1
|
Ditrych M, Jędrasik J, Królak K, Guzińska N, Pielech-Przybylska K, Ścieszka S, Andersen ML, Kordialik-Bogacka E. Kombucha fortified with Cascade hops (Humulus lupulus L.): enhanced antioxidative and sensory properties. Appl Microbiol Biotechnol 2025; 109:27. [PMID: 39869195 PMCID: PMC11772520 DOI: 10.1007/s00253-024-13401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025]
Abstract
In recent years, there has been a surge in the production of kombucha-a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha. However, aiming at retaining the highest antioxidative properties of kombucha, it remains unclear at which stage of the production process hops should be added. The study investigated the effect of hop supplementation during kombucha production on the basic physicochemical, antioxidative, and sensory properties of kombucha. Cascade hops in the concentrations 0.5 and 2 g/L were added at the onset of tea infusion and to the fresh, unpasteurized kombucha. The addition of hops (particularly at the pre-fermentation stage of production) led to a significant decrease in radical formation in the produced kombucha measured by electron spin resonance spectroscopy (ESR), which correlated with the higher DPPH antiradical activity and the elevated bitter α-acid content. From the sensory perspective, the post-fermentation addition of hops to kombucha resulted in a significantly higher rating of the overall quality. This enhancement was directly associated with heightened bitterness, increased presence of fruity and citrusy aromas, and a simultaneous reduction in the intensities of acetic and tea-related attributes. The data presented in this study are relevant for kombucha producers, who want to deliver a sensory-novel product in combination with an improved oxidative stability. KEY POINTS: • Hop addition in kombucha production improves the antioxidative activity of the beverage. • Hop α-acids display higher antioxidative properties in kombucha than polyphenols. • Oxidative stability of kombucha fortified with hops depends on the timing of hops addition. • Hop addition enriches the taste and aroma attributes of kombucha.
Collapse
Affiliation(s)
- Maciej Ditrych
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland.
| | - Jakub Jędrasik
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Kamil Królak
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Nadia Guzińska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Katarzyna Pielech-Przybylska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Sylwia Ścieszka
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Mogens Larsen Andersen
- Department of Food Science, Ingredient and Dairy Technology, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Edyta Kordialik-Bogacka
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| |
Collapse
|
2
|
Praveen M, Brogi S. Microbial Fermentation in Food and Beverage Industries: Innovations, Challenges, and Opportunities. Foods 2025; 14:114. [PMID: 39796404 PMCID: PMC11719914 DOI: 10.3390/foods14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods. Historical records clearly show that fermented foods and drinks, such as wine, beer, and bread, have been consumed for more than 7000 years. The main microorganisms employed were Saccharomyces cerevisiae, which are predominantly used in alcohol fermentation, and Lactobacillus in dairy and vegetable fermentation. Typical fermented foods and drinks made from yogurt, cheese, beer, wine, cider, and pickles from vegetables are examples. Although there are risks of contamination and spoilage by pathogenic and undesirable microorganisms, advanced technologies and proper control procedures can mitigate these risks. This review addresses microbial fermentation and clarifies its past importance and contribution to food preservation, flavoring, and nutrition. It systematically separates yeasts, molds, and bacteria and explains how they are used in food products such as bread, yogurt, beer, and pickles. Larger producers employ primary production methods such as the artisanal approach, which are explored along with future trends such as solid-state fermentation, the potential of biotechnology in developing new products, and sustainability in new product development. Future research and development strategies can lead to innovations in methods that improve efficiency, product range, and sustainability.
Collapse
Affiliation(s)
- Mallari Praveen
- Department of Research and Development, Academy of Bioelectric Meridian Massage Australia (ABMMA), Noosaville, QLD 4566, Australia;
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
3
|
Mouguech N, Taillandier P, Bouajila J, Romdhane M, Etteyeb N. Enhanced Biological Potential and Phytochemical Profiling of Phoenix Dactylifera Leaves (Deglet Nour and Alig) by Kombucha Fermentation: Focus on Polyphenols, Antioxidant, Antidiabetic, and Cytotoxic Activities. Chem Biodivers 2024:e202401592. [PMID: 39400937 DOI: 10.1002/cbdv.202401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The date palm, scientifically known as Phoenix dactylifera, is an important cultural and economic source of wealth in southern Tunisia. It produces considerable agricultural waste, including palm leaves, the disposal of which is often a challenge. Our study addresses the sustainable conversion of date palm leaves into a valuable product through kombucha fermentation, focusing on two widely used varieties in Tunisia: Deglet Nour and Alig. HPLC-RI analysis showed a significant difference in the fermentation process between the treated samples, which is reflected in the highest sugar consumption and metabolite production in Alig palm. Unfermented and fermented date palm leaves were sequentially extracted with solvents of increasing polarity (ethyl acetate and butanol) to evaluate their chemical composition and bioactivity. The results showed that kombucha fermentation significantly increased the total phenolic content, with the highest amounts in the ethyl acetate fraction. In terms of antioxidant activity, the ethyl acetate extracts showed a high percentage inhibitory activity (82.76 %) against the DPPH radical found in fermented Palm Alig, which also exhibited the most important antidiabetic capacity (resulting in an IC50 value of 20 μg/mL). The chemical analyses resulted in the detection of 19 compounds by HPLC-DAD and 50 volatiles by GC-MS, which are mainly found in kombucha extracts.
Collapse
Affiliation(s)
- Najet Mouguech
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Mehrez Romdhane
- Laboratoire: Energie, Eau, Environnement et Procédés (LR18ES35), Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Naceur Etteyeb
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| |
Collapse
|
4
|
Treviso RL, Sant’Anna V, Fabricio MF, Ayub MAZ, Brandelli A, Hickert LR. Time and temperature influence on physicochemical, microbiological, and sensory profiles of yerba mate kombucha. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1733-1742. [PMID: 39049923 PMCID: PMC11263309 DOI: 10.1007/s13197-024-05951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 07/27/2024]
Abstract
The present work aimed to evaluate the features of yerba mate kombucha during 7 days of fermentation at either 25 ºC or 30 ºC, monitoring physicochemical changes, sensory profile, and sensorial acceptance. The symbiotic microbial culture of active bacteria and yeasts (SCOBY) at the beginning and the end of the bioprocess was also identified. The yerba mate kombuchas fermented at 25 ºC for 5 days or 30 ºC for 4 days were suitable for consumption according to Brazilian standards. Acetic acid, ethanol, and chlorophyll contents were dependent on fermentation time and temperature, unlike the total phenolic content. The main yeast and bacterium in SCOBY were Brettanomyces bruxellensis and Komagataeibacter rhaeticus, respectively, which remained dominant when fermentation was conducted for up to 7 days at both temperatures. Fermentation of yerba mate infusion led to products characterized by sourness, vinegar bitter, and fermented flavors and aromas, making the acceptance of non-fermented Yerba mate preferable to fermented infusions. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05951-z.
Collapse
Affiliation(s)
- Rochele Luane Treviso
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
| | - Voltaire Sant’Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
| | | | - Marco Antônio Zachia Ayub
- Insitute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Insitute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
- Engineering and exact Area, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul Brazil
| |
Collapse
|
5
|
Prajapati K, Prajapati J, Patel D, Patel R, Varshnei A, Saraf M, Goswami D. Multidisciplinary advances in kombucha fermentation, health efficacy, and market evolution. Arch Microbiol 2024; 206:366. [PMID: 39098983 DOI: 10.1007/s00203-024-04086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Kombucha, a fermented tea beverage, has seen a significant rise in global popularity. This increase is attributed to its reported health benefits and extensive cultural heritage. The comprehensive review examines kombucha through microbiology, biochemistry, and health sciences, highlighting its therapeutic potential and commercial viability. Central to kombucha production is the symbiotic culture of bacteria and yeasts (SCOBY), which regulates a complex fermentation process, resulting in a bioactive-rich elixir. The study examines the microbial dynamics of SCOBY, emphasizing the roles of various microorganisms. It focuses the contributions of acetic acid bacteria, lactic acid bacteria, and osmophilic yeasts, including genera such as Saccharomyces, Schizosaccharomyces, Zygosaccharomyces, Brettanomyces/Dekkera, and Pichia. These microorganisms play crucial roles in producing bioactive compounds, including organic acids, polyphenols, and vitamins. These bioactive compounds confer therapeutic properties to kombucha. These properties include antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, cancer prevention, hepatoprotective, and detoxifying effects. The review also explores the growing market for kombucha, driven by consumer demand for functional beverages and opportunities for innovative product development. It emphasizes the necessity of standardized production to ensure safety and validate health claims. Identifying research gaps, the review highlights the importance of clinical trials to verify therapeutic benefits. Ultimately, this study integrates traditional knowledge with scientific research, providing directions for future studies and commercial expansion, emphasizing the role of kombucha in health and wellness.
Collapse
Affiliation(s)
- Karan Prajapati
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dhaval Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anish Varshnei
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Njieukam JA, Ciccone M, Gottardi D, Ricci A, Parpinello GP, Siroli L, Lanciotti R, Patrignani F. Microbiological, Functional, and Chemico-Physical Characterization of Artisanal Kombucha: An Interesting Reservoir of Microbial Diversity. Foods 2024; 13:1947. [PMID: 38928888 PMCID: PMC11202501 DOI: 10.3390/foods13121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Kombucha is a trending tea fermented via a complex microflora of yeasts and acetic acid bacteria. It can be a valid low-calorie substitute for soft drinks due to its sour, naturally carbonated, and sweet taste. Despite increased interest, the microflora and functional properties of kombucha have not yet been fully understood. The aim of this work was to characterize, from a microbiological, chemico-physical, and functional point of view, three types of artisanal kombucha obtained by fermenting green tea containing sugar by means of different starter cultures. Metagenomic analysis revealed a predominance of yeasts compared to bacteria, regardless of the sample. In particular, Brettanomyces spp. was found to be the dominant yeast. Moreover, the different types of kombucha had different microbial patterns in terms of acetic acid bacteria and yeasts. Ethanol and acetic acid were the dominant volatile molecules of the kombucha volatilome; the samples differed from each other in terms of their content of alcohols, esters, and acids. All the samples showed a high antioxidant potential linked to the high content of phenols. This study confirmed the positive chemico-physical and functional properties of kombucha and indicated that the microflora responsible for the fermentation process can significantly affect the characteristics of the final product.
Collapse
Affiliation(s)
- Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Marianna Ciccone
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giuseppina Paola Parpinello
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
7
|
Esatbeyoglu T, Sarikaya Aydin S, Gültekin Subasi B, Erskine E, Gök R, Ibrahim SA, Yilmaz B, Özogul F, Capanoglu E. Additional advances related to the health benefits associated with kombucha consumption. Crit Rev Food Sci Nutr 2024; 64:6102-6119. [PMID: 36660921 DOI: 10.1080/10408398.2022.2163373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Kombucha is a fermented, acidic beverage that dates back thousands of years as a remedy for various health problems in East Asia. Due to its health benefits, kombucha has gained popularity and attracted the attention of both consumers and researchers. The health benefits of kombucha are predominantly attributed to its bioactive compounds that have antioxidant, antimicrobial, probiotic, and other positive effects owing to fermentation. Many factors such as the type of the substrate used, the symbiotic culture of the bacterial yeast composition, and fermentation conditions influence the extent of these properties. This review focuses on recent developments regarding the bioactive constituents of kombucha and its potential health benefits (antimicrobial, antioxidant, antidiabetic, hepatoprotective effects) as well as its impact on multiple sclerosis, nephrotoxicity, gastric ulceration and gut microbiota. Additionally, the composition of kombucha, alternative uses of its biofilm, and potential toxicity are also discussed. Kombucha is a healthy and safe beverage with multiple health benefits that are primarily related to the presence of bacteria, yeasts, and other bioactive constituents. Moreover, kombucha has been suggested as a potential source of probiotics and eco-friendly materials (kombucha-derived bacterial cellulose) for several industries including food and textile.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Secil Sarikaya Aydin
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Büsra Gültekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Hafik Kamer Ornek MYO, Cumhuriyet University, Sivas, Turkey
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Massoud R, Jafari R, Khosravi-Darani K. Kombucha as a Health-Beneficial Drink for Human Health. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:251-259. [PMID: 38602651 DOI: 10.1007/s11130-024-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Science and Technology, Iran National Standards Organization, Tehran, Iran
| | - Reyhaneh Jafari
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Shahrake-gharb, Farahzadi Blv., Hafezi ave., NNFTRI, Tehran, Iran.
| |
Collapse
|
9
|
Suffys S, Goffin D, Richard G, Francis A, Haubruge E, Fauconnier ML. Unveiling the Aromas and Sensory Evaluation of Hakko Sobacha: A New Functional Non-Dairy Probiotic Fermented Drink. Molecules 2023; 28:6084. [PMID: 37630336 PMCID: PMC10457938 DOI: 10.3390/molecules28166084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
At the dawn of a food transition encouraging the consumption of healthy and sustainable non-dairy probiotic products, the development of a fermented functional drink based on Sobacha is considered. Sobacha is an infusion of roasted buckwheat seeds widely consumed in Asian countries for its health benefits. As fermentation improves the nutritional and organoleptic status of grains, the mixed fermentation process involved in the development of kombucha beverages (fermented sweet tea) is conducted by inoculating a symbiotic culture of bacteria and yeasts into the transposable matrix (Sobacha instead of tea). Sobacha, a healthy pseudo-cereal matrix with promising aromas, could be fermented to potentially develop an innovative drink, named "Hakko Sobacha". This neologism would reveal the fermented character of the infusion, Hakko meaning fermented in Japanese. Considering the beverage characterization, the kinetics of the volatile organic compound syntheses were determined using stir-bar sorptive extraction followed by gas chromatography coupled to mass spectrometry analysis. Odor-active compounds were theoretically calculated to estimate the flavor composition. Finally, sensory analyses highlighted the appreciation and preferences of the consumer towards the beverages. The fermentative yield differences observed between the two buckwheat concentration modalities tested seemed to be correlated with the sugar and nutrient levels available from the starch (buckwheat) matrix. Having characterized Hakko Sobacha, this study proposed the possibility of developing new beverages by monitoring the fermentative process. This should enable improved control and enhancement of their sensorial properties, which could in turn lead to greater customer acceptability.
Collapse
Affiliation(s)
- Sarah Suffys
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| | - Dorothée Goffin
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| | - Gaëtan Richard
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| | - Adrien Francis
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| | - Eric Haubruge
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, 5030 Gembloux, Belgium
| |
Collapse
|
10
|
Xiong RG, Wu SX, Cheng J, Saimaiti A, Liu Q, Shang A, Zhou DD, Huang SY, Gan RY, Li HB. Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants (Basel) 2023; 12:1573. [PMID: 37627568 PMCID: PMC10451197 DOI: 10.3390/antiox12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is traditional drink made from the fermentation of a black tea infusion, and is believed to offer a variety of health benefits. Recently, exploring kombucha made from alternative substrates has become a research hotspot. In this paper, two novel kombucha beverages were produced with bamboo leaf or mulberry leaf for the first time. Moreover, the effects of fermentation with leaf residues (infusion plus residues) or without leaf residues (only infusion) on the antioxidant properties of kombucha were compared. The ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, Folin-Ciocalteu method, and high-performance liquid chromatography were utilized to measure the antioxidant capacities, total phenolic contents, as well as some compound concentrations of the kombucha. The results showed that two types of kombucha had high antioxidant capacities. Moreover, kombucha fermented with bamboo leaf residues (infusion plus residues) significantly enhanced its antioxidant capabilities (maximum increase 83.6%), total phenolic content (maximum increase 99.2%), concentrations of some compounds (luteolin-6-C-glucoside and isovitexin), and sensory acceptability, compared to that without residues (only infusion). In addition, fermentation with leaf residues had no significant effect on mulberry leaf kombucha. Overall, the bamboo leaf was more suitable for making kombucha with residues, while the mulberry leaf kombucha was suitable for fermentation with or without residues.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Qing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| |
Collapse
|
11
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Suffys S, Richard G, Burgeon C, Werrie PY, Haubruge E, Fauconnier ML, Goffin D. Characterization of Aroma Active Compound Production during Kombucha Fermentation: Towards the Control of Sensory Profiles. Foods 2023; 12:foods12081657. [PMID: 37107452 PMCID: PMC10138291 DOI: 10.3390/foods12081657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Since the sensorial profile is the cornerstone for the development of kombucha as a beverage with mass market appeal, advanced analytical tools are needed to gain a better understanding of the kinetics of aromatic compounds during the fermentation process to control the sensory profiles of the drink. The kinetics of volatile organic compounds (VOCs) was determined using stir bar sorptive extraction-gas chromatography-mass spectrometry, and odor-active compounds were considered to estimate consumer perception. A total of 87 VOCs were detected in kombucha during the fermentation stages. The synthesis of mainly phenethyl alcohol and isoamyl alcohol probably by Saccharomyces genus led to ester formation. Moreover, the terpene synthesis occurring at the beginning of fermentation (Δ-3-carene, α-phellandrene, γ-terpinene, m- and p-cymene) could be related to yeast activity as well. Principal component analysis identified classes that allowed the major variability explanation, which are carboxylic acids, alcohols, and terpenes. The aromatic analysis accounted for 17 aroma-active compounds. These changes in the evolution of VOCs led to flavor variations: from citrus-floral-sweet notes (geraniol and linalool domination), and fermentation brought intense citrus-herbal-lavender-bergamot notes (α-farnesene). Finally, sweet-floral-bready-honey notes dominated the kombucha flavor (2-phenylethanol). As this study allowed to estimate kombucha sensory profiles, an insight for the development of new drinks by controlling the fermentation process was suggested. Such a methodology should allow a better control and optimization of their sensory profile, which could in turn lead to greater consumer acceptance.
Collapse
Affiliation(s)
- Sarah Suffys
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Gaëtan Richard
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Clément Burgeon
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Pierre-Yves Werrie
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Eric Haubruge
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Dorothée Goffin
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| |
Collapse
|
13
|
Enhancing the Chemical Composition of Kombucha Fermentation by Adding Indian Gooseberry as a Substrate. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Kombucha is a fermented tea beverage obtained by the symbiosis of yeast, acetic acid bacteria and some lactic acid bacteria, and it has many health benefits. The aim of this study was to investigate the potential of adding Indian gooseberry as a substrate to enhance the chemical properties of kombucha. In this study, traditional kombucha made from green tea was compared to kombucha made from green tea blended with various forms of Indian gooseberry, including whole fruit, dried fruit and juice. The fermentation was performed for 21 days and samples were collected every 3 days to enumerate the total number of yeast and bacteria. Physical and chemical properties, including total soluble solids, alcohol content, pH, acetic acid content, total phenolic and flavonoid content, antioxidant activity and organic acids, were analyzed. The results revealed that the dried Indian gooseberry kombucha (DIGK) demonstrated significantly high total phenolic content and total flavonoid content. In addition, DIGK had the highest D-Saccharic acid-1,4 lactone (DSL) on the 9th day of fermentation. This discovery suggests that dried Indian gooseberry can be used as an alternative substrate for kombucha fermentation to create a new type of kombucha beverage with enhanced chemical properties.
Collapse
|
14
|
Verran J, Redfern J, Cunliffe A, Romachney A, Wood J. Hands on Biofilm! Utilizing a public audience in a citizen science project to assess yield variability when culturing kombucha pellicle. FEMS Microbiol Lett 2023; 370:fnad073. [PMID: 37496193 DOI: 10.1093/femsle/fnad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The pellicle biofilm generated during the Kombucha tea fermentation process has, when dried, textile-like properties that may have real-life applications. However, pellicle yield can vary depending on inoculation and incubation conditions, which affects research investigations on the properties of the pellicle. To generate data on variability to help define optimum pellicle growth conditions, as part of a public engagement event about biofilm, a citizen science activity was hosted whereby visitors to a science festival were invited to select incubation conditions and inoculate different media with liquid or solid (pellicle). More than 220 samples were inoculated (in excess of 1200 visitors, mainly in family groups). The most popular incubation conditions were coconut water or tea medium, 30°C/room temperature and liquid inoculum. The most productive/reproducible in terms of yield and variability were tea medium, 30°C, and liquid inoculum, which reflect some of the conditions most used in the domestic setting for kombucha culture. The event provided both useful research data and generated public interest in a research area of which many will have been unaware. Interest in the results of the activity, available several weeks after the activity, was sustained using email contact and FlickR for the dissemination of images and data.
Collapse
Affiliation(s)
- Joanna Verran
- Department of Life Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Alex Cunliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Anna Romachney
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Jane Wood
- Fashion Business Technology, The Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
15
|
Atkinson FS, Cohen M, Lau K, Brand-Miller JC. Glycemic index and insulin index after a standard carbohydrate meal consumed with live kombucha: A randomised, placebo-controlled, crossover trial. Front Nutr 2023; 10:1036717. [PMID: 36875857 PMCID: PMC9982099 DOI: 10.3389/fnut.2023.1036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Kombucha is a complex probiotic beverage made from fermented tea, yet despite extensive historical, anecdotal, and in-vivo evidence for its health benefits, no controlled trials have been published on its effect on humans. Methods We conducted a randomised placebo-controlled, cross-over study that examined the Glycemic Index (GI) and Insulin Index (II) responses after a standardised high-GI meal consumed with three different test beverages (soda water, diet lemonade soft drink and an unpasteurised kombucha) in 11 healthy adults. The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (anzctr.org.au: 12620000460909). Soda water was used as the control beverage. GI or II values were calculated by expressing the 2-h blood glucose or insulin response as a percentage of the response produced by 50 g of glucose dissolved in water. Results There was no statistically significant difference in GI or II between the standard meal consumed with soda water (GI: 86 and II: 85) or diet soft drink (GI: 84 and II: 81, (p = 0.929 for GI and p = 0.374 for II). In contrast, when kombucha was consumed there was a clinically significant reduction in GI and II (GI: 68, p = 0.041 and II: 70, p = 0.041) compared to the meal consumed with soda water. Discussion These results suggest live kombucha can produce reductions in acute postprandial hyperglycemia. Further studies examining the mechanisms and potential therapeutic benefits of kombucha are warranted.
Collapse
Affiliation(s)
- Fiona S Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marc Cohen
- Extreme Wellness Institute, Melbourne, VIC, Australia
| | - Karen Lau
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jennie C Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Hardinsyah H, Gunawan WB, Nurkolis F, Alisaputra D, Kurniawan R, Mayulu N, Taslim NA, Tallei TE. Antiobesity potential of major metabolites from Clitoria ternatea kombucha: Untargeted metabolomic profiling and molecular docking simulations. Curr Res Food Sci 2023; 6:100464. [PMID: 36875892 PMCID: PMC9976213 DOI: 10.1016/j.crfs.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of obesity is rapidly increasing and poses serious health risks accompanied by a decrease in life expectancy and quality of life. Therefore, the therapeutic potential of natural-derived nutraceuticals against obesity and its comorbidities needs to be explored. Molecular inhibition of lipase enzymes and fat mass and obesity-associated (FTO) protein has attracted some recent interest in efforts to find antiobesity agents. This study aims to innovate a fermented drink from Clitoria ternatea kombucha (CTK), find out their metabolites profile, and determine the antiobesity potential through a molecular docking study. The CTK formulation refers to previous research while the metabolites profile was determined using HPLC-ESI-HRMS/MS. Major compounds were selected based on best match value > 99.0% of the M/Z cloud database. A total of 79 compounds were identified in CTK, and 13 ideal compounds were selected to be simulated in the molecular docking study against human pancreatic lipase, α-amylase, α-glucosidase, porcine pancreatic lipase, and FTO proteins. The study found that Kaempferol, Quercetin-3β-D-glucoside, Quercetin, Dibenzylamine, and α-Pyrrolidinopropiophenone showed the best potential as functional antiobesity compounds since their affinity value ranked high in each respective receptor. In conclusion, the major compounds of CTK metabolites have the potential to be promising functional foods against obesity. However, further in vitro and in vivo studies should validate these health benefits.
Collapse
Affiliation(s)
- Hardinsyah Hardinsyah
- Applied Nutrition Division, Community Nutrition Department, Faculty of Human Ecology, IPB University, Bogor, Indonesia
| | - William Ben Gunawan
- Alumnus of Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Darmawan Alisaputra
- Department of Chemistry, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Rudy Kurniawan
- Alumnus of Department of Internal Medicine, Faculty of Medicine, University of Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Nelly Mayulu
- Department of Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Indonesia
| |
Collapse
|
17
|
Shi S, Wei Y, Lin X, Liang H, Zhang S, Chen Y, Dong L, Ji C. Microbial metabolic transformation and antioxidant activity evaluation of polyphenols in kombucha. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Batista EA, Pereira MOA, Macêdo IYL, Machado FB, Moreno EKG, Diniz EP, Frazzão IGV, Bernardes LSC, Oliveira SCB, Gil ES. Electroanalytical Enzyme Biosensor Based on Cordia superba Enzyme Extract for the Detection of Phytomarkers in Kombucha. BIOSENSORS 2022; 12:bios12121112. [PMID: 36551079 PMCID: PMC9775402 DOI: 10.3390/bios12121112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023]
Abstract
Antioxidants are responsible for many beneficial health effects and are highly present in natural products, such as kombucha. Biosensors' development targeting antioxidants and phytomarkers are an active research field. This work aimed to propose a voltammetric polyphenolxidase (Cordia superba) biosensor for catechin and total phenolic compounds quantification in kombucha samples. Optimizations were performed on the biosensor of Cordia superba to improve the accuracy and selectivity, such as enzyme-substrate interaction time, analytical responses for different patterns and signal differences with the carbon paste and modified carbon paste electrode. Kombucha probiotic drink samples were fermented for 7 to 14 days at a controlled temperature (28 ± 2 °C). A linear curve was made for catechin with a range of 10.00 to 60.00 µM, with a limit of detection of 0.13 µM and limit of quantification of 0.39 µM. The biosensor proposed in this work was efficient in determining the patterns of phenolic compounds in kombucha.
Collapse
Affiliation(s)
- Erica A. Batista
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Marx O. A. Pereira
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Isaac Y. L. Macêdo
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Fabio B. Machado
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Emily K. G. Moreno
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Elgia P. Diniz
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Italo G. V. Frazzão
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | | | - Severino C. B. Oliveira
- Departamento de Química (DQ), Universidade Federal Rural de Pernambuco (UFRPE), Recife 52171-900, Brazil
| | - Eric S. Gil
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| |
Collapse
|
19
|
Okidi L, Ongeng D, Muliro PS, Matofari JW. Agroecology influences Salmonella food contamination with high exposure risk among children in Karamoja sub-region: A high diarrhoea prevalent locality in Uganda. Heliyon 2022; 8:e11703. [DOI: 10.1016/j.heliyon.2022.e11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
20
|
Jastrzębska A, Gralak Z, Brzuzy K, Kmieciak A, Krzemiński MP, Burdziński R, Kurzawa M, Szłyk E. Simple and Effective Derivatization of Amino Acids with 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene in a Microwave Reactor for Determination of Free Amino Acids in Kombucha Beverages. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7365. [PMID: 36295430 PMCID: PMC9611567 DOI: 10.3390/ma15207365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Kombucha is a fermentation product of sweetened tea with a symbiotic culture of acetic acid and yeast bacteria, consumed worldwide for its health-promoting properties. Few reports can be found about free amino acids among the health-promoting compounds found and determined in kombucha. These compounds influence the sensory properties of kombucha, and they are precursors of bioactive compounds, which have a significant role as neurotransmitters and are involved in biological functions. The presented studies proposed a convenient, simple, and "more green" procedure of the synthesis of amino acid derivatives, assisted by microwave energy, followed by chromatographic determination. The structure of 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene was used as a suitable reagent for the derivatization of free amino acids in fermented kombucha beverages prepared from selected dry fruit such as Crataegus L., Morus alba L., Sorbus aucuparia L., Berberis vulgaris L., Rosa canina L., and black tea. The obtained results were discussed regarding the tested beverages' application as a source of amino acids in one's daily diet. The obtained results point out that the proposed microwave-assisted derivatization procedure prior to HPLC analyses allows for a significant time reduction and the limitation of using organic reagents.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Zuzanna Gralak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Kamil Brzuzy
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Rafał Burdziński
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
21
|
Flyurik E, Ermakova O. Medusomyces gisevii: cultivation, composition, and application. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tea fungus (Medusomyces gisevii) is a natural symbiotic consortium of yeast-like fungi and bacteria. Scientific literature provides a lot of information about the consortium, but it is largely fragmentary. We aimed to review and systematize the information on the research topic.
We studied scientific publications, conference proceedings, intellectual property, regulatory documents, and Internet resources on the M. gisevii consortium using Scopus, Web of Science, e.LIBRARY.RU, and Google Academy. The methods applied included registration, grouping, classification, comparative analysis, and generalization.
We described the origin and composition of tea fungus, specifying the microorganisms that make up its symbiotic community depending on the place of origin. Then, we reviewed the stages of fermentation and cultivation conditions in various nutrient media and presented the composition of the culture liquid. Finally, we analyzed the antimicrobial effect of M. gisevii on a number of microorganisms and delineated some practical uses of the fungus.
The data presented in this article can be used to analyze or develop new methods for the cultivation and application of M. gisevii. We specified some possibilities for using not only the culture liquid but also the fruit body of the fungus in various industries.
Collapse
|
22
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
23
|
Kombucha: Perceptions and Future Prospects. Foods 2022; 11:foods11131977. [PMID: 35804792 PMCID: PMC9265386 DOI: 10.3390/foods11131977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Kombucha is an increasingly consumed product classified as a nutraceutical. Legislative efforts about these products remain confusing and without global harmonization. This natural product has been developed to improve or promote physical and mental health. However, it needs regulatory guidelines to control the production and guarantee the product’s efficacy and safety. Aim: The study intends to draw attention to the need for regulatory guidelines and the potential of this product in the market and peoples’ health. Key findings and conclusions: The lack of regulation and the low level of literacy about this product can limit its development, marketing, and impact on health. Thus, it is essential to highlight the potential value of this product and invest in its development and marketing. Likewise, it is important to spread awareness among the population of these products and their impacts on people’s health. Thus, this study focuses on a pertinent theme and alerts to the need for legislation for these products, to draw attention to the inexistent legislative control and the consequent need for regulatory guidelines for better and safer production and consumption.
Collapse
|