1
|
Sun R, Li Y, Su R, Cai X, Kong Y, Jiang T, Cheng S, Yang H, Song L, Al-Asmari F, Sameeh MY, Lü X, Shi C. Antibacterial effect of ultrasound combined with Litsea cubeba essential oil nanoemulsion on Salmonella Typhimurium in kiwifruit juice. Int J Food Microbiol 2025; 426:110898. [PMID: 39241544 DOI: 10.1016/j.ijfoodmicro.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.
Collapse
Affiliation(s)
- Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
2
|
Shen J, Chen Y, Li X, Zhou X, Ding Y. Enhanced probiotic viability in innovative double-network emulsion gels: Synergistic effects of the whey protein concentrate-xanthan gum complex and κ-carrageenan. Int J Biol Macromol 2024; 270:131758. [PMID: 38714282 DOI: 10.1016/j.ijbiomac.2024.131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
In this study, the whey protein concentrate and xanthan gum complex obtained by specific pH treatment, along with κ-carrageenan (KC), were used to encapsulate Lactobacillus acidophilus JYLA-191 in an emulsion gel system. The effects of crosslinking and KC concentration on the visual characteristics, stability, mechanical properties, and formation mechanism of emulsion gels were investigated. The results of optical imaging, particle size distribution, and rheology exhibited that with the addition of crosslinking agents, denser and more homogeneous emulsion gels were formed, along with a relative decrease in the droplet size and a gradual increase in viscosity. Especially when the concentration of citric acid (CA) was 0.09 wt%, KC was 0.8 wt%, and K+ was present in the system, the double-network emulsion gel was stable at high temperatures and in freezing environments, and the swelling ratio was the lowest (9.41%). Gastrointestinal tract digestive treatments and pasteurization revealed that the probiotics encapsulated in the double-network emulsion gel had a higher survival rate, which was attributed to the synergistic cross-linking of CA and K+ biopolymers to construct the emulsion gels. Overall, this study highlights the potential of emulsion gels to maintain probiotic vitality and provides valuable insights for developing inventive functional foods.
Collapse
Affiliation(s)
- Jie Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, Liaoning, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Yan DD, Hu B, Gao P, Yin JJ, Wang S, Yang Y, Tan L, Hu CR, He DP, Zhong W. Synthesis and Characterization of Emulsifiers Based on the Maillard Reaction and Its Application in Stabilized DHA Algal Oil Nanoemulsions. Foods 2024; 13:1667. [PMID: 38890897 PMCID: PMC11172065 DOI: 10.3390/foods13111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to optimize the formation of sodium caseinate (CS) and gum arabic (GA) complexes through the Maillard reaction and to evaluate their effectiveness in improving the emulsification properties and stability of docosahexaenoic acid (DHA) nanoemulsions. First, the best target polysaccharides were selected, and the best modification conditions were determined using orthogonal experiments. Secondly, the response surface experiments were used to optimize the preparation process of the emulsion. The stability, in vitro digestion characteristics, and rheological characteristics of the emulsion prepared by means of CS-GA were compared with the emulsion prepared using a whey protein isolate (WPI). After the orthogonal test, the optimal modification conditions were determined to be a reaction time of 96 h, a CS-GA mass ratio of 1:2, a reaction temperature of 60 °C, and a degree of grafting of 44.91%. Changes in the infrared (IR), Raman, ultraviolet (UV), and endogenous fluorescence spectra also indicated that the complex structure was modified. The response surface test identified the optimal preparation process as follows: an emulsifier concentration of 5 g/L, an oil-phase concentration of 5 g/L, and a homogenization frequency of five, and the emulsion showed good stability. Therefore, the use of a nanoemulsion as a nanoscale DHA algal oil delivery system is very promising for extending the shelf life and improving the stability of food.
Collapse
Affiliation(s)
- Dan-Dan Yan
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bo Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China; (S.W.); (Y.Y.)
| | - Jiao-Jiao Yin
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shu Wang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China; (S.W.); (Y.Y.)
| | - Yong Yang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China; (S.W.); (Y.Y.)
| | - Lei Tan
- Hubei Fuxing Biotechnology, Hanchuan 431608, China;
| | - Chuan-Rong Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong-Ping He
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China; (S.W.); (Y.Y.)
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (D.-D.Y.); (B.H.); (P.G.); (J.-J.Y.); (C.-R.H.); (D.-P.H.)
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Jiang K, Zhu B, Liu Y, Chen H, Yuan M, Qin Y, Brennan M, Brennan C. Effects of antimicrobial nanocomposite films packaging on the postharvest quality and spoilage bacterial communities of mushrooms ( Chanterelles). Food Chem X 2023; 20:100996. [PMID: 38144825 PMCID: PMC10740022 DOI: 10.1016/j.fochx.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Poly (lactic acid) (PLA) composite films with the addition of mesoporous silica nanoparticles MSN (0, 2, 4 and 6 wt%) loaded with 10 wt% citral (CIT) were prepared for application in Chanterelles packaging. Composite films with added MSN/CIT showed good mechanical properties, especially 4MSN/CIT/PLA. Changes in physicochemical properties and bacterial flora of Chanterelles during packaging and storage were tested. Compared with CIT/PLA, Chanterelles packed with 4MSN/CIT/PLA showed about 1.62-times lower browning value, 1.53-times lower electrolyte permeability, and 1.83- and 1.78-times lower PPO and POD, respectively, at 12 day. Better physicochemical properties of Chanterelles can be maintained. For bacterial flora changes, Chanterelles packaged with 4MSN/CIT/PLA had more stable flora (p < 0.05) and lower species diversity during storage (p < 0.05), effectively controlling the growth and reproduction of their dominant spoilage bacteria (Enterobacteriaceae spp). In conclusion, the composite membranes obtained by the addition of MSN/CIT to PLA have great potential in the storage of Chanterelles.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Bifen Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yudi Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| |
Collapse
|
5
|
Zhao S, Wang Z, Wang X, Kong B, Liu Q, Xia X, Liu H. Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Foods 2023; 12:3183. [PMID: 37685117 PMCID: PMC10487023 DOI: 10.3390/foods12173183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of the appropriate emulsifier is essential for forming a stable nanoemulsion delivery system that can maintain the sustained release of its contents. Health concerns have prompted the search for natural biopolymers to replace traditional synthetic substances as emulsifiers. In this study, an oregano essential oil (OEO) nanoemulsion-embedding system was created using soybean protein isolate (SPI), tea saponin (TS), and soy lecithin (SL) as natural emulsifiers and then compared to a system created using a synthetic emulsifier (Tween 80). The results showed that 4% Tween 80, 1% SPI, 2% TS, and 4% SL were the optimal conditions. Subsequently, the influence of emulsifier type on nanoemulsion stability was evaluated. The results revealed that among all the nanoemulsions, the TS nanoemulsion exhibited excellent centrifugal stability, storage stability, and oxidative stability and maintained high stability and encapsulation efficiency, even under relatively extreme environmental conditions. The good stability of the TS nanoemulsion may be due to the strong electrostatic repulsion generated by TS molecules, which contain hydroxyl groups, sapogenins, and saccharides in their structures. Overall, the natural emulsifiers used in our study can form homogeneous nanoemulsions, but their effectiveness and stability differ considerably.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.Z.); (Z.W.); (X.W.); (B.K.); (Q.L.); (X.X.)
| |
Collapse
|