1
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol 2023; 113:104286. [PMID: 37098427 DOI: 10.1016/j.fm.2023.104286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Microbial community and volatilome of brines were monitored during the spontaneous fermentations of Spanish-style and Natural-style green table olives from Manzanilla cultivar. Fermentation of olives in the Spanish style was carried out by lactic acid bacteria (LAB) and yeasts, whereas halophilic Gram-negative bacteria and archaea, along with yeasts, drove the fermentation in the Natural style. Clear differences between the two olive fermentations regarding physicochemical and biochemical features were found. Lactobacillus, Pichia, and Saccharomyces were the dominant microbial communities in the Spanish style, whereas Allidiomarina, Halomonas, Saccharomyces, Pichia, and Nakazawaea predominated in the Natural style. Numerous qualitative and quantitative differences in individual volatiles between both fermentations were found. The final products mainly differed in total amounts of volatile acids and carbonyl compounds. In addition, in each olive style, strong positive correlations were found between the dominant microbial communities and various volatile compounds, some of them previously reported as aroma-active compounds in table olives. The findings from this study provide a better understanding of each fermentation process and may help the development of controlled fermentations using starter cultures of bacteria and/or yeasts for the production of high-quality green table olives from Manzanilla cultivar.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| |
Collapse
|
3
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
4
|
Ruiz-Barba JL, de Castro A, Romero C, Sánchez AH, García P, Brenes M. Study of the factors affecting growth of Celerinatantimonas sp. and gas pocket formation in Spanish-style green olives. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
de Castro A, Ruiz-Barba JL, Romero C, Sánchez AH, García P, Brenes M. Formation of gas pocket defect in Spanish-style green olives by the halophile Celerinatantimonas sp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Revealing the bacterial abundance and diversity in brines from started Spanish-style green table olives. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Correa-Galeote D, Argiz L, Val del Rio A, Mosquera-Corral A, Juarez-Jimenez B, Gonzalez-Lopez J, Rodelas B. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers (Basel) 2022; 14:1396. [PMID: 35406269 PMCID: PMC9003127 DOI: 10.3390/polym14071396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria, which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter, Calothrix, Dyella, Flavobacterium, Novosphingobium, Qipengyuania, and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
Collapse
Affiliation(s)
- David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Lucia Argiz
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Belen Juarez-Jimenez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Belen Rodelas
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| |
Collapse
|
8
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
9
|
Sab C, Romero C, Brenes M, Montaño A, Ouelhadj A, Medina E. Industrial Processing of Algerian Table Olive Cultivars Elaborated as Spanish Style. Front Microbiol 2021; 12:729436. [PMID: 34803946 PMCID: PMC8600317 DOI: 10.3389/fmicb.2021.729436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/07/2021] [Indexed: 12/01/2022] Open
Abstract
Olives from the Sigoise, Verdale, and Sevillana cultivars were elaborated as Spanish-style table olives by four Algerian factories, and the quality and food safety of the industrial table olives have been studied by the analysis of physicochemical and microbiological parameters. Differences were observed between the treatments carried out by the different factories throughout the manufacturing process, especially during the washing stage, but no significant differences were found between the analyzed samples for the concentration of sugars and polyphenols. The final pH values reached at the end of fermentation ranged between 5.04 and 4.27, and the titratable acidity was above 0.4% for all samples. Lactic and acetic acids were produced in mean concentrations of 0.68% and 0.21% as a result of lactic acid bacteria (LAB) and yeast metabolism, respectively. However, the presence of butyric, isobutyric, and propionic acids was also detected, and was related to the growth of undesirable spoilage microorganisms, responsible for secondary fermentations. The high-throughput sequencing of bacterial DNA suggested the dominance of LAB species belonging to genera Lactiplantibacillus, Leuconostoc, Pediococcus, Oenococcus, or Enterococcus. The Enterobacteriaceae family was detected during the first days of brining and in only one sample after 120 days of fermentation. Other spoilage microorganisms were found, such as Lentilactobacillus buchneri or the Pectinatus and Acetobacter genera, capable of consuming lactic acid and these played an essential role in the onset of spoilage. The Clostridium and Enterobacter genera, producers of butyric and propionic acids, were responsible for the malodorous fermentation present in the industrial samples that were analyzed. The study concluded that the safety of the table olives analyzed was compromised by the presence of undesirable microorganisms and microbial stability was not guaranteed. The elaboration process can be improved by reducing the washing steps and the time should be reduced to avoid the loss of fermentable matter, with the goal of reaching a pH < 4.0 after the fermentation and preventing the possibility of the growth of spoilage microorganisms and foodborne pathogens.
Collapse
Affiliation(s)
- Chafiaa Sab
- Laboratory of Food Quality and Food Safety, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi Ouzou, Algeria
| | - Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Manuel Brenes
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Akli Ouelhadj
- Laboratory of Food Quality and Food Safety, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi Ouzou, Algeria
| | - Eduardo Medina
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| |
Collapse
|
10
|
Effects of Different Controlled Temperatures on Spanish-Style Fermentation Processes of Olives. Foods 2021; 10:foods10030666. [PMID: 33804683 PMCID: PMC8003629 DOI: 10.3390/foods10030666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/30/2023] Open
Abstract
This work aimed to determine the effect of applying different temperatures during the fermentation process of Spanish-style table olives. ‘Manzanilla de Sevilla’ (southwest of Spain, Badajoz) and ‘Manzanilla Cacereña’ (northwest of Spain, Caceres) olives were processed at an industrial scale in table olive fermenters whose brine was subjected to different thermal treatments. One of the three conducted experiments found that maintaining brine at 20–24 °C over a 3-month period led to optimum firmness, better color indices, and greater free acidity and lactic acid bacteria populations in comparison to an unheated control. Furthermore, raising the temperature of the fermenter to 20–24 °C accelerated the fermentation process, provoking better lactic bacteria and yeast growth without affecting olive firmness. The higher fermentation rate (shorter time to completion) associated with temperature-controlled olives also reduced the marketing time of the final product. Controlling brine temperature led to a better aspect and color, higher acidity, lower bitterness, and better overall assessment of processed olives. In addition, ‘Manzanilla de Sevilla’ olives presented a higher phenolic content than ‘Manzanilla Cacereña’ olives. Preliminary evidence is presented suggesting that ‘Manzanilla Cacereña’ olives appear highly amenable to Sevillian-style processing. The present innovative work demonstrates the importance of applying different thermal treatments to brine to control the temperature during the industrial fermentation of table olives during the cold season.
Collapse
|
11
|
Early production of table olives at a mid-7th millennium BP submerged site off the Carmel coast (Israel). Sci Rep 2021; 11:2218. [PMID: 33500447 PMCID: PMC7838305 DOI: 10.1038/s41598-020-80772-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
We present here the earliest evidence for large-scale table olive production from the mid-7th millennium BP inundated site of Hishuley Carmel on the northern Mediterranean coast of Israel. Olive pit size and fragmentation patterns, pollen as well as the architecture of installations associated with pits from this site, were compared to finds from the nearby and slightly earlier submerged Kfar Samir site. Results indicate that at Kfar Samir olive oil was extracted, while at Hishuley Carmel the data showed that large quantities of table olives, the oldest reported to date, were prepared. This process was most probably facilitated by the site’s proximity to the Mediterranean Sea, which served as a source of both sea water and salt required for debittering/pickling/salting the fruit, as experimentally demonstrated in this study. Comparison of pit morphometry from modern cultivars, wild-growing trees and the archaeological sites, intimates that in pit morphology the ancient pits resemble wild olives, but we cannot totally exclude the possibility that they derive from early cultivated trees. Our findings demonstrate that in this region, olive oil production may have predated table olive preparation, with each development serving as a milestone in the early exploitation of the olive.
Collapse
|
12
|
Argyri K, Doulgeraki AI, Manthou E, Grounta A, Argyri AA, Nychas GJE, Tassou CC. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020; 8:microorganisms8081241. [PMID: 32824085 PMCID: PMC7464643 DOI: 10.3390/microorganisms8081241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Current information from conventional microbiological methods on the microbial diversity of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive analysis of their microbial community, providing microbial identity of table olive varieties and their designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity of fermented olives of two main Greek varieties collected from different regions-green olives, cv. Halkidiki, from Kavala and Halkidiki and black olives, cv. Konservolia, from Magnesia and Fthiotida-via conventional microbiological methods and NGS. Total viable counts (TVC), lactic acid bacteria (LAB), yeast and molds, and Enterobacteriaceae were enumerated. Microbial genomic DNA was directly extracted from the olives' surface and subjected to NGS for the identification of bacteria and yeast communities. Lactobacillaceae was the most abundant family in all samples. In relation to yeast diversity, Phaffomycetaceae was the most abundant yeast family in Konservolia olives from the Magnesia region, while Pichiaceae dominated the yeast microbiota in Konservolia olives from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing multivariate analysis allowed for the first time the discrimination of cv. Konservolia and cv. Halkidiki table olives according to their geographical origin.
Collapse
Affiliation(s)
- Konstantina Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| | - Evanthia Manthou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - George-John E. Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| |
Collapse
|
13
|
A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020; 9:foods9070948. [PMID: 32709144 PMCID: PMC7404733 DOI: 10.3390/foods9070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation.
Collapse
|
14
|
A Preliminary Report for the Design of MoS (Micro-Olive-Spreadsheet), a User-Friendly Spreadsheet for the Evaluation of the Microbiological Quality of Spanish-Style Bella di Cerignola Olives from Apulia (Southern Italy). Foods 2020; 9:foods9070848. [PMID: 32610531 PMCID: PMC7404787 DOI: 10.3390/foods9070848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022] Open
Abstract
A user friendly spreadsheet (Excel interface), designated MoS (Micro-Olive-Spreadsheet), is proposed in this paper as a tool to point out spoiling phenomena in Bella di Cerignola olive brines. The spreadsheet was designed as a protected Excel worksheet, where users input values for the microbiological criteria and pH of brines, and the output is a visual code, much like a traffic light: three red cells indicate a spoiling event, while two red cells indicate the possibility of a spoiling event. The input values are: (a) Total Aerobic Count (TAC); (b) Lactic Acid Bacteria (LAB); (c) yeasts; (d) staphylococci; (e) pH. TAC, LAB, yeasts, and pH are the input values for the first section (quality), while staphylococci count is the input for the second section (technological history). The worksheet can be modified by adding other indices or by setting different breakpoints; however, it is a simple tool for an effective application of hazard analysis and predictive microbiology in table olive production.
Collapse
|
15
|
Chinese Liquor Fermentation: Identification of Key Flavor-Producing Lactobacillus spp. by Quantitative Profiling with Indigenous Internal Standards. Appl Environ Microbiol 2020; 86:AEM.00456-20. [PMID: 32276974 DOI: 10.1128/aem.00456-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Identifying the functional microbes in spontaneous food fermentation is important for improving food quality. To identify the key flavor producers in Chinese liquor fermentation, we propose a novel quantitative microbiome profiling method that uses indigenous internal standards to normalize high-throughput amplicon sequencing results. We screened Lactobacillus acetotolerans and Lactobacillus jinshani as indigenous internal standards based on their high distribution frequencies and relative abundances. After determining the absolute abundance of indigenous internal standards using quantitative PCR with species-specific primers, the liquor-fermented bacterial community and its dynamics were better characterized by internal standards normalization. Based on quantitative microbiome profiling, we identified that Lactobacillus was a key flavor producer correlated with eight flavor compounds. Metatranscriptomic analysis indicated that Lactobacillus was active in transcribing genes involving the biosynthesis of flavor compounds and their precursors. This work has developed a novel and extensible absolute quantification method for microbiota that will alleviate concerns in the statistical analyses based on relative microbiome profiling, and shed insights into the function of Lactobacillus in food fermentation. It can potentially be applied to other microbial ecology studies.IMPORTANCE In this study, we developed a novel strategy using indigenous internal standards to normalize the high-throughput amplicon sequencing results. We chose two Lactobacillus species as indigenous internal standards and characterized the absolute abundance of the bacterial community. Further, we identified Lactobacillus as the key flavor producer using quantitative microbiome profiling combined with multivariate statistics and metatranscriptomic analysis. This work developed a novel strategy for absolute quantitative abundance analysis of microbiota and expanded our understanding of the role of Lactobacillus in food fermentation.
Collapse
|
16
|
Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms 2020; 8:microorganisms8050672. [PMID: 32384669 PMCID: PMC7284738 DOI: 10.3390/microorganisms8050672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
Kalamata natural black olives are one of the most economically important Greek varieties. The microbial ecology of table olives is highly influenced by the co-existence of bacteria and yeasts/fungi, as well as the physicochemical parameters throughout the fermentation. Therefore, the aim of this study was the identification of bacterial and yeast/fungal microbiota of both olives and brines obtained from 29 cv. Kalamata olive samples industrially fermented in the two main producing geographical regions of Greece, namely Aitoloakarnania and Messinia/Lakonia. The potential microbial biogeography association between certain taxa and geographical area was also assessed. The dominant bacterial family identified in olive and brine samples from both regions was Lactobacillaceae, presenting, however, higher average abundances in the samples from Aitoloakarnania compared to Messinia/Lakonia. At the genus level, Lactobacillus, Celerinatantimonas, Propionibacterium and Pseudomonas were the most abundant. In addition, the yeasts/fungal communities were less diverse compared to those of bacteria, with Pichiaceae being the dominant family and Pichia, Ogataea, and Saccharomyces being the most abundant genera. To the best of our knowledge, this is the first report on the microbiota of both olives and brines of cv. Kalamata black olives fermented on an industrial scale between two geographical regions of Greece using metagenomics analysis.
Collapse
|
17
|
Belleggia L, Aquilanti L, Ferrocino I, Milanović V, Garofalo C, Clementi F, Cocolin L, Mozzon M, Foligni R, Haouet MN, Scuota S, Framboas M, Osimani A. Discovering microbiota and volatile compounds of surströmming, the traditional Swedish sour herring. Food Microbiol 2020; 91:103503. [PMID: 32539969 DOI: 10.1016/j.fm.2020.103503] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
In this study, the microbiota of ready-to-eat surströmming from three Swedish producers were studied using a combined approach. The pH values of the samples ranged between 6.67 ± 0.01 and 6.98 ± 0.01, whereas their aw values were between 0.911 ± 0.001 and 0.940 ± 0.001. The acetic acid concentration was between 0.289 ± 0.009 g/100 g and 0.556 ± 0.036 g/100 g. Very low concentrations of lactic acid were measured. Viable counting revealed the presence of mesophilic aerobes, mesophilic lactobacilli and lactococci as well as halophilic lactobacilli and lactococci, coagulase-negative staphylococci, halophilic aerobes and anaerobes. Negligible counts for Enterobacteriaceae, Pseudomonadaceae and total eumycetes were observed, whereas no sulfite-reducing anaerobes were detected. Listeria monocytogenes and Salmonella spp. were absent in all samples. Multiplex real-time PCR revealed the absence of the bont/A, bont/B, bont/E, bont/F, and 4gyrB (CP) genes, which encode botulinic toxins, in all the samples analyzed. Metagenomic sequencing revealed the presence of a core microbiota dominated by Halanaerobium praevalens, Alkalibacterium gilvum, Carnobacterium spp., Tetragenococcus halophilus, Clostridiisalibacter spp. and Porphyromonadaceae. Psychrobacter celer, Ruminococcaceae, Marinilactibacillus psychrotolerans, Streptococcus infantis and Salinivibrio costicola were detected as minor OTUs. GC-MS analysis of volatile components revealed the massive presence of trimethylamine and sulphur compounds. Moreover, 1,2,4-trithiolane, phenols, ketones, aldehydes, alcohols, esters and long chain aliphatic hydrocarbons were also detected. The data obtained allowed pro-technological bacteria, which are well-adapted to saline environments, to be discovered for the first time. Further analyses are needed to better clarify the extent of the contribution of either the microbiota or autolytic enzymes of the fish flesh in the aroma definition.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - M Naceur Haouet
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - Stefania Scuota
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - Marisa Framboas
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
18
|
Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A. Table Olives More than a Fermented Food. Foods 2020; 9:E178. [PMID: 32059387 PMCID: PMC7073621 DOI: 10.3390/foods9020178] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Table olives are one of the oldest vegetable fermented foods in the Mediterranean area. Beside their economic impact, fermented table olives represent also an important healthy food in the Mediterranean diet, because of their high content of bioactive and health-promoting compounds. However, olive fermentation is still craft-based following traditional processes, which can lead to a not fully predictable final product with the risk of spontaneous alterations. Nowadays, food industries have to face consumer demands for safe and healthy products. This review offers an overview about the main technologies used for olive fermentation and the role of lactic acid bacteria and yeasts characterizing this niche during the fermentation. Particular attention is offered to the selection and use of microorganisms as starter cultures to fasten and improve the safety of table olives. The development and implementation of multifunctional starter cultures in order to obtain heath-oriented table olives is also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 641000 Teramo, Italy; (G.P.); (R.P.); (N.G.-G.); (M.K.A.)
| |
Collapse
|