1
|
Sun R, Vermeulen A, Devlieghere F. Extension of growth/no growth predictive models for the preservation of low-acid pasteurized sauces by incorporating water activity and model validation in sauces. Int J Food Microbiol 2022; 378:109826. [DOI: 10.1016/j.ijfoodmicro.2022.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
2
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
3
|
Moro CB, Lemos JG, Gasperini AM, Stefanello A, Garcia MV, Copetti MV. Efficacy of weak acid preservatives on spoilage fungi of bakery products. Int J Food Microbiol 2022; 374:109723. [DOI: 10.1016/j.ijfoodmicro.2022.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
4
|
Thymus zygis Essential Oil: Phytochemical Characterization, Bioactivity Evaluation and Synergistic Effect with Antibiotics against Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020146. [PMID: 35203749 PMCID: PMC8868214 DOI: 10.3390/antibiotics11020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft-tissue infections to more serious and life-threatening infections such as sepsis, meningitis and endocarditis, which may be exacerbated by antibiotic resistance. Plant products may be seen as an alternative as antibacterial agents, namely, against S. aureus. Thus, the aim of this work was to characterize the chemical composition and evaluate the bioactive properties of the T. zygis essential oil (EO), with a focus on antimicrobial activity against S. aureus. Gas chromatography coupled with mass spectrometry was used to assess the chemical composition of the T. zygis EO, and the antioxidant activity was evaluated using the DPPH method and β-carotene-bleaching assay. The antimicrobial activity against S. aureus strains, the interaction with different antibiotics and the attenuation of this bacterium’s virulence were evaluated. The T. zygis EO showed antioxidant activity acting through two different mechanisms and antibacterial activity against S. aureus, with antibiofilm and antihaemolytic properties. This EO also demonstrated synergistic or additive interactions in combination with ampicillin, ciprofloxacin or vancomycin against S. aureus strains and, in some cases, changed the antibiotic-resistance phenotype from resistant to susceptible. Therefore, the present work demonstrates the good bioactive properties of the EO of T. zygis, mainly the antimicrobial activity against S. aureus, revealing its potential to be used as an antibacterial agent.
Collapse
|
5
|
Sun R, Vermeulen A, Devlieghere F. Modeling the combined effect of temperature, pH, acetic and lactic acid concentrations on the growth/no growth interface of acid-tolerant Bacillus spores. Int J Food Microbiol 2021; 360:109419. [PMID: 34600755 DOI: 10.1016/j.ijfoodmicro.2021.109419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
The application of minimal processing technologies has led to increased spoilage incidents in low-acid pasteurized sauces due to the outgrowth of acid-tolerant spore-forming spoilage bacteria (ATSSB). Controlling the germination and subsequent growth of ATSSB spores is vital to enhance the ambient storage stability of pasteurized sauces. This study developed and validated a set of growth/no growth (G/NG) models for spores of two ATSSB strains (Bacillus velezensis and Bacillus subtilis subsp. subtilis) isolated from pasteurized sauces. The G/NG data at two levels of temperature (22 and 30 °C) were collected in Nutrient Broth (aw = 0.98 adjusted with NaCl) by a full factorial design with five equidistant levels of pH (4.4-5.6), four concentrations of total acetic acid (0.0-0.3% (w/w)), and four concentrations of total lactic acid (0.00-1.00% (w/w)). The growth, starting from heat-treated (10 min 80 °C) spores, of each strain was assessed under 160 combinations by regular optical density measurements during three months. Twelve replicates were made for each combination. The developed models demonstrate that without organic acids even the lowest pH (4.4) allows a high growth possibility of the ATSSB spores, while acetic and lactic acids exhibit a significant antibacterial activity, which can be enhanced at decreased pH. The growth starting from B. subtilis spores can be inhibited for at least three months with 1.0% (w/w) total lactic acid in the water phase at both temperatures, which was not the case for B. velezensis, while 0.3% acetic acid achieves a full inhibition on both strains at 22 °C. With a combination of 0.3% acetic acid and 0.7% lactic acid, no growth should occur in the investigated range. This research is one of the first studies exploring the feasibility of ambient storage for low-acid pasteurized sauces eliminating preservatives such as benzoic and sorbic acids, and proves the synergistic effect of decreased pH and the presence of acetic and lactic acids on inhibiting bacterial growth from ATSSB spores.
Collapse
Affiliation(s)
- Rongxue Sun
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - An Vermeulen
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Frank Devlieghere
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Debonne E, Yilmaz MS, Sakiyan O, Eeckhout M. Comparison of antifungal activity of essential oils of clove, lemongrass and thyme for natural preservation of dried apricots. FOOD SCI TECHNOL INT 2021; 28:641-649. [PMID: 34726109 DOI: 10.1177/10820132211049603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the majority of fresh apricots destined for the production of dried apricots undergo sulphur oxide fumigation before drying to protect the fruit against fungal spoilage. To eliminate the use of sulphite, packaging assisted with essential oil is a promising strategy to increase shelf-life of dried apricots since it does not impact its flavor characteristics. In this study, three essential oils were selected: clove, lemongrass and thyme. They were screened for antifungal activity against Eurotium spp. with different methods: micro- and macro-dilution and agar-diffusion. Growth/no-growth data were used to develop models for all three methods. Clove exerted the strongest antifungal activity with an inhibitory concentration of 0.075%, 0.035% and 0.05% through respectively micro-dilution, macro-dilution and agar diffusion. For thyme the following values were obtained: 0.775%, 0.070% and 0.100%. This means that the antifungal activity of thyme is 10 times lower in micro-dilution and 2 times lower in macro-dilution and agar diffusion compared to clove. Through micro-dilution, lemongrass was found to have the second highest antifungal activity (0.25%). When used in the volatile atmosphere of dried apricots and in macro-dilution, the antifungal activity of lemongrass was the lowest, with respective values of > 0.200% and 0.105% for G/NG prediction.
Collapse
Affiliation(s)
- Els Debonne
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, 26656Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Merve Silanur Yilmaz
- Department of Food Engineering, Faculty of Engineering, 37504Ankara University, 06830 Gölbaşı, Ankara, Turkey
| | - Ozge Sakiyan
- Department of Food Engineering, Faculty of Engineering, 37504Ankara University, 06830 Gölbaşı, Ankara, Turkey
| | - Mia Eeckhout
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, 26656Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Marín S, Freire L, Femenias A, Sant’Ana AS. Use of predictive modelling as tool for prevention of fungal spoilage at different points of the food chain. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Debonne E, Meuninck V, Vroman A, Eeckhout M. Influence of environmental growth conditions on chalk yeasts causing bread spoilage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Santos JL, Chaves RD, Sant’Ana AS. Modeling the impact of water activity, pH, and calcium propionate on the germination of single spores of Penicillium paneum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Debonne E, Maene P, Vermeulen A, Van Bockstaele F, Depredomme L, Vermeir P, Eeckhout M, Devlieghere F. Validation of in-vitro antifungal activity of the fermentation quotient on bread spoilage moulds through growth/no-growth modelling and bread baking trials. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Debonne E, Vermeulen A, Bouboutiefski N, Ruyssen T, Van Bockstaele F, Eeckhout M, Devlieghere F. Modelling and validation of the antifungal activity of DL-3-phenyllactic acid and acetic acid on bread spoilage moulds. Food Microbiol 2019; 88:103407. [PMID: 31997763 DOI: 10.1016/j.fm.2019.103407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Most interesting antifungal compounds from sourdough fermentation are acetic acid (AA) and DL-3-phenyllactic acid (PLA). Although the role of pH on the activity of organic acids has been established long time ago, no information is available on the importance of undissociated acid (HA) expressed on the aqueous phase of bread (CHA, mmole/L). Mostly, concentrations (mmole/kg dough or bread, CTOT) and pH are given side by side. The aim of this study was to show the importance of CHA for adequate comparison of in-vitro growth data with bread shelf-life. Growth of Penicillium paneum and Aspergillus niger was recorded using a micro-dilution assay with optical density measurements. Parameters such as aw (0.94-0.98), pH (4.6-6.0), temperature (10-30 °C), time (0-8 days) and CTOT (0-300 mM) were varied. Growth/no-growth models were developed and shelf-life tests of par-baked breads of 45 days at 20 °C were conducted. The modelled inhibitory concentrations of undissociated acid were comparable with the shelf-life test of bread: (PLA) 50 versus 39-84 mmol/L; (AA) 110 versus 110-169 mmol/L. This study showed the applicability of G/NG models for bread shelf-life prediction and highlighted the importance of CHA. Moreover, it was found that naturally present PLA in sourdough bread is insufficient to increase bread shelf-life.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium.
| | - An Vermeulen
- Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Naomi Bouboutiefski
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Tony Ruyssen
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|