1
|
Gast RK, Jones DR, Guraya R, Garcia JS, Karcher DM. Internal Organ Colonization by Salmonella Enteritidis in Layer Pullets Infected at Two Different Ages During Rearing in Cage-Free Housing. Avian Dis 2024; 68:141-144. [PMID: 38885056 DOI: 10.1637/aviandiseases-d-23-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/09/2024] [Indexed: 06/20/2024]
Abstract
The poultry-housing environment plays a significant role in the transmission and persistence of the egg-associated pathogen Salmonella Enteritidis in laying flocks. The commercial egg industry is in the midst of a transition toward cage-free housing, but the food safety ramifications of this shift are not yet certain. The present study assessed internal organ colonization by Salmonella Enteritidis in layer pullets reared in cage-free housing and infected at two different ages. Groups of 280 pullets were transferred from the rearing facility (at 9 wk of age in one trial and 15 wk in another) to a containment facility with four isolation rooms simulating commercial cage-free barns with perches and nest boxes (70 birds/room). Twenty-four pullets in each room were orally inoculated with Salmonella Enteritidis immediately after placement in the containment facility. At 1-2 wk postinoculation in each trial, samples of liver, spleen, and intestinal tract were collected from all birds in two rooms for bacteriologic culturing to detect Salmonella Enteritidis. At 21-22 wk of age, samples of spleen, ovary, and intestinal tract were similarly collected and tested from all birds in the remaining two rooms. Among samples collected at 1-2 wk postinoculation, Salmonella Enteritidis was isolated significantly more often from groups of pullets infected initially at 15 wk of age than from those infected at 9 wk (61% vs. 38% of livers, 59% vs. 31% of spleens, and 84% vs. 57% of intestines). Among samples collected at 21-22 wk of age, the frequency of recovery of Salmonella Enteritidis was again significantly greater in birds infected at 15 wk of age than in those infected at 9 wk (16% vs. 6% of spleens, 9% vs. 1% of ovaries, and 26% vs. 10% of intestines). These data suggest that Salmonella Enteritidis infections introduced into flocks during the later stages of pullet rearing have greater potential to persist into the early phase of egg production.
Collapse
Affiliation(s)
- Richard K Gast
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA 30605,
| | - Deana R Jones
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA 30605
| | - Rupa Guraya
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA 30605
| | - Javier S Garcia
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA 30605
| | - Darrin M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
2
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Hsu SC, Chen HL, Chou CF, Liu WC, Wu CT. Characterization of microbial contamination of retail washed and unwashed shell eggs in Taiwan. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Research Note: Internal Organ Colonization by Salmonella Enteritidis in Experimentally Infected Layer Pullets Reared at Different Stocking Densities in Indoor Cage-Free Housing. Poult Sci 2022; 101:102104. [PMID: 36130450 PMCID: PMC9489509 DOI: 10.1016/j.psj.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022] Open
Abstract
Contamination of eggs by Salmonella has often been identified as a source of food-borne human illness. S. Enteritidis is deposited inside developing eggs when invasive infections of laying hens reach the reproductive organs. The susceptibility of hens in cage-based housing systems to S. Enteritidis has been associated with their stocking density, but the applicability of this information to extensive (cage-free) systems is uncertain. The present study assessed internal organ colonization by S. Enteritidis in egg-type pullets reared at 2 different stocking densities in cage-free housing. Pullets were reared at either 374 cm2 or 929 cm2 of floor space per bird. At 16 wk of age, 4 groups of 72 pullets were moved into isolation rooms simulating commercial cage-free barns; 1/3 of the pullets in 2 rooms were orally inoculated with S. Enteritidis immediately after transfer and pullets in 2 rooms were similarly infected at 19 wk. At 6 and 12 d postinoculation, the pullets were euthanized and samples of liver, spleen, and intestinal tract were removed for bacteriologic culturing. No significant differences (P > 0.05) in S. Enteritidis isolation frequencies from any tissue were observed between high and low density rearing groups following infection at either age. However, S. Enteritidis was found significantly (P < 0.05) more frequently among pullets infected orally at 19 wk than at 16 wk in spleens and intestines. Likewise, the frequency of S. Enteritidis isolation from all birds (inoculated plus contact-exposed) at 19 wk was significantly higher than at 16 wk in livers and spleens. This increased susceptibility to invasive S. Enteritidis infection at reproductive maturity emphasizes the importance of risk reduction at a critical stage in the egg production cycle.
Collapse
|
5
|
Keerthirathne TP, Ross K, Fallowfield H, Whiley H. Examination of Australian backyard poultry for Salmonella, Campylobacter and Shigella spp., and related risk factors. Zoonoses Public Health 2021; 69:13-22. [PMID: 34482641 DOI: 10.1111/zph.12889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
Worldwide, foodborne illness is a significant public health issue in both developed and developing countries. Salmonellosis, campylobacteriosis and shigellosis are common foodborne gastrointestinal illnesses caused by the bacteria Salmonella spp., Campylobacter spp. and Shigella spp. respectively. These zoonotic diseases are frequently linked to eggs and poultry products. The aim of this study was to investigate the presence of these pathogens in Australian backyard poultry flocks and to determine risk factors for these pathogens. Poultry faeces samples were collected from 82 backyards and screened for Salmonella spp., Campylobacter spp. and Shigella spp. using qPCR. A questionnaire was administered to the backyard poultry owners to assess their knowledge regarding management of poultry and eggs and to identify potential risk factors that may contribute to the presence of zoonotic pathogens in the flocks. One composite faecal sample was collected from each backyard (82 samples). Composite sampling here means taking one or more grab samples from a backyard to make up approximately 10 grams. Four per cent of samples, that is 4% backyards tested, were positive for Salmonella spp., 10% were positive for Campylobacter spp. and none were positive for Shigella spp. A higher infection rate was seen in multi-aged flocks (24%) compared with the single-aged flocks (3%). The survey found that many participants were engaging in risky food safety behaviours with 46% of participants responding that they washed their eggs with running water or still water instead of wiping the dirt off with a damp cloth to clean the eggs and 19% stored their eggs at room temperature. This study demonstrated that backyard poultry may pose a potential risk for salmonellosis and campylobacteriosis. Additionally, Australian public health and food safety regulations should be modified and effectively implemented to address the risks associated with backyard poultry husbandry.
Collapse
Affiliation(s)
| | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Howard Fallowfield
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Harriet Whiley
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
6
|
|
7
|
Sodagari HR, Wang P, Robertson I, Habib I, Sahibzada S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals (Basel) 2020; 10:E1192. [PMID: 32674371 PMCID: PMC7401514 DOI: 10.3390/ani10071192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella is a major zoonotic pathogen that plays a significant role in foodborne human salmonellosis worldwide through the consumption of contaminated foods, particularly those of animal origin. Despite a considerable reduction in human salmonellosis outbreaks in developed countries, Australia is experiencing a continuous rise of such outbreaks in humans. This review of the literature highlights the reported non-typhoidal Salmonella outbreaks in humans as well as the occurrence of the pathogen in foods from animal sources throughout Australia. Non-typhoidal Salmonella infections from food animals are more often associated with at-risk people, such as immunocompromised and aged people or children. Although several animal-sourced foods were recognised as the catalysts for salmonellosis outbreaks in Australia, egg and egg-based products remained the most implicated foods in the reported outbreaks. This review further highlights the antimicrobial resistance trends of non-typhoidal Salmonella isolates at the human-food interface, with a focus on clinically important antimicrobials in humans, by collating evidence from previous investigations in Australia. The rise in antimicrobial-resistant Salmonella, especially to antimicrobials commonly prescribed to treat human salmonellosis, has become a significant global public health concern. However, the overall prevalence of antimicrobial resistance in Australia is considerably lower than in other parts of the world, particularly in terms of critically important antimicrobials for the treatment of human salmonellosis. The present review adds to our understanding of the global epidemiology of non-typhoidal Salmonella with emphasis on the past few decades in Australia.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Penghao Wang
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ian Robertson
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ihab Habib
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
- Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain P.O. Box 1555, UAE
| | - Shafi Sahibzada
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| |
Collapse
|
8
|
Ripolles-Avila C, Martínez-Garcia M, Capellas M, Yuste J, Fung DYC, Rodríguez-Jerez JJ. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr Rev Food Sci Food Saf 2020; 19:1877-1907. [PMID: 33337076 DOI: 10.1111/1541-4337.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The prevention of foodborne diseases is one of the main objectives of health authorities. To this effect, analytical techniques to detect and/or quantify the microbiological contamination of foods prior to their release onto the market are required. Management and control of foodborne pathogens have generally been based on conventional detection methodologies, which are not only time-consuming and labor-intensive but also involve high consumable materials costs. However, this management perspective has changed over time given that the food industry requires efficient analytical methods that obtain rapid results. This review covers the historical context of traditional methods and their passage in time through to the latest developments in rapid methods and their implementation in the food sector. Improvements and limitations in the detection of the most relevant pathogens are discussed from a perspective applicable to the current situation in the food industry. Considering efforts that are being done and recent developments, rapid and accurate methods already used in the food industry will be also affordable and portable and offer connectivity in near future, which improves decision-making and safety throughout the food chain.
Collapse
Affiliation(s)
- Carolina Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Martínez-Garcia
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Capellas
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Yuste
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Y C Fung
- Call Hall, Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - José-Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Salmonella on Australian cage egg farms: Observations from hatching to end of lay. Food Microbiol 2019; 87:103384. [PMID: 31948625 DOI: 10.1016/j.fm.2019.103384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023]
Abstract
Single-aged caged layer hen flocks were monitored for Salmonella over the course of their lifetime. Chicks from both flocks were Salmonella negative at hatch and remained negative during rearing. Pullets were transported to production farms at 15 weeks of age. Pre-population dust swabs collected from both production sheds had a high percentage of Salmonella positive samples (80 and 90%). Flocks were sampled at regular intervals until 70-72 weeks of age. The proportion of Salmonella positive samples and mean load detected on eggs was low on both farms. Analysis of dust samples revealed that Salmonella persisted in dust over 8 weeks. Dust total moisture content and water activity appears to influence bacterial persistence. On egg grading equipment, only suction cups prior to egg washing were Salmonella positive (mean proportion Salmonella positive samples 0.13 ± 0.07; mean load of 18.6 ± 12.31 MPN/ml). An egg washing experiment demonstrated that while washing reduced the total Salmonella load from eggshell surfaces, no effect was observed for shell pores. These results demonstrate that despite environmental contamination on farm, Salmonella contamination of eggs is low and is further minimized by washing.
Collapse
|
10
|
Crabb HK, Allen JL, Devlin JM, Wilks CR, Gilkerson JR. Spatial Distribution of Salmonella enterica in Poultry Shed Environments Observed by Intensive Longitudinal Environmental Sampling. Appl Environ Microbiol 2019; 85:e00333-19. [PMID: 31053585 PMCID: PMC6606887 DOI: 10.1128/aem.00333-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/26/2019] [Indexed: 11/20/2022] Open
Abstract
Detection of salmonellae within poultry environments is an important component of many food safety programs, but sampling approaches vary greatly and may not enable the detection of salmonellae when bacteria are present at a low prevalence or concentration. Intensive longitudinal sampling within caged sheds enabled us to undertake a longitudinal analysis of the spatial distribution of salmonellae in caged shed environments. Both the number of samples collected and location of sample collection within a poultry shed were important to ensure the best chance of detecting Salmonella spp. Differences in the within-shed spatial distribution of Salmonella enterica subspecies enterica serovar Typhimurium [χ2(27, 1,538) = 54.4; P < 0.001] and Salmonella enterica subspecies enterica serovar Infantis [χ2(27, 1,538) = 79.8; P < 0.0001] were identified. More than one Salmonella enterica serovar was detected in each shed on the same sampling occasion; 5% of all samples contained more than one serovar. Samples collected on the north side of the shed (odds ratio [OR], 1.77; 95% confidence interval [CI], 1.17-2.68), on the sheltered side of the shed (OR, 1.90; 95% CI, 1.26-2.89), and during winter (OR, 48.41; 95% CI, 23.56-104.19) were more likely to be positive for salmonellae. The within-shed differences observed in the both the sample prevalence and spatial location of the serovar detected indicate that there are important shed microenvironmental factors that influence the survival and/or distribution of salmonellae. These factors should be taken into consideration when environmental surveillance is undertaken for salmonellae in flocks housed in cage sheds.IMPORTANCE Routine epidemiological surveillance for salmonellae in poultry relies initially on environmental sampling. Intensive, spatially homogenous sampling, as conducted within this study, confirmed that the sampling methodology conducted within a poultry environment is a nontrivial part of sampling design. The frequency of sampling is especially important when the prevalence of Salmonella spp. is low. These factors must be taken into consideration in the design of studies for the detection of salmonellae in poultry sheds.
Collapse
Affiliation(s)
- Helen K Crabb
- National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Asia Pacific Centre of Animal Health, Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joanne Lee Allen
- Asia Pacific Centre of Animal Health, Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joanne Maree Devlin
- Asia Pacific Centre of Animal Health, Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Colin Reginald Wilks
- Asia Pacific Centre of Animal Health, Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - James Rudkin Gilkerson
- National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Asia Pacific Centre of Animal Health, Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|