1
|
Emiliano JVDS, Fusieger A, Camargo AC, Rodrigues FFDC, Nero LA, Perrone ÍT, Carvalho AFD. Staphylococcus aureus in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol. Foodborne Pathog Dis 2024; 21:601-616. [PMID: 39021233 DOI: 10.1089/fpd.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
Collapse
Affiliation(s)
- Jean Victor Dos Santos Emiliano
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Anderson Carlos Camargo
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabíola Faria da Cruz Rodrigues
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
2
|
Wörmann ME, Pech J, Reich F, Tenhagen BA, Wichmann-Schauer H, Lienen T. Growth of methicillin-resistant Staphylococcus aureus during raw milk soft cheese-production and the inhibitory effect of starter cultures. Food Microbiol 2024; 119:104451. [PMID: 38225052 DOI: 10.1016/j.fm.2023.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
The consumption of raw milk or raw milk products might be a potential risk factor for the transmission of methicillin-resistant Staphylococcus aureus (MRSA). Therefore, we studied MRSA growth during raw milk soft cheese-production. Furthermore, we investigated the inhibitory effect of four starter cultures (Lactococcus lactis, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lactobacillus helveticus) on the growth of MRSA in a spot-agar-assay and in raw milk co-culture following a cheesemaking temperature profile. During the initial phases of raw milk cheese-production, MRSA counts increased by 2 log units. In the ripening phase, MRSA counts only dropped slightly and remained high up to the end of the storage. Comparable MRSA counts were found in the rind and core and strain-specific differences in survival were observed. In the spot-agar-assay, all four starter cultures showed strong or intermediate inhibition of MRSA growth. In contrast, in raw milk, only Lactococcus lactis strongly inhibited MRSA, whereas all other starter cultures only had minor inhibitory effects on MRSA growth. Our results indicate that MRSA follow a similar growth pattern as described for other S. aureus during raw milk soft cheese-production and illustrate the potential use of appropriate starter cultures to inhibit MRSA growth during the production of raw milk cheese.
Collapse
Affiliation(s)
- M E Wörmann
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - J Pech
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - F Reich
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - B-A Tenhagen
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - H Wichmann-Schauer
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - T Lienen
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
3
|
Wang H, Kim R, Wang Y, Furtado KL, Sims CE, Tamayo R, Allbritton NL. In vitro co-culture of Clostridium scindens with primary human colonic epithelium protects the epithelium against Staphylococcus aureus. Front Bioeng Biotechnol 2024; 12:1382389. [PMID: 38681959 PMCID: PMC11045926 DOI: 10.3389/fbioe.2024.1382389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
A complex and dynamic network of interactions exists between human gastrointestinal epithelium and intestinal microbiota. Therefore, comprehending intestinal microbe-epithelial cell interactions is critical for the understanding and treatment of intestinal diseases. Primary human colonic epithelial cells derived from a healthy human donor were co-cultured with Clostridium scindens (C. scindens), a probiotic obligate anaerobe; Staphylococcus aureus (S. aureus), a facultative anaerobe and intestinal pathogen; or both bacterial species in tandem. The co-culture hanging basket platform used for these experiments possessed walls of controlled oxygen (O2) permeability to support the formation of an O2 gradient across the intestinal epithelium using cellular O2 consumption, resulting in an anaerobic luminal and aerobic basal compartment. Both the colonic epithelial cells and C. scindens remained viable over 48 h during co-culture. In contrast, co-culture with S. aureus elicited significant damage to colonic epithelial cells within 24 h. To explore the influence of the intestinal pathogen on the epithelium in the presence of the probiotic bacteria, colonic epithelial cells were inoculated sequentially with the two bacterial species. Under these conditions, C. scindens was capable of repressing the production of S. aureus enterotoxin. Surprisingly, although C. scindens converted cholic acid to secondary bile acids in the luminal medium, the growth of S. aureus was not significantly inhibited. Nevertheless, this combination of probiotic and pathogenic bacteria was found to benefit the survival of the colonic epithelial cells compared with co-culture of the epithelial cells with S. aureus alone. This platform thus provides an easy-to-use and low-cost tool to study the interaction between intestinal bacteria and colonic cells in vitro to better understand the interplay of intestinal microbiota with human colonic epithelium.
Collapse
Affiliation(s)
- Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Kathleen L. Furtado
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Medicine/Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Delgado J, Álvarez M, Cebrián E, Martín I, Roncero E, Rodríguez M. Biocontrol of Pathogen Microorganisms in Ripened Foods of Animal Origin. Microorganisms 2023; 11:1578. [PMID: 37375080 PMCID: PMC10301060 DOI: 10.3390/microorganisms11061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ripened foods of animal origin comprise meat products and dairy products, being transformed by the wild microbiota which populates the raw materials, generating highly appreciated products over the world. Together with this beneficial microbiota, both pathogenic and toxigenic microorganisms such as Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Clostridium botulinum, Escherichia coli, Candida spp., Penicillium spp. and Aspergillus spp., can contaminate these products and pose a risk for the consumers. Thus, effective strategies to hamper these hazards are required. Additionally, consumer demand for clean label products is increasing. Therefore, the manufacturing sector is seeking new efficient, natural, low-environmental impact and easy to apply strategies to counteract these microorganisms. This review gathers different approaches to maximize food safety and discusses the possibility of their being applied or the necessity of new evidence, mainly for validation in the manufacturing product and its sensory impact, before being implemented as preventative measures in the Hazard Analysis and Critical Control Point programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Mar Rodríguez
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain; (J.D.); (M.Á.); (E.C.); (I.M.); (E.R.)
| |
Collapse
|
5
|
Cai H, Pei S, Zhang Y, Liu R, Lu S, Li B, Dong J, Wang Q, Zhu X, Ji H. Construction of a dynamic model to predict the growth of Staphylococcus aureus and the formation of enterotoxins during Kazak cheese maturation. Food Microbiol 2023; 112:104234. [PMID: 36906305 DOI: 10.1016/j.fm.2023.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is a common pathogen found in cheese whose Staphylococcal enterotoxins (SE) are the main pathogenic factors that cause food poisoning. The objective of this study was to construct two models to evaluate the safety of Kazak cheese products in terms of composition, changes in S. aureus inoculation amount, Aw, fermentation temperature during processing, and growth of S. aureus in the fermentation stage. A total of 66 experiments comprised of five levels of inoculation amount (2.7-4 log CFU/g), five levels of Aw (0.878-0.961), and six levels of fermentation temperature (32-44 °C) were performed to confirm the growth of S. aureus and the presence of SE limit conditions. Two artificial neural networks (ANN) successfully described the relationship between the assayed conditions and the growth kinetic parameters (maximum growth rates and lag times) of the strain. The good fitting accuracy (R2 values were 0.918 and 0.976, respectively) showed that the ANN was appropriate. Experimental results showed fermentation temperature had the greatest influence on the maximum growth rate and lag time, followed by the Aw and inoculation amount. Furthermore, a probability model was built to predict the production of SE by logistic regression and neural network under the assayed conditions, which proved to be concordant in 80.8-83.8% of the cases with the observed probabilities. The maximum total number of colonies predicted by the growth model in all combinations detected with SE exceeded 5 log CFU/g. Within the range of variables, the minimum Aw for predicting SE production was 0.938, and the minimum inoculation amount for predicting SE production was 3.22 log CFU/g. Additionally, as competition between S. aureus and lactic acid bacteria (LAB) occurs in the fermentation stage, higher fermentation temperatures are conducive to the growth of LAB, which can reduce the risk of S. aureus producing SE. This study can help manufacturers to make decisions on the most appropriate production parameters for Kazak cheese products and to prevent S. aureus growth and SE production.
Collapse
Affiliation(s)
- Huixue Cai
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Sijie Pei
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yan Zhang
- School of Food Science and Technology, Shihezi University, 832003, China; Zhoukou Vocational College of Arts and Science, Zhoukou, Henan, 466000, China
| | - Rongrong Liu
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, 832003, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, 832003, China.
| |
Collapse
|
6
|
Anti-infective properties of the protective culture Hafnia alvei B16 in food and intestinal models against multi-drug resistant Salmonella. Food Microbiol 2023; 110:104159. [DOI: 10.1016/j.fm.2022.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
7
|
Rodríguez-Sánchez S, Ramos IM, Rodríguez-Pérez M, Poveda JM, Seseña S, Palop ML. Lactic acid bacteria as biocontrol agents to reduce Staphylococcus aureus growth, enterotoxin production and virulence gene expression. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ramos-Vivas J, Tapia O, Elexpuru-Zabaleta M, Pifarre KT, Armas Diaz Y, Battino M, Giampieri F. The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods. Molecules 2022; 27:molecules27175585. [PMID: 36080356 PMCID: PMC9457839 DOI: 10.3390/molecules27175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- CIBER of Infectious Diseases—CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.R.-V.); (M.B.)
| | - Olga Tapia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.R.-V.); (M.B.)
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| |
Collapse
|
9
|
Li H, Huang YY, Addo KA, Yu YG, Xiao XL. Effects of cuminaldehyde on toxins production of Staphylococcus aureus and its application in sauced beef. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Carneiro Aguiar RA, Ferreira FA, Dias RS, Nero LA, Miotto M, Verruck S, De Marco I, De Dea Lindner J. Graduate Student Literature Review: Enterotoxigenic potential and antimicrobial resistance of staphylococci from Brazilian artisanal raw milk cheeses. J Dairy Sci 2022; 105:5685-5699. [DOI: 10.3168/jds.2021-21634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
|
11
|
Aljasir SF, D'Amico DJ. Effect of pre-exposure to protective bacterial cultures in food on Listeria monocytogenes virulence. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Aljasir SF, D'Amico DJ. Probiotic potential of commercial dairy-associated protective cultures: In vitro and in vivo protection against Listeria monocytogenes infection. Food Res Int 2021; 149:110699. [PMID: 34600693 DOI: 10.1016/j.foodres.2021.110699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023]
Abstract
Protective bacterial cultures (PCs) are commercially available to producers to control undesirable microbes in foods, including foodborne pathogens such as Listeria monocytogenes. They are generally recognized as safe for consumption and many are capable of producing bacteriocins. Yet their potential to act as probiotics and confer a health benefit on the host is not known. This study investigated the ability of three commercial PCs to survive human gastrointestinal conditions and exert anti-infective properties against L. monocytogenes. Counts of two PCs of Lactiplantibacillus plantarum remained unchanged after exposure to simulated gastrointestinal conditions, whereas counts of the PC Lactococcus lactis subsp. lactis were reduced by 5.3 log CFU/mL. Cultures of Lactiplantibacillus plantarum and Lactococcus lactis subsp. lactis adhered to human Caco-2 epithelial cells at ∼ 6 log CFU/mL. This pretreatment reduced subsequent L. monocytogenes adhesion and invasion by 1-1.6 log CFU/mL and 3.8-4.9 log CFU/mL, respectively, compared to control. L. monocytogenes-induced cytotoxicity was also reduced from 29.1% in untreated monolayers to ∼ 8% in those treated with PCs. Pretreatment of Caco-2 monolayers with Lactococcus lactis subsp. lactis and one PC of Lactiplantibacillus plantarum reduced L. monocytogenes translocation by ≥ 1.2 log CFU/mL compared to control (≥ 94.5% inhibition). All PCs significantly reduced DextranFITC permeability through Caco-2 monolayers to approximately half that of control. Pretreatment with PCs also reduced L. monocytogenes-induced mortality in Caenorhabditis elegans. These findings demonstrate the potential for commercially produced PCs to exert probiotic effects in the host through protection against L. monocytogenes infection, thus providing an additional benefit to food safety beyond inhibiting pathogen growth, survival, and virulence in foods.
Collapse
Affiliation(s)
- Sulaiman F Aljasir
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA.
| | - Dennis J D'Amico
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA.
| |
Collapse
|
13
|
Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. The forgotten role of food cultures. FEMS Microbiol Lett 2021; 368:fnab085. [PMID: 34223876 PMCID: PMC8397475 DOI: 10.1093/femsle/fnab085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Emmanuelle Arias
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Anne Bückle
- Milchprüfring Baden-Württemberg e.V., Marie-Curie-Straße 19, 73230 Kirchheim, u.T., Germany
| | | | - Aurélie Dubois
- International Dairy Federationiry Federation, 70 Boulevard Auguste Reyers, 1030 Brussels, Belgium
| | - Alessandra Fontana
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Duresa Fritz
- International Flavors and Fragrances, 20 rue Brunel, Paris 75017, France
| | - Rober Kemperman
- Lesaffre International, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Svend Laulund
- Chr. Hansen A/S, Agern Allé 24, 2970 Hoersholm, Denmark
| | | | - Marta Hanna Miks
- Glycom A/S, Kogle Allé 4, 2970 Hørsholm, Denmark
- Faculty of Food Science, Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10–726 Olsztyn, Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archiepiskopou Kyprianou, PO BOX 50329, Limassol, Cyprus
| | - Vania Patrone
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | | | - Edward Sliwinski
- The European Federation of Food Science & Technology, Nieuwe Kanaal 9a, 6709 PA, Wageningen, The Netherlands
| | | | - Ueli Von Ah
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Su Yao
- China National Research Institute of Food & Fermentation Industries, China Center of Industrial Culture Collection, Building 6, No.24, Jiuxianqiaozhong Road, Chaoyang District, Beijing 100015, PR China
| | - Lorenzo Morelli
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| |
Collapse
|
14
|
Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2021; 78:2194-2211. [PMID: 33881575 DOI: 10.1007/s00284-021-02442-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) havoc is a global multifaceted crisis endowing a significant challenge for the successful eradication of devastating pathogens. Methicillin-Resistant Staphylococcus aureus (MRSA) is an enduring superbug involved in causing devastating infections. Although MRSA is a frequent colonizer of human skin, wound, and anterior nares, the intestinal colonization of MRSA has greatly increased the risk of inducing MRSA-associated colitis besides creating a conducive environment for horizontal transfer of resistant genes to commensal microbes. On the other hand, staphylococcal resistance to last-resort antibiotics has urged the development of novel antimicrobial agents for the effective decolonization of MRSA. In response, probiotics and their metabolites (postbiotics) have been proposed as the adjunct therapeutic avenues. Probiotics exhibit a multitude of anti-MRSA actions (anti-bacterial, anti-biofilm, anti-virulence, anti-drug resistance, co-aggregation, and anti-quorum sensing) through the production of numerous antagonistic compounds such as organic acids, hydrogen peroxide, low molecular weight compounds, biosurfactants, bacteriocins, and bacteriocins like inhibitory substances. Besides, probiotics stabilize the epithelial barrier function and positively modulate the host immune system via regulating various signal transduction mechanisms. Preclinical and human intervention studies have suggested that probiotics outcompete with MRSA by exhibiting anti-colonization mechanisms via protective, competitive, and displacement mode. In this review, we aim to highlight the dynamics of MRSA associated virulence and drug resistance properties, and how probiotics antagonize MRSA through various mechanism of action.
Collapse
|