1
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Vázquez ME, Zabala BA, Mesías AC, Biscari L, Kaufman CD, Alloatti A, Siano F, Picariello G, Corbalán NS, Lenis BA, Toscano MA, Parodi CM, Brandán CMP, Acuña L. Protective Efficacy of the Epitope-Conjugated Antigen N-Tc52/TSkb20 in Mitigating Trypanosoma cruzi Infection through CD8+ T-Cells and IFNγ Responses. Vaccines (Basel) 2024; 12:621. [PMID: 38932350 PMCID: PMC11209121 DOI: 10.3390/vaccines12060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, remains a major public health challenge affecting millions in Latin America and worldwide. Although significant progress has been made in vector control, no vaccine exists to prevent infection or mitigate disease pathogenesis. We developed a rationally designed chimeric protein vaccine, N-Tc52/TSkb20, incorporating immunodominant epitopes from two T. cruzi antigens, the amino-terminal portion of Tc52 and the TSkb20 epitope derived from trans-sialidase. The objectives of this study were to construct and characterize the antigen and evaluate its protective potential in an immunoprophylactic murine model of T. cruzi infection. The N-Tc52/TSkb20 protein was recombinantly expressed in E. coli and its identity was confirmed using mass spectrometry and Western blotting. Immunization with the chimeric protein significantly controlled parasitemia and reduced the heart, colon, and skeletal muscle parasite burdens compared to non-vaccinated mice. Protection was superior to vaccination with the individual parental antigen components. Mechanistically, the vaccine induced potent CD8+ T-cell and IFNγ responses against the incorporated epitopes and a protective IgG antibody profile. A relatively low IL-10 response favored early parasite control. These results validate the promising multi-epitope approach and support the continued development of this type of rational vaccine design strategy against Chagas disease.
Collapse
Affiliation(s)
- María Elisa Vázquez
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| | - Brenda A. Zabala
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| | - Andrea C. Mesías
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| | - Lucia Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER—CONICET—UNR, Rosario 2000, Argentina; (L.B.); (C.D.K.); (A.A.)
| | - Cintia D. Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER—CONICET—UNR, Rosario 2000, Argentina; (L.B.); (C.D.K.); (A.A.)
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER—CONICET—UNR, Rosario 2000, Argentina; (L.B.); (C.D.K.); (A.A.)
| | - Francesco Siano
- Istituto di Scienze dell’ Alimentazione—Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (F.S.); (G.P.)
| | - Gianluca Picariello
- Istituto di Scienze dell’ Alimentazione—Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (F.S.); (G.P.)
| | - Natalia S. Corbalán
- Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta A4400, Argentina;
| | - Bladimiro A. Lenis
- Unidad de Conocimiento Traslacional, Hospital Arturo Oñativia, Salta A4400, Argentina; (B.A.L.); (M.A.T.)
| | - Marta A. Toscano
- Unidad de Conocimiento Traslacional, Hospital Arturo Oñativia, Salta A4400, Argentina; (B.A.L.); (M.A.T.)
| | - Cecilia M. Parodi
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| | - Cecilia M. Pérez Brandán
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| | - Leonardo Acuña
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental “Dr. Miguel Ángel Basombrío”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina; (M.E.V.); (B.A.Z.); (A.C.M.); (C.M.P.)
| |
Collapse
|
3
|
Kerdkumthong K, Chanket W, Runsaeng P, Nanarong S, Songsurin K, Tantimetta P, Angsuthanasombat C, Aroonkesorn A, Obchoei S. Two Recombinant Bacteriocins, Rhamnosin and Lysostaphin, Show Synergistic Anticancer Activity Against Gemcitabine-Resistant Cholangiocarcinoma Cell Lines. Probiotics Antimicrob Proteins 2024; 16:713-725. [PMID: 37294416 DOI: 10.1007/s12602-023-10096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Cholangiocarcinoma (CCA), a bile duct cancer with a high mortality rate, has a poor prognosis due to its highly invasive and drug-resistant phenotypes. More effective and selective therapies are urgently needed. Bacteriocins are broad-spectrum antimicrobial peptides/proteins produced by bacterial strains to compete with other bacteria. Recent studies have reported that bacteriocins exhibit anticancer properties against various cancer cell lines with minimal toxicity toward normal cells. In this study, two types of recombinant bacteriocins, rhamnosin from probiotic Lacticaseibacillus rhamnosus and lysostaphin from Staphylococcus simulans, were highly produced in Escherichia coli and subsequently purified via immobilized-Ni2+ affinity chromatography. When their anticancer activity was investigated against CCA cell lines, both rhamnosin and lysostaphin were found capable of inhibiting the growth of CCA cell lines in a dose-dependent fashion but were less toxic toward a normal cholangiocyte cell line. Rhamnosin and lysostaphin as single treatments could suppress the growth of gemcitabine-resistant cell lines to the same extent as or more than they suppressed the parental counterparts. A combination of both bacteriocins more strongly inhibited growth and enhanced cell apoptosis in both parental and gemcitabine-resistant cells partly through the increased expression of the proapoptotic genes BAX, and caspase-3, -8, and -9. In conclusion, this is the first report to demonstrate an anticancer property of rhamnosin and lysostaphin. Using these bacteriocins as single agents or in combination would be effective against drug-resistant CCA.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Wannarat Chanket
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sutthipong Nanarong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Kawinnath Songsurin
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Phonprapavee Tantimetta
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand.
| |
Collapse
|
4
|
Barcenilla C, Puente A, Cobo-Díaz JF, Alexa EA, Garcia-Gutierrez E, O'Connor PM, Cotter PD, González-Raurich M, López M, Prieto M, Álvarez-Ordóñez A. Selection of lactic acid bacteria as biopreservation agents and optimization of their mode of application for the control of Listeria monocytogenes in ready-to-eat cooked meat products. Int J Food Microbiol 2023; 403:110341. [PMID: 37543003 DOI: 10.1016/j.ijfoodmicro.2023.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
In order to meet consumers´ demands for more natural foods and to find new methods to control foodborne pathogens in them, research is currently being focused on alternative preservation approaches, such as biopreservation with lactic acid bacteria (LAB). Here, a collection of lactic acid bacteria (LAB) isolates was characterized to identify potential biopreservative agents. Six isolates (one Lactococcus lactis, one Lacticaseibacillus paracasei and four Lactiplantibacillus plantarum) were selected based on their antimicrobial activity in in vitro assays. Whole genome sequencing showed that none of the six LAB isolates carried known virulence factors or acquired antimicrobial resistance genes, and that the L. lactis isolate was potentially a nisin Z producer. Growth of L. monocytogenes was successfully limited by L. lactis ULE383, L. paracasei ULE721 and L. plantarum ULE1599 throughout the shelf-life of cooked ham, meatloaf and roasted pork shoulder. These LAB isolates were also applied individually or as a cocktail at different inoculum concentrations (4, 6 and 8 log10 CFU/g) in challenge test studies involving cooked ham, showing a stronger anti-Listerial activity when a cocktail was used at 8 log10 CFU/g. Thus, a reduction of up to ~5.0 log10 CFU/g in L. monocytogenes growth potential was attained in cooked ham packaged under vacuum, modified atmosphere packaging or vacuum followed by high pressure processing (HPP). Only minor changes in color and texture were induced, although there was a significant acidification of the product when the LAB cultures were applied. Remarkably, this acidification was delayed when HPP was applied to the LAB inoculated batches. Metataxonomic analyses showed that the LAB cocktail was able to grow in the cooked ham and outcompete the indigenous microbiota, including spoilage microorganisms such as Brochothrix. Moreover, none of the batches were considered unacceptable in a sensory evaluation. Overall, this study shows the favourable antilisterial activity of the cocktail of LAB employed, with the combination of HPP and LAB achieving a complete inhibition of the pathogen with no detrimental effects in physico-chemical or sensorial evaluations, highlighting the usefulness of biopreservation approaches involving LAB for enhancing the safety of cooked meat products.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Alba Puente
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Elena-Alexandra Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Paula M O'Connor
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
5
|
Choyam S, Kammara R. Understanding the Necessity of Regulatory Protein Machinery in Heterologous Expression of Class-III Type of Ocins. Protein J 2023:10.1007/s10930-023-10106-8. [PMID: 36976382 DOI: 10.1007/s10930-023-10106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
To date, there have been no or just a few reports of successful cloning and expression to create biologically active ocins or bacteriocins. Cloning, expression, and production of class I ocins are problematic because of their structural arrangements, coordinated functions, size, and posttranslational modifications. Mass synthesis of these molecules is necessary for commercialization and to restrict the excessive use of conventional antibiotics, which encourages the development of antibiotic-resistant bacteria. In the case of class III ocins, there are no reports of obtaining biological active proteins to date. Being able to obtain biologically active proteins requires an understanding of mechanistic features due to their expanding importance and broad spectrum of activity. As a result, we intend to clone and express the class III type. The class I types that are devoid of posttranslational modifications were transformed into class III through fusion. Therefore, this construct resembles a class III type ocin. With the exception of Zoocin, expression of the proteins was found to be physiologically ineffective after cloning. But, few cell morphological changes such as elongation, aggregation, and the formation of terminal hyphae were observed. However, it was discovered that the target indicator had been altered to Vibrio spp. in a few. All the three ocins were subjected to in-silico structure prediction/analysis. Finally, we confirm the existence of unidentified additional intrinsic factors for successful expression to obtain biologically active protein.
Collapse
Affiliation(s)
- Shilja Choyam
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, Mysore, India
| | | |
Collapse
|
6
|
Sharma H, Fidan H, Özogul F, Rocha JM. Recent development in the preservation effect of lactic acid bacteria and essential oils on chicken and seafood products. Front Microbiol 2022; 13:1092248. [PMID: 36620022 PMCID: PMC9816663 DOI: 10.3389/fmicb.2022.1092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chicken and seafood are highly perishable owing to the higher moisture and unsaturated fatty acids content which make them more prone to oxidation and microbial growth. In order to preserve the nutritional quality and extend the shelf-life of such products, consumers now prefer chemical-free alternatives, such as lactic acid bacteria (LAB) and essential oils (EOs), which exert a bio-preservative effect as antimicrobial and antioxidant compounds. This review will provide in-depth information about the properties and main mechanisms of oxidation and microbial spoilage in chicken and seafood. Furthermore, the basic chemistry and mode of action of LAB and EOs will be discussed to shed light on their successful application in chicken and seafood products. Metabolites of LAB and EOs, either alone or in combination, inhibit or retard lipid oxidation and microbial growth by virtue of their principal constituents and bioactive compounds including phenolic compounds and organic acids (lactic acid, propionic acid, and acetic acid) and others. Therefore, the application of LAB and EOs is widely recognized to extend the shelf-life of chicken and seafood products naturally without altering their functional and physicochemical properties. However, the incorporation of any of these agents requires the optimization steps necessary to avoid undesirable sensory changes. In addition, toxicity risks associated with EOs also demand the regularization of an optimum dose for their inclusion in the products.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hafize Fidan
- Department of Tourism and Culinary Management, University of Food Technologies, Plovdiv, Bulgaria
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye
| | - João Miguel Rocha
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal,ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal,*Correspondence: João Miguel Rocha,
| |
Collapse
|
7
|
The Antibacterial Activity Mode of Action of Plantaricin YKX against Staphylococcus aureus. Molecules 2022; 27:molecules27134280. [PMID: 35807524 PMCID: PMC9268016 DOI: 10.3390/molecules27134280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to evaluate the inhibitory effect and mechanism of plantaricin YKX on S. aureus. The mode of action of plantaricin YKX against the cells of S. aureus indicated that plantaricin YKX was able to cause the leakage of cellular content and damage the structure of the cell membranes. Additionally, plantaricin YKX was also able to inhibit the formation of S. aureus biofilms. As the concentration of plantaricin YKX reached 3/4 MIC, the percentage of biofilm formation inhibition was over 50%. Fluorescent dye labeling combined with fluorescence microscopy confirmed the results. Finally, the effect of plantaricin YKX on the AI-2/LuxS QS system was investigated. Molecular docking predicted that the binding energy of AI-2 and plantaricin YKX was −4.7 kcal/mol and the binding energy of bacteriocin and luxS protein was −183.701 kcal/mol. The expression of the luxS gene increased significantly after being cocultured with plantaricin YKX, suggesting that plantaricin YKX can affect the QS system of S. aureus.
Collapse
|
8
|
Parker JK, Davies BW. Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001175. [PMID: 35438625 PMCID: PMC10233263 DOI: 10.1099/mic.0.001175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the Enterobacteriaceae, microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the 'impermeable' barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects. Microcins appear to be widely dispersed among different species and in different environments, where they function in regulating microbial communities in diverse ways, including through competition. Growing evidence suggests that microcins may be adapted for therapeutic uses such as antimicrobial drugs, microbiome modulators or facilitators of peptide uptake into cells. Advancing our biological, ecological and biochemical understanding of the roles of microcins in bacterial interactions, and learning how to regulate and modify microcin activity, is essential to enable such therapeutic applications.
Collapse
Affiliation(s)
| | - Bryan William Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Fernandes A, Jobby R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 2022; 194:4377-4399. [PMID: 35290605 DOI: 10.1007/s12010-022-03870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides that have long been used in the food industry. Being a highly diverse and heterogeneous group of molecules the classification is ever-evolving. Their production is widespread among bacteria; nevertheless, their biosynthesis and mode of action remain fairly similar. With the advances in drug resistance mechanisms, it is important to look for alternatives to conventional approaches. Therefore, the advantages of bacteriocin over antibiotics need to be considered to provide a scientific basis for their use. Particularly in the last decade, intensive studies look at their potential as next-generation therapeutics against drug-resistant bacteria. Bacteriocins from lactic acid bacteria are being tested as controlling agents for bacterial and viral infections; they can inhibit biofilm synthesis and have potential as contraceptives. Bioengineered peptides have shown enhanced activity and thereby indicate the lack of knowledge we possess regarding these bacteriocins. In this review, we have listed various Gram-positive LAB bacteriocins with their synthesis and mechanism of action. Recent developments in screening and purification technologies have been analyzed with an emphasis on their potential clinical applications. Although extensive research has been done to identify multifunctional bacteriocins, it is important to focus on the mechanism of action of these peptides to get them from bench to bedside.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India. .,Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India.
| |
Collapse
|
10
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. The Urinary Microbiome and Biological Therapeutics: Novel Therapies For Urinary Tract Infections. Microbiol Res 2022; 259:127010. [DOI: 10.1016/j.micres.2022.127010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
|
11
|
LAMBERTI MÓNICAFTORREZ, LÓPEZ FABIÁNE, PESCARETTI MARÍADELASMERCEDES, DELGADO MÓNICAA. Characterization of a bacteriocin produced by a clinical isolate of Shigella flexneri 2. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220200982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - FABIÁN E. LÓPEZ
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Argentina; Universidad Nacional de Chilecito (UNdeC), Argentina
| | | | - MÓNICA A. DELGADO
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Argentina
| |
Collapse
|
12
|
Pei J, Jin W, Wang J, Huang Y, Li X, Zhang H, Zhang Y, Ramadan A, Abd El-Aty AM. Purification and Characterization of Plantaricin YKX and Assessment of Its Inhibitory Activity Against Alicyclobacillus spp. Front Microbiol 2021; 12:783266. [PMID: 34956149 PMCID: PMC8696185 DOI: 10.3389/fmicb.2021.783266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Consumers prefer natural over synthetic chemical preservatives on a food label. Therefore, it is crucial to ensure the safety and efficacy of such natural preservatives. The emergence of heat-resistant spore-forming Alicyclobacillus spp. has been associated with spoilage problems in the fruit juice industry. Herein, a bacteriocin-producing stain YKX was isolated from the traditional pickles in Hanzhong City, China, and it was identified as Lactobacillus plantarum by morphological, biochemical, physiological, and genotypic features. A stable bacteriocin, plantaricin YKX, was isolated, purified, and tested for its efficacy against Alicyclobacillus acidoterrestris. Plantaricin YKX is a 14-amino acid peptide (Lys-Tyr-Gly-Asn-Gly-Leu-Ser-Arg-Ile-Phe-Ser-Ala-Leu-Lys). Its minimal inhibitory concentrations (MICs) against the tested bacterial and fungal strains were ranged from 16 to 64 μg/mL. It is thermostable and active at pH 3-8. The flow cytometry data and microscopic observations suggested that plantaricin YKX can augment cell membrane permeability, induce potassium ion leakage and pore formation, and disrupt cell membranes. It also affects spore germination and guaiacol production of A. acidoterrestris, probably due to upregulation of the luxS gene linked to quorum sensing.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jinze Wang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Xinsheng Li
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Yonggui Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Barcenilla C, Ducic M, López M, Prieto M, Álvarez-Ordóñez A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci 2021; 183:108661. [PMID: 34467880 DOI: 10.1016/j.meatsci.2021.108661] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
The increasing concern of consumers about food quality and safety and their rejection of chemical additives has promoted the breakthrough of the biopreservation field and the development of studies on the use of beneficial bacteria and their metabolites as potential natural antimicrobials for shelf life extension and enhanced food safety. Control of foodborne pathogens in meat and meat products represents a serious challenge for the food industry which can be addressed through the intelligent use of bio-compounds or biopreservatives. This article aims to systematically review the available knowledge about biological strategies based on the use of lactic acid bacteria to control the proliferation of undesirable microorganisms in different meat products. The outcome of the literature search evidenced the potential of several strains of lactic acid bacteria and their purified or semi-purified antimicrobial metabolites as biopreservatives in meat products for achieving longer shelf life or inhibiting spoilage and pathogenic bacteria, especially when combined with other technologies to achieve a synergistic effect.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Miroslav Ducic
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
14
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
15
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
16
|
Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge. Pharmaceutics 2021; 13:pharmaceutics13020196. [PMID: 33540560 PMCID: PMC7912925 DOI: 10.3390/pharmaceutics13020196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Decades of antibiotic misuse in clinical settings, animal feed, and within the food industry have led to a concerning rise in antibiotic-resistant bacteria. Every year, antimicrobial-resistant infections cause 700,000 deaths, with 10 million casualties expected by 2050, if this trend continues. Hence, innovative solutions are imperative to curb antibiotic resistance. Bacteria produce a potent arsenal of drugs with remarkable diversity that are all distinct from those of current antibiotics. Bacteriocins are potent small antimicrobial peptides synthetized by certain bacteria that may be appointed as alternatives to traditional antibiotics. These molecules are strategically employed by commensals, mostly Firmicutes, to colonize and persist in the human gut. Bacteriocins form channels in the target cell membrane, leading to leakage of low-molecular-weight, causing the disruption of the proton motive force. The objective of this review was to list and discuss the potential of bacteriocins as antimicrobial therapeutics for infections produced mainly by resistant pathogens.
Collapse
|
17
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
18
|
Yuliana T, Hayati F, Cahyana Y, Rialita T, Mardawati E, Harahap BM, Safitri R. Indigenous Bacteriocin of Lactic Acid Bacteria from "Dadih" a Fermented Buffalo Milk from West Sumatra, Indonesia as Chicken Meat Preservative. Pak J Biol Sci 2020; 23:1572-1580. [PMID: 33274889 DOI: 10.3923/pjbs.2020.1572.1580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The bacteriocin isolated from fermented buffalo milk from West Sumatra-Indonesia, called Dadih, can be considered as a natural and safe antimicrobial compound for food products. The objective of this research was to evaluate the antimicrobial activity of bacteriocin from Dadih and its effectiveness as a preservative in chicken meat. MATERIALS AND METHODS This study used experimental method followed by statistical analysis using 3 experiments with duplication including experiment of meat samples (0 and 10% bacteriocin), storage temperatures (7 and 26°C) and storage duration (0, 1, 2, 3, 4, 5, 6 days and 0, 6, 12 hrs). Each experiment consists of a bacteriocin test, antimicrobial activity assay, physicochemical measurement and storability. RESULTS From 10 LAB isolates successfully obtained from Dadih, two isolates with D7 code and D10 code had the highest antimicrobial activity, reaching 11.75 mm and 12 mm, respectively. The meat treated by 10% of bacteriocin gave the lower total microbial (3rd and 5th day) and total E. coli (5th day) at 7 and 26°C. The pH and water activity (aw) values of chicken meat with 10% of bacteriocin showed lower values at 7 and 26°C. The application of bacteriocin to chicken meat was able to inhibit the microbial growth that was still below standard for 3 days at 7°C and 6 hrs at 26°C. CONCLUSION Based on research, lactic acid bacteria isolated from buffalo milk curd produced bacteriocin compound which has antimicrobial properties. This bacteriocin showed potential as a natural preservative for chicken meat by inhibiting the growth of pathogen microorganisms.
Collapse
|
19
|
Mining and Statistical Modeling of Natural and Variant Class IIa Bacteriocins Elucidate Activity and Selectivity Profiles across Species. Appl Environ Microbiol 2020; 86:AEM.01646-20. [PMID: 32917749 DOI: 10.1128/aem.01646-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Class IIa bacteriocin antimicrobial peptides (AMPs) are a compelling alternative to current antimicrobials because of potential specific activity toward antibiotic-resistant bacteria, including vancomycin-resistant enterococci. Engineering of these molecules would be enhanced by a better understanding of AMP sequence-activity relationships to improve efficacy in vivo and limit effects of off-target activity. Toward this goal, we experimentally evaluated 210 natural and variant class IIa bacteriocins for antimicrobial activity against six strains of enterococci. Inhibitory activity was ridge regressed to AMP sequence to predict performance, achieving an area under the curve of 0.70 and demonstrating the potential of statistical models for identifying and designing AMPs. Active AMPs were individually produced and evaluated against eight enterococcus strains and four Listeria strains to elucidate trends in susceptibility. It was determined that the mannose phosphotransferase system (manPTS) sequence is informative of susceptibility to class IIa bacteriocins, yet other factors, such as membrane composition, also contribute strongly to susceptibility. A broadly potent bacteriocin variant (lactocin DT1) from a Lactobacillus ruminis genome was identified as the only variant with inhibitory activity toward all tested strains, while a novel enterocin variant (DT2) from an Enterococcus faecium genome demonstrated specificity toward Listeria strains. Eight AMPs were evaluated for proteolytic stability to trypsin, chymotrypsin, and pepsin, and three C-terminal disulfide-containing variants, including divercin V41, were identified as compelling for future in vivo studies, given their high potency and proteolytic stability.IMPORTANCE Class IIa bacteriocin antimicrobial peptides (AMPs), an alternative to traditional small-molecule antibiotics, are capable of selective activity toward various Gram-positive bacteria, limiting negative side effects associated with broad-spectrum activity. This selective activity is achieved through targeting of the mannose phosphotransferase system (manPTS) of a subset of Gram-positive bacteria, although factors affecting this mechanism are not entirely understood. Peptides identified from genomic data, as well as variants of previously characterized AMPs, can offer insight into how peptide sequence affects activity and selectivity. The experimental methods presented here identify promising potent and selective bacteriocins for further evaluation, highlight the potential of simple computational modeling for prediction of AMP performance, and demonstrate that factors beyond manPTS sequence affect bacterial susceptibility to class IIa bacteriocins.
Collapse
|
20
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Shan C, Wu H, Zhou J, Yan W, Zhang J, Liu X. Synergistic Effects of Bacteriocin from Lactobacillus panis C-M2 Combined with Dielectric Barrier Discharged Non-Thermal Plasma (DBD-NTP) on Morganella sp. in Aquatic Foods. Antibiotics (Basel) 2020; 9:antibiotics9090593. [PMID: 32927848 PMCID: PMC7557774 DOI: 10.3390/antibiotics9090593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, Lactocin C-M2(C-M2) was used together with a new non-thermal technology, non-thermal plasma sterilization (NTPS), to inactive the putrefactive bacteria Morganella sp. wf-1 isolated from aquatic foods. The mechanism underlining the action mode of C-M2 and NTPS was investigated, revealing that the bacteriocin and NTPS had synergistic effects on the disinfection of Morganella sp. wf-1. Compared with the bacteria cells treated by only C-M2 or NTPS, the plasmolysis of cells treated by C-M2 and NTPS was to a larger extent. Moreover, the cell permeability and the contents of UV-absorbing compounds and K+ released from the intra-cells was significantly higher for the C-M2 + NTPS treated cells than the others (p < 0.05), and conversely was the SFA/UFA ratio (p < 0.05). The results on DNA damage showed that, 8-hydroxy-2'-deoxyguanosine(8-OHdG) content in C-M2 + NTPS treated cells was approximately 7 -fold and 2.5-fold greater than those in the C-M2- and NTPS-treated cells, respectively, indicating furthermore the eventual rupture of Morganella sp. wf-1 cells. The results showed the potential of the application of the bacteriocin and NTPS in the food industry.
Collapse
Affiliation(s)
- Chengjun Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Han Wu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Jianzhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Correspondence: (J.Z.); (X.L.)
| | - Xiaoli Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
- Correspondence: (J.Z.); (X.L.)
| |
Collapse
|
22
|
Navarro SA, Lanza L, Acuña L, Bellomio A, Chalón MC. Features and applications of Ent35-MccV hybrid bacteriocin: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:6067-6077. [PMID: 32418126 DOI: 10.1007/s00253-020-10650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Bacteriocins are peptides of ribosomal synthesis that are active against bacteria related to the producing strain. They have been widely used in the food industry as biopreservatives. The generation of hybrid peptides by combining the genes that encode two different bacteriocins has made it possible to study the mechanisms of action of the bacteriocins that compose them and also develop new peptides with improved biotechnological applications. Hybrid bacteriocins may be obtained in several ways. In our laboratory, by combining enterocin CRL35 and microcin V (Ent35-MccV), we obtained a broad-spectrum peptide that is active against both Gram-positive and Gram-negative bacteria. Ent35-MccV is sensitive to the action of intestinal proteases and is heat resistant, which makes it a good candidate for use as a biopreservative. For this reason, the peptide was tested in skim milk and beef burgers as food models. We also obtained more potent variants of the hybrid by modifying the central amino acid of the hinge region that connects the two bacteriocins. This review also discusses future applications and perspectives regarding the Ent35-MccV and other hybrid peptides.Key Points• Ent35-MccV is a new broad-spectrum bacteriocin.• The mechanism of action of bacteriocins can be studied using hybrid peptides.• Genetic engineering allows obtaining improved bacteriocin derivatives.• Hybrid peptides can be used in the food, pharmaceutical, and veterinary applications.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE, CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
23
|
Acuña L, Corbalán N, Quintela-Baluja M, Barros-Velázquez J, Bellomio A. Expression of the hybrid bacteriocin Ent35-MccV in Lactococcus lactis and its use for controlling Listeria monocytogenes and Escherichia coli in milk. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Navarro SA, Lanza L, Colombo NSR, de Ullivarri MF, Acuña L, Sosa-Padilla B, Picariello G, Bellomio A, Chalón MC. Obtaining an Ent35-MccV derivative with mutated hinge region that exhibits increased activity against Listeria monocytogenes and Escherichia coli. Appl Microbiol Biotechnol 2019; 103:9607-9618. [PMID: 31713671 DOI: 10.1007/s00253-019-10187-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The present paper describes the generation of derivatives from the hybrid peptide called Ent35-MccV, active against Gram-positive and Gram-negative bacteria. This peptide has a triple glycine hinge region between enterocin CRL35 and microcin V. In order to obtain variants of Ent35-MccV with greater biotechnological potential, a saturation mutagenesis was carried out in the hinge region. As a result, we obtained a bank of E. coli strains expressing different mutated hybrid bacteriocins in the central position of the hinge region. From all these variants, we found that the one bearing a tyrosine in the central region of the hinge (Ent35-GYG-MccV) is 2-fold more active against E. coli and 4-fold more active against Listeria than the original peptide Ent35-MccV. This derivative was purified and characterized. The development and evaluation of alternative hinges for Ent35-MccV represents a step forward in the bioengineering of antimicrobial peptides. This approach fosters the rational design of peptides with enhanced antimicrobial activity.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - N S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - M Fernandez de Ullivarri
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE-CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia, 5150, Salta, Argentina
| | - B Sosa-Padilla
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán, Argentina
| | - G Picariello
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Via Roma, 64 -, 83100, Avellino, Italy
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
26
|
Ríos Colombo NS, Chalón MC, Dupuy FG, Gonzalez CF, Bellomio A. The case for class II bacteriocins: A biophysical approach using "suicide probes" in receptor-free hosts to study their mechanism of action. Biochimie 2019; 165:183-195. [PMID: 31381962 DOI: 10.1016/j.biochi.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Class II bacteriocins are unmodified membrane-active peptides that act over a narrow spectrum of target bacteria. They bind a specific receptor protein on the membrane to form a pore, leading to membrane permeabilization and cell death. However, little is known about the molecular events triggering the pore formation after the bacteriocin recognizes the receptor. It is not clear yet if the pore is the same receptor forced into an open conformation or if the pore results from the bacteriocin insertion and oligomeric assembly in the lipid bilayer. In order to reveal which model is more suitable to explain the toxicity mechanism, in this work we use chimeric peptides, resulting from the fusion of the bitopic membrane protein EtpM with different class II bacteriocins: enterocin CRL35, pediocin PA-1 and microcin V. E. coli strains lacking the specific receptors for these bacteriocins were chosen as expression hosts. As these constructs display a lethal effect when they are heterologously expressed, they are called "suicide probes". The results suggest that, indeed, the specific receptor would act as a docking molecule more than as a structural piece of the pore, as long as the bacteriocin is somehow anchored to the membrane. These set of chimeric peptides also represent an in vivo system that allows to study the interaction of the bacteriocins with real bacterial membranes, instead of model membranes. Hence, the effects of these suicide probes in membrane fluidity and transmembrane potential were also assessed, using fluorescence spectroscopy. The data show that the different suicide probes are able to increase phospholipid order and depolarize the membranes of receptor-free bacterial cells.
Collapse
Affiliation(s)
- N S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - M C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - F G Dupuy
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - C F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
27
|
Arbulu S, Jiménez JJ, Gútiez L, Feito J, Cintas LM, Herranz C, Hernández PE. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res Int 2019; 121:888-899. [DOI: 10.1016/j.foodres.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
|
28
|
Balandin SV, Sheremeteva EV, Ovchinnikova TV. Pediocin-Like Antimicrobial Peptides of Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:464-478. [PMID: 31234762 DOI: 10.1134/s000629791905002x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteriocins are bacterial antimicrobial peptides that, unlike classical peptide antibiotics, are products of ribosomal synthesis and usually have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like bacteriocins (PLBs) belong to the class IIa of the bacteriocins of Gram-positive bacteria. PLBs possess high activity against pathogenic bacteria from Listeria and Enterococcus genera. Molecular target for PLBs is a membrane protein complex - bacterial mannose-phosphotransferase. PLBs can be synthesized by components of symbiotic microflora and participate in the maintenance of homeostasis in various compartments of the digestive tract and on the surface of epithelial tissues contacting the external environment. PLBs could give a rise to a new group of antibiotics of narrow spectrum of activity.
Collapse
Affiliation(s)
- S V Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E V Sheremeteva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
29
|
Fedorec AJH, Ozdemir T, Doshi A, Ho YK, Rosa L, Rutter J, Velazquez O, Pinheiro VB, Danino T, Barnes CP. Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. iScience 2019; 14:323-334. [PMID: 30954530 PMCID: PMC6489366 DOI: 10.1016/j.isci.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/03/2022] Open
Abstract
Plasmids are the workhorse of both industrial biotechnology and synthetic biology, but ensuring they remain in bacterial cells is a challenge. Antibiotic selection cannot be used to stabilize plasmids in most real-world applications, and inserting dynamical gene networks into the genome remains challenging. Plasmids have evolved several mechanisms for stability, one of which, post-segregational killing (PSK), ensures that plasmid-free cells do not survive. Here we demonstrate the plasmid-stabilizing capabilities of the axe/txe toxin-antitoxin system and the microcin-V bacteriocin system in the probiotic bacteria Escherichia coli Nissle 1917 and show that they can outperform the commonly used hok/sok. Using plasmid stability assays, automated flow cytometry analysis, mathematical models, and Bayesian statistics we quantified plasmid stability in vitro. Furthermore, we used an in vivo mouse cancer model to demonstrate plasmid stability in a real-world therapeutic setting. These new PSK systems, plus the developed Bayesian methodology, will have wide applicability in clinical and industrial biotechnology.
Collapse
Affiliation(s)
- Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK.
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Yan-Kay Ho
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luca Rosa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jack Rutter
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Oscar Velazquez
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Vitor B Pinheiro
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; KU Leuven Rega Institute for Medical Research, Herestraat, 49 Box 1030, 3000 Leuven, Belgium
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Jiang X, Qian K, Liu G, Sun L, Zhou G, Li J, Fang X, Ge H, Lv Z. Design and activity study of a melittin-thanatin hybrid peptide. AMB Express 2019; 9:14. [PMID: 30701481 PMCID: PMC6353975 DOI: 10.1186/s13568-019-0739-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The unique antimicrobial mechanism of antimicrobials make them a promising substitute for antibiotics for fighting drug-resistant bacteria. Both melittin and thanatin have antimicrobial bioactivity. However, thanatin does not inhibit the growth of Staphylococcus aureus. Melittin can inhibit S. aureus and has strong hemolytic activity. In the present study, the mutant fragments of melittin and thanatin were combined by flexible peptides to form a novel hybrid peptide, which was synthesized based on the secondary and tertiary structure prediction. The hybrid peptide inhibited S. aureus with a hemolytic concentration of above 45 μmol/L and inhibition rate in SMMC-7721 cells of 19.14%. The hybrid antimicrobial peptide, which was designed by the combination of α-helix and β-lamellar antimicrobial peptides, showed that both types of peptides did not interact with each either on spatial structure or biological activities, thereby providing a novel idea for the design of artificial antimicrobial peptides.
Collapse
|
31
|
Hanchi H, Mottawea W, Sebei K, Hammami R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front Microbiol 2018; 9:1791. [PMID: 30123208 PMCID: PMC6085487 DOI: 10.3389/fmicb.2018.01791] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed.
Collapse
Affiliation(s)
- Hasna Hanchi
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khaled Sebei
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Du H, Yang J, Lu X, Lu Z, Bie X, Zhao H, Zhang C, Lu F. Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin against Bacillus cereus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4716-4724. [PMID: 29690762 DOI: 10.1021/acs.jafc.8b01124] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacillus cereus is an opportunistic pathogen that causes foodborne diseases. We isolated a novel bacteriocin, designated plantaricin GZ1-27, and elucidated its mode of action against B. cereus. Plantaricin GZ1-27 was purified using ammonium sulfate precipitation, gel-filtration chromatography, and RP-HPLC. MALDI-TOF/MS revealed that its molecular mass was 975 Da, and Q-TOF-MS/MS analysis predicted the amino acid sequence as VSGPAGPPGTH. Plantaricin GZ1-27 showed thermostability and pH stability. The antibacterial mechanism was investigated using flow cytometry, confocal laser-scanning microscopy, scanning and transmission electron microscopy, and RT-PCR, which revealed that GZ1-27 increased cell membrane permeability, triggered K+ leakage and pore formation, damaged cell membrane integrity, altered cell morphology and intracellular organization, and reduced the expression of genes related to cytotoxin production, peptidoglycan synthesis, and cell division. These results suggest that plantaricin GZ1-27 effectively inhibits B. cereus at both the cellular and the molecular levels and is a potential natural food preservative targeting B. cereus.
Collapse
Affiliation(s)
- Hechao Du
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Jie Yang
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Xiaohong Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Zhaoxin Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Xiaomei Bie
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Haizhen Zhao
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Chong Zhang
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| | - Fengxia Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing 210095 , China
| |
Collapse
|
33
|
M K, Sh SN. Isolation and Molecular Identification of Bacteriocin-producing Enterococci with Broad Antibacterial Activity from Traditional Dairy Products in Kerman Province of Iran. Korean J Food Sci Anim Resour 2018; 38:172-179. [PMID: 29725235 PMCID: PMC5932969 DOI: 10.5851/kosfa.2018.38.1.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/19/2017] [Accepted: 01/28/2018] [Indexed: 11/06/2022] Open
Abstract
One of the critical limitations to use of bacteriocins produced by lactic acid bacteria as a substitute for chemical antibiotics is the narrow spectrum of their antibacterial activity. The aim of present study was isolation and molecular identification of bacteriocin-producing enterococci with broad antibacterial spectrum. Bacteriocin-producing bacteria were isolated from native dairies in Kerman. Bacteriocins were purified by ammonium sulfate method and the effects of them were investigated on different strains of bacteria. Also, the effects of pH and heat on produced bacteriocins were investigated. High level bacteriocin-producing isolates were identified based on molecular tests. A total of 15 strains of bacteriocin-producing Enterococcus were isolated initially. Enterococcus faecium C-2 and Y-1 strains produced bacteriocins with the highest antibacterial effect. The bacteriocins were stable in pH ranges from 2 to 12 and their antibacterial activity was maintained after autoclave treatment. The maximum bactericidal effect was observed against Listeria monocytogenes and Pseudomonas aeruginosa. In conclusion, use of these bacteriocins as a substitute for chemical antibiotics is recommended.
Collapse
Affiliation(s)
- Khodaei M
- Department of Microbiology, Faculty of sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Soltani Nezhad Sh
- Department of Microbiology, Jiroft Branch, Islamic Azad University, Jiroft, Iran
| |
Collapse
|
34
|
Silva CCG, Silva SPM, Ribeiro SC. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front Microbiol 2018; 9:594. [PMID: 29686652 PMCID: PMC5900009 DOI: 10.3389/fmicb.2018.00594] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
In the last years, consumers are becoming increasingly aware of the human health risk posed by the use of chemical preservatives in foods. In contrast, the increasing demand by the dairy industry to extend shelf-life and prevent spoilage of dairy products has appeal for new preservatives and new methods of conservation. Bacteriocins are antimicrobial peptides, which can be considered as safe since they can be easily degraded by proteolytic enzymes of the mammalian gastrointestinal tract. Also, most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. Bacteriocins can be applied to dairy foods on a purified/crude form or as a bacteriocin-producing LAB as a part of fermentation process or as adjuvant culture. A number of applications of bacteriocins and bacteriocin-producing LAB have been reported to successful control pathogens in milk, yogurt, and cheeses. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products.
Collapse
Affiliation(s)
- Célia C. G. Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, Portugal
| | | | | |
Collapse
|
35
|
Field D, Ross RP, Hill C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Cohen LJ, Han S, Huang YH, Brady SF. Identification of the Colicin V Bacteriocin Gene Cluster by Functional Screening of a Human Microbiome Metagenomic Library. ACS Infect Dis 2018; 4:27-32. [PMID: 28810737 DOI: 10.1021/acsinfecdis.7b00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The forces that shape human microbial ecology are complex. It is likely that human microbiota, similarly to other microbiomes, use antibiotics as one way to establish an ecological niche. In this study, we use functional metagenomics to identify human microbial gene clusters that encode for antibiotic functions. Screening of a metagenomic library prepared from a healthy patient stool sample led to the identification of a family of clones with inserts that are 99% identical to a region of a virulence plasmid found in avian pathogenic Escherichia coli. Characterization of the metagenomic DNA sequence identified a colicin V biosynthetic cluster as being responsible for the observed antibiotic effect of the metagenomic clone against E. coli. This study presents a scalable method to recover antibiotic gene clusters from humans using functional metagenomics and highlights a strategy to study bacteriocins in the human microbiome which can provide a resource for therapeutic discovery.
Collapse
Affiliation(s)
- Louis J. Cohen
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Sun Han
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Yun-Han Huang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
37
|
Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 2017; 64:345-351. [PMID: 28983718 DOI: 10.1007/s00294-017-0757-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/26/2023]
Abstract
This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.
Collapse
|
38
|
Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol 2017; 33:186. [DOI: 10.1007/s11274-017-2353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
39
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
40
|
Barraza DE, Ríos Colombo NS, Galván AE, Acuña L, Minahk CJ, Bellomio A, Chalón MC. New insights into enterocin CRL35: mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol 2017; 105:922-933. [PMID: 28692133 DOI: 10.1111/mmi.13746] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM, E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor.
Collapse
Affiliation(s)
- Daniela E Barraza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Natalia S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Adriana E Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| |
Collapse
|
41
|
Purton M. Five years on - FEBS Open Bio celebrates its launch anniversary. FEBS Open Bio 2017; 6:1168-1169. [PMID: 28255533 PMCID: PMC5324765 DOI: 10.1002/2211-5463.12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
Safety evaluation and antimicrobial properties of Lactobacillus pentosus 22C isolated from traditional yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9471-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Montalbán-López M, van Heel AJ, Kuipers OP. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol Rev 2016; 41:5-18. [PMID: 27591436 DOI: 10.1093/femsre/fuw034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
44
|
Shokri D, Rabbani Khorasgani M, Zaghian S, Fatemi SM, Mohkam M, Ghasemi Y, Taheri-Kafrani A. Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates. Jundishapur J Microbiol 2016; 9:e32795. [PMID: 27800131 PMCID: PMC5080677 DOI: 10.5812/jjm.32795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/25/2015] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Background The emergence of pan-drug resistant strains (PDR) of Pseudomonas aeruginosa has led to renewed efforts to identify alternative agents, such as bacteriocins and bacteriocin-like inhibitory substances (BLISs). Objectives The aims of this study were to determine the acquired resistance profiles of multidrug-resistant (MDR), extensively drug-resistant (XDR), and PDR P. aeruginosa isolates based on the revised definitions of the CDC and ECDC and to screen and characterize effective BLISs against these isolates. Patients and Materials In a cross-sectional study, 96 P. aeruginosa strains were isolated during a 12-month period. The resistance profiles of these isolates were determined as MDR, XDR, and PDR, and the data were analyzed using WHONET5.6 software. A BLIS against the P. aeruginosa strains was characterized based on its physicochemical properties, size, growth curves, and production profiles. Results Among the 96 isolates of P. aeruginosa, 2 (2.1%), 94 (97.9%), and 63 (65.6%) were non-MDR, MDR, and XDR, respectively, and 1 (1.1%) was PDR. The most effective antibiotics against these isolates were polymyxins and fosfomycin. A BLIS isolated from the P. aeruginosa DSH22 strain had potent activity against 92 (95.8%) of the 96 isolates. The BLIS was heat stable, (up to 100°C for 10 min), UV stable, and active within a pH range of 3 - 9. The activity of BLIS disappeared when treated with trypsin, proteinase K, and pepsin, indicating its proteinous nature. Based on its size (25 kDa), the BLIS may belong to the large colicin-like bacteriocin family. BLIS production started in the midexponential phase of growth, and the maximum level (2700 AU/mL) occurred in the late-stationary phase after 25 hours of incubation at 30°C. Conclusions This BLIS with broad-spectrum activity may be a potential agent for the treatment or control of drug-resistant strains of P. aeruginosa infection.
Collapse
Affiliation(s)
- Dariush Shokri
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
| | - Mohammad Rabbani Khorasgani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
- Corresponding author: Mohammad Rabbani Khorasgani, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran. Tel: +98-03137932480, Fax: +98-3137932456, E-mail:
| | - Saeideh Zaghian
- Nanobiotechnology Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Seyed Masih Fatemi
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
| | - Milad Mohkam
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, IR Iran
| |
Collapse
|
45
|
Liu G, Song Z, Yang X, Gao Y, Wang C, Sun B. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, Aymes A, Rogniaux H, Pavlović M, van Heel AJ, Kuipers OP, Revol-Junelles AM, Cailliez-Grimal C. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol 2015; 9:466-77. [PMID: 26147827 PMCID: PMC4919988 DOI: 10.1111/1751-7915.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA‐1. On the other hand, the putative thiol‐disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme‐linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N‐terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.
Collapse
Affiliation(s)
- Alexandre Back
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Hélène Rogniaux
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Marija Pavlović
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Auke J van Heel
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anne-Marie Revol-Junelles
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Catherine Cailliez-Grimal
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| |
Collapse
|
47
|
O’Connor PM, Ross RP, Hill C, Cotter PD. Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros-Velazquez J, Bellomio A. Inhibitory Effect of the Hybrid Bacteriocin Ent35-MccV on the Growth of Escherichia coli and Listeria monocytogenes in Model and Food Systems. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1469-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Jiménez JJ, Borrero J, Gútiez L, Arbulu S, Herranz C, Cintas LM, Hernández PE. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Mol Biotechnol 2014; 56:571-83. [PMID: 24510220 DOI: 10.1007/s12033-014-9731-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
|