330047, China
| | - Xuan Mi
- Wanlongshan Tea Plantation, Pingxiang, Jiangxi 337000, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Di Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
6
|
Eissenberger K, Drissner D, Walsh F, Weiss A, Schmidt H. Plant variety and soil type influence Escherichia coli O104:H4 strain C227/11ϕcu adherence to and internalization into the roots of lettuce plants. Food Microbiol 2020; 86:103316. [PMID: 31703882 DOI: 10.1016/j.fm.2019.103316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/19/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Human disease outbreaks caused by pathogenic Escherichia coli are increasingly associated with the consumption of contaminated fresh produce. Internalization of enteroaggregative/enterohemorrhagic E. coli (EAEC/EHEC) strains into plant tissues may present a serious threat to public health. In the current study, the ability of the fluorescing Shiga toxin-negative E. coli O104:H4 strain C227/11ϕcu/pKEC2 to adhere to and to internalize into the roots of Lactuca sativa and Valerianella locusta grown in diluvial sand (DS) and alluvial loam (AL) was investigated. In parallel, the soil microbiota was analyzed by partial 16S rRNA gene sequencing. The experiments were performed in a safety level 3 greenhouse to simulate agricultural practice. The adherence of C227/11ϕcu/pKEC2 to the roots of both plant varieties was increased by at least a factor three after incubation in DS compared to AL. Compared to V. locusta, internalization into the roots of L. sativa was increased 12-fold in DS and 108-fold in AL. This demonstrates that the plant variety had an impact on the internalization ability, whereas for a given plant variety the soil type also affected bacterial internalization. In addition, microbiota analysis detected the inoculated strain and showed large differences in the bacterial composition between the soil types.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - David Drissner
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland; Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland; Department of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Agnes Weiss
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
7
|
Wang N, Liu X, Li J, Zhang Q, Li X, An Q, Ye X, Zhao Z, Cai L, Han Y, Zhao M, Wenjun W. Antibacterial mechanism of the synergistic combination between streptomycin and alcohol extracts from the Chimonanthus salicifolius S. Y. Hu. leaves. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112467. [PMID: 31837412 DOI: 10.1016/j.jep.2019.112467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chimonanthus salicifolius S. Y. Hu. Is a unique traditional medicinal plant in ancient China, and it can eliminate turbid pathogens with aromatics, clear heat, detoxify, prevent colds and influenza, Xinhua Compendium of Materia Medica records that. AIM OF THE STUDY In previous study, we investigated the regulation of ethanol extracts (EEs) from C. salicifolius S. Y. Hu. leaves on three common antibiotics (chloramphenicol, streptomycin, imipenem) by the checkerboard method. The combination exhibited the best synergy among all combinations, which were composed of streptomycin and 50% EE (SE) from the C. salicifolius S. Y. Hu. leaves. The aim of this study was to investigate the antibacterial mechanism of the SE against Escherichia coli (E. coli, G-) and Staphylococcus aureus (S. aureus, G+). MATERIALS AND METHODS The antibacterial mechanism of the SE was explored by the time-kill test, the phosphorus metabolism, cell membrane integrity assays, the SDS-PAGE, the SEM and TEM observation. RESULTS The time-kill test illustrated that the SE was bacteriostatic with a time-dependent relationship, not sterilization. The phosphorus metabolism indicated that the SE lowered phosphorus consumption. The cell membrane integrity assays demonstrated that the cell membrane was damaged, with the nucleic acid flowing out. The SDS-PAGE analysis found that the SE inhibited the synthesis of the total protein. The SEM and TEM results revealed that the surface and internal ultrastructure of bacteria were damaged. The surface of the bacteria was shriveled and deformed, and the internal structure of the cells was also mutilated. CONCLUSIONS The SE damaged the cell membrane, with the cytoplasm flowing out, disturbed the synthesis of total protein and phosphorus metabolism, and ultimately killed the bacteria.
Collapse
Affiliation(s)
- Ning Wang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Liu
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingen Li
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingfeng Zhang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiang Li
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qi An
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ximei Ye
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zitong Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Cai
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yi Han
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meng Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wang Wenjun
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
8
|
Sheng L, Shen X, Benedict C, Su Y, Tsai HC, Schacht E, Kruger CE, Drennan M, Zhu MJ. Microbial Safety of Dairy Manure Fertilizer Application in Raspberry Production. Front Microbiol 2019; 10:2276. [PMID: 31632379 PMCID: PMC6783879 DOI: 10.3389/fmicb.2019.02276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
Dairy manure, a by-product in the dairy industry, is also a potential source of nutrients for crops. However, improper application of biological soil amendments of animal origin can be a source of contamination with enteric foodborne pathogens. A 2-year field study was conducted to evaluate impacts of dairy manure fertilizer application on the microbial safety of red raspberry (Rubus idaeus L) production. Fertilizers, including a standard synthetic fertilizer (CON), straight lagoon raw manure (SL), anaerobically digested liquid effluent (DLE), compost (COM) and dairy manure-derived refined fertilizers including ammonium sulfate (AS) and phosphorous solid (PS), were randomly applied in quadruplicate to raspberry plots. Soil, fertilizer, foliar, and raspberry fruit samples were collected during the cropping season for the quantification of indicator microorganisms (total coliform and generic Escherichia coli) and detection of important foodborne pathogens (Shiga toxin-producing E. coli (STEC), Salmonella, and Listeria monocytogenes). Counts of total coliforms in soil were stable over the 2017 cropping season and were not impacted by fertilizer application. In 2018, total coliforms increased with season and soils treated with COM had a significantly higher coliform number than those treated with CON. Both total coliform and generic E. coli in raspberry fruit samples were below the detectable level (3 most probable number/g) regardless of fertilizer types. In both years, no STEC or L. monocytogenes was detected from any of the collected samples regardless of fertilizer treatments. However, Salmonella were detected in some of the fertilizers, including PS (2017), DLE (2018), and SL (2018), which were transferred to soil samples taken directly after application of these fertilizers. Salmonella were not detected in soil samples 2 or 4 months post fertilizer application, foliar, or raspberry fruit samples regardless of fertilizer applications. In summary, one-time application of raw dairy manure or dairy manure-derived fertilizers more than 4 months prior to harvest has no major impact on food safety of red raspberry (6 ft. tall) production in Lynden sandy loam under good agricultural practices.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Chris Benedict
- Whatcom County Extension, Washington State University, Bellingham, WA, United States
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Hsieh-Chin Tsai
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Elizabeth Schacht
- Whatcom County Extension, Washington State University, Bellingham, WA, United States
| | - Chad E. Kruger
- Center for Sustaining Agriculture and Natural Resources, Washington State University, Pullman, WA, United States
| | - Margaret Drennan
- Natural Resources Assessment Section, Washington State Department of Agriculture, Olympia, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Bufe T, Hennig A, Klumpp J, Weiss A, Nieselt K, Schmidt H. Differential transcriptome analysis of enterohemorrhagic Escherichia coli strains reveals differences in response to plant-derived compounds. BMC Microbiol 2019; 19:212. [PMID: 31488056 PMCID: PMC6729007 DOI: 10.1186/s12866-019-1578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/25/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Several serious vegetable-associated outbreaks of enterohemorrhagic Escherichia coli (EHEC) infections have occurred during the last decades. In this context, vegetables have been suggested to function as secondary reservoirs for EHEC strains. Increased knowledge about the interaction of EHEC with plants including gene expression patterns in response to plant-derived compounds is required. In the current study, EHEC O157:H7 strain Sakai, EHEC O157:H- strain 3072/96, and the EHEC/enteroaggregative E. coli (EAEC) hybrid O104:H4 strain C227-11φcu were grown in lamb's lettuce medium and in M9 minimal medium to study the differential transcriptional response of these strains to plant-derived compounds with RNA-Seq technology. RESULTS Many genes involved in carbohydrate degradation and peptide utilization were similarly upregulated in all three strains, suggesting that the lamb's lettuce medium provides sufficient nutrients for proliferation. In particular, the genes galET and rbsAC involved in galactose metabolism and D-ribose catabolism, respectively, were uniformly upregulated in the investigated strains. The most prominent differences in shared genome transcript levels were observed for genes involved in the expression of flagella. Transcripts of all three classes of the flagellar hierarchy were highly abundant in strain C227-11φcu. Strain Sakai expressed only genes encoding the basal flagellar structure. In addition, both strains showed increased motility in presence of lamb's lettuce extract. Moreover, strain 3072/96 showed increased transcription activity for genes encoding the type III secretion system (T3SS) including effectors, and was identified as a powerful biofilm-producer in M9 minimal medium. CONCLUSION The current study provides clear evidence that EHEC and EHEC/EAEC strains are able to adjust their gene expression patterns towards metabolization of plant-derived compounds, demonstrating that they may proliferate well in a plant-associated environment. Moreover, we propose that flagella and other surface structures play a fundamental role in the interaction of EHEC and EHEC/EAEC with plants.
Collapse
Affiliation(s)
- Thorsten Bufe
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - André Hennig
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Agnes Weiss
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| |
Collapse
|
10
|
Zhou Y, Gao X. Characterization of Biofilm Formed by Phenanthrene-Degrading Bacteria on Rice Root Surfaces for Reduction of PAH Contamination in Rice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2002. [PMID: 31195653 PMCID: PMC6603869 DOI: 10.3390/ijerph16112002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023]
Abstract
One effective method in to reduce the uptake of organic contaminants by plants is the development of a root barrier. In this study, the characterization of biofilm structure and function by phenanthrene-degrading Pseudomonas sp. JM2-gfp on rice root surfaces were carried out. Our results showed that root surfaces from three rice species, namely Liaojing401, Koshihikari, and Zhenzhuhong all present hydrophobicity and a high initial adhesion of strain JM2-gfp. Matured robust biofilm formation occurred at 48 h on the root surfaces. The biofilm exhibited cell dense aggregates and biomass embedded in the extracellular polymeric substance (EPS) matrix. EPS composition results showed that the proteins, carbohydrates, lipids and nucleic acids are produced in the biofilm, while the content varied with rice species. Under the initial concentration of phenanthrene 50 mg·L-1, the residual phenanthrene in plant roots from 'Zhengzhuhong', 'Koshihikari' and 'Liaojing401' with biofilm mediated were significantly decreased by 71.9%, 69.3% and 58.7%, respectively, compared to those without biofilm groups after 10 days of exposure. Thus, the biofilm colonized on roots plays an important role of degradation in order to reduce the level of phenanthrene uptake of plants. Thereby, the present work provides significant new insights into lowering the environmental risks of polycyclic aromatic hydrocarbons (PAHs) in crop products from contaminated agriculture soils.
Collapse
Affiliation(s)
- Yuman Zhou
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, China.
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|