1
|
Mosquera JD, Escotte-Binet S, Poulle ML, Betoulle S, St-Pierre Y, Caza F, Saucède T, Zapata S, De Los Angeles Bayas R, Ramirez-Villacis DX, Villena I, Bigot-Clivot A. Detection of Toxoplasma gondii in wild bivalves from the Kerguelen and Galapagos archipelagos: influence of proximity to cat populations, exposure to marine currents and kelp density. Int J Parasitol 2024; 54:607-615. [PMID: 38885873 DOI: 10.1016/j.ijpara.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Oocysts of the protozoan Toxoplasma gondii are found in felid feces and can be washed into coastal waters, where they persist for months, attaching to algae and accumulating in invertebrates. We used wild bivalves to assess contamination of coastal waters of the Kerguelen and Galapagos archipelagos by this zoonotic parasite. Additionally, we leveraged the contrasting situations of these archipelagos to identify some potential drivers of contamination. In the Galapagos, with a cat density reaching 142 per km2, 15.38% of the sampled oysters (Saccostrea palmula) tested positive for T. gondii by quantitative real-time PCR (qPCR) (n = 260), and positive samples were found in all eight sampling sites. In Kerguelen, with 1-3 cats per km2, 40.83% of 120 tested mussels (Mytilus edulis platensis) were positive, and positive samples were found in four out of the five sampling sites. These findings provide evidence of T. gondii contamination in the coastal waters of these archipelagos. Furthermore, T. gondii-positive bivalves were found on islands located 20 km away (Galapagos) and 5 km away (Kerguelen) from the nearest cat population, indicating that T. gondii oocysts can disperse through waterborne mechanisms over several kilometers from their initial deposition site. In the Galapagos, where runoff is infrequent and all sites are exposed to currents, the prevalence of qPCR-positive bivalves did not show significant variations between sites (p = 0.107). In Kerguelen where runoff is frequent and site exposure variable, the prevalence varied significantly (p < 0.001). The detection of T. gondii in Kerguelen mussels was significantly correlated with the site exposure to currents (odds ratio (OR) 60.2, p < 0.001) and the on-site density of giant kelp forests (OR 2.624, p < 0.001). This suggests that bivalves can be contaminated not only by oocysts transported by currents but also by consuming marine aggregates containing oocysts that tend to form in kelp forests.
Collapse
Affiliation(s)
- Juan D Mosquera
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France; Universidad San Francisco de Quito, Instituto de Microbiología, COCIBA, Quito, Ecuador
| | - Sandie Escotte-Binet
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France
| | - Marie-Lazarine Poulle
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, ULHN, INERIS, Normandie Univ, SEBIO, UMR-I 02, Reims, France
| | - Yves St-Pierre
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - France Caza
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Thomas Saucède
- Bourgogne Franche-Comté University, CNRS, EPHE, UMR 6282 Biogéosciences, Dijon, France
| | - Sonia Zapata
- Universidad San Francisco de Quito, Instituto de Microbiología, COCIBA, Quito, Ecuador
| | | | | | - Isabelle Villena
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France; Centre Hospitalo-Universitaire (CHU) de Reims, Centre National de Référence (CNR) Toxoplasmose, Centre de Référence Biologique (CRB) Toxoplasma, Reims, France
| | - Aurélie Bigot-Clivot
- Université de Reims Champagne-Ardenne, ULHN, INERIS, Normandie Univ, SEBIO, UMR-I 02, Reims, France.
| |
Collapse
|
2
|
Suarez P, Vallejos-Almirall A, Fernández I, Gonzalez-Chavarria I, Alonso J, Vidal G. Identification of Cryptosporidium parvum and Blastocystis hominis subtype ST3 in Cholga mussel and treated sewage: Preliminary evidence of fecal contamination in harvesting area. Food Waterborne Parasitol 2024; 34:e00214. [PMID: 38188968 PMCID: PMC10770711 DOI: 10.1016/j.fawpar.2023.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidium parvum and Blastocystis hominis are foodborne parasites known for causing diarrhea. They accumulate in mussels grown on contaminated water bodies, due to the discharge of treated sewage from sewage treatment plants (STP). Despite this, some countries like Chile do not include these parasites in the control or monitoring of sewage water. The objective of this research was to evaluate the contamination of C. parvum. and B. hominis from treated sewage (disinfected by chlorination) and Cholga mussels in a touristic rural cove from the bay of Concepción. Cholga mussels from commercial stores and a treated sewage sample were analyzed. Cryptosporidium spp. was identified by Ziehl-Neelsen-Staining (ZNS) and C. parvum by direct-immunofluorescence assay (IFA) from ZNS-positive samples. Blastocystis hominis was identified by PCR using locus SSU rDNA. C. parvum and B. hominis subtype ST3 were found in 40% and 45% of Cholga mussel samples, respectively, and both parasites were identified in the treated sewage. Blastocystis hominis SSU rDNA gene alignment from Cholga mussels and treated sewage showed 89% of similarity, indicating that could be the same parasite in both samples. We describe the first evidence of possible contamination with these parasites from treated sewage to Cholga mussel suggesting an environmental contamination with high human risk. Based on these results, further studies will consider all the rural coves and STP from the bay to prevent possible contamination of these parasites.
Collapse
Affiliation(s)
- P. Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A. Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - I. Fernández
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - I. Gonzalez-Chavarria
- Laboratorio de Lipoproteínas y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, Spain
| | - G. Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
| |
Collapse
|
3
|
Merks H, Boone R, Janecko N, Viswanathan M, Dixon BR. Foodborne protozoan parasites in fresh mussels and oysters purchased at retail in Canada. Int J Food Microbiol 2023; 399:110248. [PMID: 37210953 DOI: 10.1016/j.ijfoodmicro.2023.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Studies worldwide have reported the presence of protozoan parasites in a variety of commercial bivalve shellfish. The uptake of these parasites by shellfish occurs during filter feeding in faecally-contaminated waters. The objective of the present study was to determine the prevalence of Giardia, Cryptosporidium and Toxoplasma in fresh, live shellfish purchased in three Canadian provinces as part of the retail surveillance activities led by FoodNet Canada (Public Health Agency of Canada). Packages containing mussels (n = 253) or oysters (n = 130) were purchased at grocery stores in FoodNet Canada sentinel sites on a biweekly basis throughout 2018 and 2019, and shipped in coolers to Health Canada for testing. A small number of packages were not tested due to insufficient quantity or poor quality. Following DNA extraction from homogenized, pooled tissues, nested PCR and DNA sequencing were used to detect parasite-specific sequences. Epifluorescence microscopy was used to confirm the presence of intact cysts and oocysts in sequence-confirmed PCR-positive samples. Giardia duodenalis DNA was present in 2.4 % of 247 packages of mussels and 4.0 % of 125 packages of oysters, while Cryptosporidium parvum DNA was present in 5.3 % of 247 packages of mussels and 7.2 % of 125 packages of oysters. Toxoplasma gondii DNA was only found in mussels in 2018 (1.6 % of 249 packages). Parasite DNA was detected in shellfish purchased in all three Canadian provinces sampled, and there was no apparent seasonal variation in prevalence. While the present study did not test for viability, parasites are known to survive for long periods in the marine environment, and these findings suggest that there is a risk of infection, especially when shellfish are consumed raw.
Collapse
Affiliation(s)
- Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Mythri Viswanathan
- Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
4
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|