1
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
2
|
Guehaz K, Boual Z, Telli A, Meskher H, Belkhalfa H, Pierre G, Michaud P, Adessi A. A sulfated exopolysaccharide derived from Chlorella sp. exhibiting in vitro anti-α-D-Glucosidase activity. Arch Microbiol 2024; 206:218. [PMID: 38625565 PMCID: PMC11021272 DOI: 10.1007/s00203-024-03940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.
Collapse
Affiliation(s)
- Karima Guehaz
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria.
| | - Zakaria Boual
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Alia Telli
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, FNSV, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, El Tarf, Algeria
| | - Hakim Belkhalfa
- Scientific and Technical Research Center in Physicochemical Analysis, 30000, Ouargla, Algeria
| | - Guillaume Pierre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Alessandra Adessi
- Department of Agriculture Food Environment and Forestry (DAGRI), University of Florence, 50144, Florence, Italy
| |
Collapse
|
3
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
4
|
Promkhun K, Suwanvichanee C, Tanpol N, Katemala S, Thumanu K, Molee W, Kubota S, Uimari P, Molee A. Effect of carnosine synthesis precursors in the diet on jejunal metabolomic profiling and biochemical compounds in slow-growing Korat chicken. Poult Sci 2023; 102:103123. [PMID: 37832192 PMCID: PMC10568557 DOI: 10.1016/j.psj.2023.103123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the β-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% β-alanine, 0.5% L-histidine, and a mix of 1.0% β-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of β-alanine alone in the diet increased the β-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the β-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that β-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.
Collapse
Affiliation(s)
- Kasarat Promkhun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chanadda Suwanvichanee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nathawat Tanpol
- Department of Animal Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Sasikan Katemala
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Tong A, Wang D, Liu X, Li Z, Zhao R, Liu B, Zhao C. The Potential Hypoglycemic Competence of Low Molecular Weight Polysaccharides Obtained from Laminaria japonica. Foods 2023; 12:3809. [PMID: 37893702 PMCID: PMC10605990 DOI: 10.3390/foods12203809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to assess the hypoglycemic efficacy of low molecular weight polysaccharides fractions obtained from Laminaria japonica (LJOO) in a model of type 2 diabetes mellitus (T2DM) constructed using mice. Biochemical parameters were measured after 4 weeks of continuous gavage, and fasting blood glucose (FBG) concentrations were analyzed. Pathological changes in tissues were assessed. The intestinal contents were obtained for 16S rDNA high-throughput sequencing analysis and detection of short-chain fatty acids (SCFAs). LJOO lowered FBG and insulin concentrations. It altered the gut microbiota composition, as evidenced by enriched probiotic bacteria, along with an increase in the Bacteroidetes/Firmicutes ratio and a decrease in the population of harmful bacteria. LJOO stimulated the growth of SCFA-producing bacteria, thereby increasing cecal SCFAs levels. LJOO can potentially aid in alleviating T2DM and related gut microbiota dysbiosis. LJOO may be used as a food supplement for patients with T2DM.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Zhiqun Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Runfan Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Hussein A, Ghonimy A, Jiang H, Qin G, El‐Ashram S, Hussein S, Abd El‐Razek I, El‐Afifi T, Farouk MH. LC/MS analysis of mushrooms provided new insights into dietary management of diabetes mellitus in rats. Food Sci Nutr 2023; 11:2321-2335. [PMID: 37181306 PMCID: PMC10171545 DOI: 10.1002/fsn3.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023] Open
Abstract
Mushrooms possess antihyperglycemic effect on diabetic individuals due to their nonfibrous and fibrous bioactive compounds. This study aimed to reveal the effect of different types of mushrooms on plasma glucose level and gut microbiota composition in diabetic individuals. The effects of five different mushroom species (Ganoderma lucidum, GLM; Pleurotus ostreatus, POM; Pleurotus citrinopileatus, PCM; Lentinus edodes, LEM; or Hypsizigus marmoreus, HMM) on alloxan-induced diabetic rats were investigated in this study. The results indicated that LEM and HMM treatments showed lower plasma glucose levels. For the microbiota composition, ACE, Chao1, Shannon, and Simpson were significantly affected by PCM and LEM treatments (p < .05), while ACE, Shannon, and Simpson indexes were affected by HMM treatment (p < .01). Simpson index was affected in positive control (C+) and POM groups. All these four indices were lower in GLM treatment (p < .05). Dietary supplementation of mushrooms reduced plasma glucose level directly through mushrooms' bioactive compounds (agmatine, sphingosine, pyridoxine, linolenic, and alanine) and indirectly through stachyose (oligosaccharide) and gut microbiota modulation. In conclusion, LEM and HMM can be used as food additives to improve plasma glucose level and gut microbiome composition in diabetic individuals.
Collapse
Affiliation(s)
- Abdelaziz Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | - Abdallah Ghonimy
- Fish Farming and Technology InstituteSuez Canal UniversityIsmailiaEgypt
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hailong Jiang
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Guixin Qin
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Saeed El‐Ashram
- School of Life Science and EngineeringFoshan UniversityFoshanChina
- Faculty of ScienceKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Saddam Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Ibrahim Abd El‐Razek
- Animal Production Department, Faculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Tarek El‐Afifi
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | | |
Collapse
|
8
|
Luo JH, Zou WS, Li J, Liu W, Huang J, Wu HW, Shen JL, Li F, Yuan JSW, Tao AK, Gong L, Zhang J, Wang XY. Untargeted serum and liver metabolomics analyses reveal the gastroprotective effect of polysaccharide from Evodiae fructus on ethanol-induced gastric ulcer in mice. Int J Biol Macromol 2023; 232:123481. [PMID: 36731690 DOI: 10.1016/j.ijbiomac.2023.123481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed at investigating the gastroprotective effect of Evodiae fructus polysaccharide (EFP) against ethanol-induced gastric ulcer in mice. Biochemical indexes along with untargeted serum and liver metabolomics were determined. Results showed that pre-treatment of EFP alleviated ethanol-induced gastric ulcer in mice. EFP lessened oxidative stress and inflammation levels of stomachs, showing as increments of SOD and GSH-Px activities, GSH content and IL-10 level, and reductions of MDA and IL-6 levels. Meanwhile, EFP activated the Keap1/Nrf2/HO-1 signaling pathway through increasing Nrf2 and HO-1 protein expressions, and decreasing Keap1 protein expression. Serum and liver metabolomics analyses indicated that 10 metabolic potential biomarkers were identified among normal control, ulcer control and 200 mg/kg·bw of EFP groups, which were related to 5 enriched metabolic pathways including vitamin B6 metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, bile secretion and ascorbate and aldarate metabolism. Further pearson's correlation analysis indicated that there were some positive and negative correlations between the biomarkers and the biochemical indexes. It could be concluded that the gastroprotection of EFP might be related to anti-oxidative stress, anti-inflammation, activation of Keap1/Nrf2/HO-1 signaling pathway and alteration of metabolic pathways. This study supports the potential application of EFP in preventing ethanol-induced gastric ulcer.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, China
| | - Wan-Shuang Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Wei Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jing Huang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Hu-Wei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jian-Lin Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Fei Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jia-Shuang-Wei Yuan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - An-Kang Tao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Liang Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Sun Y, Ho CT, Zhang X. Neuroprotection of Food Bioactives in Neurodegenerative Diseases: Role of the Gut Microbiota and Innate Immune Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2718-2733. [PMID: 36700657 DOI: 10.1021/acs.jafc.2c07742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gut-brain connections may be mediated by an assortment of microbial molecules, which can subsequently traverse intestinal and blood-brain barriers and impact neurological function. Pattern recognition receptors (PRRs) are important innate immune proteins in the gut. Gut microbiota act in concert with the PRRs is a novel target for regulating host-microbe signaling and immune homeostasis, which may involve the pathogenesis of neurodegenerative diseases. Natural food bioactives bestow a protective advantage on neurodegenerative diseases through immunomodulatory effects of the modified gut microbiota or alterations in the landscape of microbiota-produced metabolites via PRRs modulation. In this review, we discuss the effect of natural food bioactives on the gut microbiota and the role of PRRs in the gut-brain crosstalk. We focused on the neuroprotective mechanisms of natural bioactive compounds behind the action of the gut microbiota and PRRs. Research advances in natural food bioactives as antineurodegeneration agents were also presented.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
10
|
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 2022; 43:1070-1084. [PMID: 36280450 DOI: 10.1016/j.tips.2022.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Forkhead box (FOX)O proteins are transcription factors (TFs) with four members in mammals designated FOXO1, FOXO3, FOXO4, and FOXO6. FOXO TFs play a pivotal role in the cellular adaptation to diverse stress conditions. FOXO proteins act as context-dependent tumor suppressors and their dysregulation has been implicated in several age-related diseases. FOXO3 has been established as a major gene for human longevity. Accordingly, FOXO proteins have emerged as potential targets for the therapeutic development of drugs and geroprotectors. In this review, we provide an overview of the most recent advances in our understanding of FOXO regulation and function in various pathological conditions. We discuss strategies targeting FOXOs directly or by the modulation of upstream regulators, shedding light on the most promising intervention points. We also reveal the most relevant clinical indications and discuss the potential, trends, and challenges of modulating FOXO activity for therapeutic purposes.
Collapse
Affiliation(s)
- Alba Orea-Soufi
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029-Madrid, Spain.
| |
Collapse
|
11
|
Antioxidant Activity of Gracilaria lemaneiformis Polysaccharide Degradation Based on Nrf-2/Keap-1 Signaling Pathway in HepG2 Cells with Oxidative Stress Induced by H2O2. Mar Drugs 2022; 20:md20090545. [PMID: 36135734 PMCID: PMC9506308 DOI: 10.3390/md20090545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of this research was to investigate the antioxidant activity of Gracilarialemaneiformis polysaccharide degradation and its underlying mechanism involved in the Nrf-2/Keap-1 signaling pathway in HepG2 cells with oxidative stress induced by H2O2. The result of the scavenging ability of free radicals showed that GLP-HV (polysaccharide degraded by H2O2–vitamin C (Vc)) performed a better scavenging ability than GLP (G.lemaneiformis polysaccharide). Moreover, the scavenging ability of polysaccharide to these free radicals from strong to weak was as follows: superoxide radical, ferric ion, ABTS+, and DPPH radical, and their IC50 values were 3.56 ± 0.0028, 4.97 ± 0.18, 9.62 ± 0.35, and 23.85 ± 1.78 mg/mL, respectively. Furthermore, GLP-HV obviously relieved oxidative stress in HepG2 cells, which strengthened the activity of T-AOC, CAT, GSH-PX, and SOD, and diminished the intensity of MDA, intracellular ROS, and calcium ion based on the Nrf-2/Keap-1 signaling pathway. The PCR result revealed that polysaccharide upregulated the expression of the genes Nrf-2, HO-1, NQO-1, and ZO-1 and downregulated Keap-1. The correlation between chemical properties and antioxidant mechanism of GLP-HV was evaluated via a heat map. The results illustrated that reducing sugar and active groups presented a positive correlation, and molecular weight and viscosity exhibited a negative relation with antioxidant activity.
Collapse
|