1
|
Carter MQ, Carychao D, Lindsey RL. Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin- producing Escherichia albertii. Front Microbiol 2024; 15:1456637. [PMID: 39318426 PMCID: PMC11420993 DOI: 10.3389/fmicb.2024.1456637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Rebecca L Lindsey
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
2
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
3
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
4
|
Sterilizing effect of phage cocktail against Shiga toxin-producing Escherichia coli O157:H7 in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Ray R, Singh P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022; 11:1332. [PMID: 36422584 PMCID: PMC9694250 DOI: 10.3390/pathogens11111332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes human gastrointestinal infections across the globe, leading to kidney failure or even death in severe cases. E. coli are commensal members of humans and animals' (cattle, bison, and pigs) guts, however, may acquire Shiga-toxin-encoded phages. This acquisition or colonization by STEC may lead to dysbiosis in the intestinal microbial community of the host. Wildlife and livestock animals can be asymptomatically colonized by STEC, leading to pathogen shedding and transmission. Furthermore, there has been a steady uptick in new STEC variants representing various serotypes. These, along with hybrids of other pathogenic E. coli (UPEC and ExPEC), are of serious concern, especially when they possess enhanced antimicrobial resistance, biofilm formation, etc. Recent studies have reported these in the livestock and food industry with minimal focus on wildlife. Disturbed natural habitats and changing climates are increasingly creating wildlife reservoirs of these pathogens, leading to a rise in zoonotic infections. Therefore, this review comprehensively surveyed studies on STEC prevalence in livestock and wildlife hosts. We further present important microbial and environmental factors contributing to STEC spread as well as infections. Finally, we delve into potential strategies for limiting STEC shedding and transmission.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
6
|
Possas A, Pérez-Rodríguez F. New insights into Cross-contamination of Fresh-Produce. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Li Q, Liu L, Guo A, Zhang X, Liu W, Ruan Y. Formation of Multispecies Biofilms and Their Resistance to Disinfectants in Food Processing Environments: A Review. J Food Prot 2021; 84:2071-2083. [PMID: 34324690 DOI: 10.4315/jfp-21-071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multispecies biofilms. Complex interactions among microorganisms may affect the formation of multispecies biofilms and resistance to disinfectants, which are food safety and quality concerns. This article reviews the various interactions among microorganisms in multispecies biofilms, including competitive, cooperative, and neutral interactions. Then, the preliminary mechanisms underlying the formation of multispecies biofilms are discussed in relation to factors, such as quorum-sensing signal molecules, extracellular polymeric substances, and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of interspecies interactions and provide some implications for the control of multispecies biofilms in food processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Qun Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ling Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China.,National Research and Development Center for Egg Processing, Wuhan, Hubei 430070, People's Republic of China
| | - Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Yao Ruan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
8
|
Recent advances in anti-adhesion mechanism of natural antimicrobial agents on fresh produce. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu Y, Wu L, Yan Y, Yang K, Dong P, Luo X, Zhang Y, Zhu L. Lactic Acid and Peroxyacetic Acid Inhibit Biofilm of Escherichia coli O157:H7 Formed in Beef Extract. Foodborne Pathog Dis 2021; 18:744-751. [PMID: 34197219 DOI: 10.1089/fpd.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to evaluate the inhibitory effect of lactic acid (LA) and peroxyacetic acid (PAA) on the biofilm formation of Escherichia coli O157:H7 in beef extract (BE). BE medium was used as the growth substrate in this study, to make the control effect closer to the situation of the factory. The biofilm inhibitory efficacy of LA and PAA was tested by using a crystal violet staining assay and microscopic examination. And then, extracellular polymeric substance (EPS) production, metabolic activity, and real-time polymerase chain reaction assay were used to reveal the biofilm inhibition mechanism of LA and PAA. The results showed that both LA and PAA significantly inhibited biofilm formation of E. coli O157:H7 at minimum inhibitory concentrations (MICs) (p < 0.05). At MIC, LA and PAA showed different effects on the biofilm metabolic activity and the EPS production of E. coli O157:H7. Supporting these findings, expression analysis showed that LA significantly suppressed quorum sensing genes (luxS and sdiA) and adhesion genes (flhC), while PAA downregulated the transcription of extracellular polysaccharide synthesis genes (adrB and adrA) and the global regulatory factor csgD. This result revealed that LA and PAA had different biofilm inhibitory mechanisms on E. coli O157:H7; LA inhibited the biofilm formation mainly by inhibiting metabolic activity, while PAA inhibited EPS production. This study provided a theoretical basis for the control of E. coli O157:H7 biofilm in the actual production process.
Collapse
Affiliation(s)
- Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yuqing Yan
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Kehui Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| |
Collapse
|
10
|
Zhou M, Yang Y, Wu M, Ma F, Xu Y, Deng B, Zhang J, Zhu G, Lu Y. Role of long polar fimbriae type 1 and 2 in pathogenesis of mammary pathogenic Escherichia coli. J Dairy Sci 2021; 104:8243-8255. [PMID: 33814154 DOI: 10.3168/jds.2021-20122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/22/2021] [Indexed: 01/17/2023]
Abstract
Escherichia coli is a leading cause of bovine mastitis worldwide. The bacteria can rapidly grow in milk and elicit a strong lipopolysaccharide (LPS)/toll-like receptor-4 (TLR4)-dependent inflammatory response. Recently, the long polar fimbriae (LPF) were identified as a promising virulence factor candidate widely distributed in mammary pathogenic E. coli (MPEC) strains. Mammary pathogenic E. coli possess 2 lpf loci encoding LPF1 and LPF2, respectively. By deleting the major fimbrial subunit gene, lpfA, we found that both LPF1 and LPF2 contribute to MPEC adhesion, invasion, and biofilm formation in vitro. The lpf1A and lpf2A mutants showed reduced cytotoxicity in our in vitro cell infection model. Furthermore, we observed that LPF2 induced a mild TLR4-independent proinflammatory response. The median lethal dose (LD50) of both ∆lpf2A and ∆lpf1A∆lpf2A mutants to BALB/c mice increased by 0.38 and 0.15 logs, respectively, whereas that of wild-type strain MPJS13 was 8.69 logs. In contrast, LPF1 deficiency significantly enhanced the LPS/TLR4-mediated inflammatory response in mammary epithelial cells, and the LD50 of the mutant decreased to 8.18 logs. In conclusion, our data suggested that LPF are important in MPEC colonization of mammary cells and may provide a benefit to bacterial intracellular survival that induces persistent bovine mastitis.
Collapse
Affiliation(s)
- Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miaomiao Wu
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yue Xu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Wu L, Liu Y, Dong P, Zhang Y, Mao Y, Liang R, Yang X, Zhu L, Luo X. Beef-Based Medium Influences Biofilm Formation of Escherichia coli O157:H7 Isolated from Beef Processing Plants. J Food Prot 2021; 84:1060-1068. [PMID: 33508090 DOI: 10.4315/jfp-20-385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023]
Abstract
ABSTRACT Beef-based medium beef extract (BE) and standard medium tryptic soy broth (TSB) are used as minimally processed food models to study the effects on Escherichia coli O157:H7 biofilm formation. The effects of temperatures (4, 10, 25, 37, and 42°C), pH values (4.5, 5.0, 5.5, 6.0, 7.0, and 8.0), strain characteristics, and the expression of functional genes on the biofilm formation ability of the bacteria were determined. The three tested E. coli O157:H7 strains produced biofilm in both media. Biofilm formation was greater in BE than in TSB (P < 0.05). The strongest biofilm formation capacity of E. coli O157:H7 was achieved at 37°C and pH 7.0. Biofilm formation was significantly inhibited for three tested strains incubated at 4°C. Biofilm formation ability was correlated with swarming in TSB. Biofilm formation was significantly and positively correlated with autoaggregation or hydrophobicity in BE (P < 0.05). At the initial stage of biofilm formation, the expressions of luxS, sdiA, csgD, csgA, flhC, adrA, and rpoS were significantly higher in BE than in TSB (P < 0.05). At the maturity stage, the expressions of luxS, sdiA, csgD, csgA, flhC, csrA, adrB, adrA, iraM, and rpoS were significantly higher in TSB than in BE (P < 0.05). Such information could help in the development of effective biofilm removal technologies to deal with risks of E. coli O157:H7 biofilms in the beef industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
12
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
13
|
Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol 2019; 84:103241. [DOI: 10.1016/j.fm.2019.103241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
|