1
|
Petrović J, Glamočlija J, Milinčić DD, Doroški A, Lević S, Stanojević SP, Kostić AŽ, Minić DAP, Vidović BB, Plećić A, Nedović VA, Pešić MB, Stojković D. Comparative Chemical Analysis and Bioactive Properties of Aqueous and Glucan-Rich Extracts of Three Widely Appreciated Mushrooms: Agaricus bisporus (J.E.Lange) Imbach, Laetiporus sulphureus (Bull.) Murill and Agrocybe aegerita (V. Brig.) Vizzini. Pharmaceuticals (Basel) 2024; 17:1153. [PMID: 39338316 PMCID: PMC11434720 DOI: 10.3390/ph17091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Herein we describe the antioxidant, antimicrobial, antibiofilm, anti-inflammatory and wound-healing potential of aqueous and polysaccharide extracts from three widely appreciated mushrooms: Agrocybe aegerita, Laetiporus sulphureus and Agaricus bisporus. Moreover, we present their detailed phenolic, polysaccharide and protein profiles and ATR-FTIR spectra. The study found that polysaccharide extracts (PEs) from mushrooms had higher total and β-glucan levels than aqueous extracts (AEs), with A. aegerita showing the highest content. L. sulphureus had a higher total protein content, and A. aegerita AE had the highest phenolic content. Our results indicate that all the tested extracts have high potential regarding their bioactive properties, with A. aegerita being the most promising one. Namely, the antibacterial activity assay showed that the development of the skin-infection-causing agent, Staphylococcus aureus, was inhibited with a minimal inhibitory concentration of 4.00 mg/mL and minimal bactericidal concentration of 8.00 mg/mL, while the results regarding wound healing showed that, over the course of 24 h, the A. aegerita extract actively promoted wound closure in the HaCaT keratinocyte cell line model. The anti-inflammatory activity results clearly showed that when we used S. aureus as an inflammation-inducing agent and the A. aegerita aqueous extract in treatment, IL-6 levels reduced to the level of 4.56 pg/mL. The obtained data suggest that the tested mushroom extracts may serve as a source of bioactive compounds, with potential applications in the cosmeceutical, pharmaceutical and food industries. Furthermore, potential skin preparations carefully crafted with mushroom extract may help restore the skin's barrier function, decrease the probability of staph infections and minimize skin irritation.
Collapse
Affiliation(s)
- Jovana Petrović
- Institute for Biological Research, Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Jasmina Glamočlija
- Institute for Biological Research, Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Danijel D Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ana Doroški
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Steva Lević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dušanka A Popović Minić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana B Vidović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Plećić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Viktor A Nedović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dejan Stojković
- Institute for Biological Research, Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
2
|
Yao Q, Su D, Zheng Y, Huang M, Chen M, Xu H, Zeng S. Risk assessment of multiple pesticide residues in Agrocybe aegerita: Based on a 3-year monitoring survey. Food Chem X 2024; 22:101323. [PMID: 38978692 PMCID: PMC11228446 DOI: 10.1016/j.fochx.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 07/10/2024] Open
Abstract
The presence of pesticide residues in Agrocybe aegerita has raised an extensive concern. In this paper, based on a 3-year monitoring survey, the dietary exposure risks through A. aegerita consumption for different population subgroups were assessed using both deterministic and semi-probabilistic approaches under the best-case and the worst-case scenarios. Among the 52 targeted pesticides, 28 different compounds were identified in the concentration range of 0.005-3.610 mg/kg, and 87.4 % of samples contained one or more pesticide residues. The most frequently detected pesticide was chlormequat, followed by chlorfenapyr and cyhalothrin. The overall risk assessment results indicated extremely low chronic, acute, and cumulative dietary exposure risks for consumers. Using the ranking matrix, intake risks of pesticides were ranked, revealing endsoluran, chlorpyrifos, and methamidophos to be in the high-risk group. Finally, considering various factors such as the toxicity and risk assessment outcomes of each positive pesticide, use suggestions were proposed for A. aegerita cultivation.
Collapse
Affiliation(s)
- Qinghua Yao
- Institute of Quality Standards Testing Technology for Agro-products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Desen Su
- Institute of Quality Standards Testing Technology for Agro-products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yunyun Zheng
- Institute of Quality Standards Testing Technology for Agro-products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Minmin Huang
- Institute of Quality Standards Testing Technology for Agro-products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Meizhen Chen
- Institute of Quality Standards Testing Technology for Agro-products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Yao Q, Su D, Zheng Y, Xu H, Huang M, Chen M, Zeng S. Residue Behaviors and Degradation Dynamics of Insecticides Commonly Applied to Agrocybe aegerita Mushrooms from Field to Product Processing and Corresponding Risk Assessments. Foods 2024; 13:1310. [PMID: 38731680 PMCID: PMC11083258 DOI: 10.3390/foods13091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Residual pesticides in Agrocybe aegerita mushroom have emerged as a significant concern and bring much uncertainty due to processing procedures. In this study, a modified QuEChERS sample preparation procedure and UPLC-MS/MS were used to analyze the residual levels of four commonly used pesticides in A. aegerita from field to product processing. The field results showed that dissipation of these targeted chemicals was consistent with the first-order kinetics, and the half-life time ranged from 20.4 h to 47.6 h. The terminal residues of the four pesticides at harvest time ranged from 9.81 to 4412.56 μg/kg in raw mushroom. The processing factors (PFs) of clothianidin, diflubenzuron, chlorbenzuron, and pyridaben ranged from 0.119 to 0.808 for the drying process and from 0.191 to 1 for the washing process. By integrating the data from the field trials, the PFs, and the consumption survey, the chronic dietary risks of the target chemicals via A. aegerita intake ranged from 2.41 × 10-5 to 5.69 × 10-2 for children and from 6.34 × 10-6 to 1.88 × 10-2 for adults, which are considerably below the threshold of 1, indicating no unacceptable risk to consumers in the Fujian province of China. This research offers foundational data for appropriate use and the maximum residue limit (MRL) establishment for these four insecticides in A. aegerita.
Collapse
Affiliation(s)
- Qinghua Yao
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.S.); (Y.Z.); (M.H.); (M.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Desen Su
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.S.); (Y.Z.); (M.H.); (M.C.)
| | - Yunyun Zheng
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.S.); (Y.Z.); (M.H.); (M.C.)
| | - Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Minmin Huang
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.S.); (Y.Z.); (M.H.); (M.C.)
| | - Meizhen Chen
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.S.); (Y.Z.); (M.H.); (M.C.)
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Xu C, Yang Y, He L, Li C, Wang X, Zeng X. Flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage produced by A. aegerita. Food Chem 2024; 434:137428. [PMID: 37716144 DOI: 10.1016/j.foodchem.2023.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Pueraria lobata and coix seeds have complementary nutritional profiles, and their nutritional value can be enhanced through biotransformation. Agrocybe aegerita (A. aegerita) is a highly nutritious mushroom with a rich enzyme content. This study investigated the flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage (PCFB) by A. aegerita. Sixty volatile compounds were detected by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compared to unfermented PCFB, fermentation with A. aegerita enhanced its physicochemical properties, with the contents of essential amino acids, γ-Aminobutyric acid, and soluble proteins increasing from 16.81%, 2.64 mg/100 mL, and 49.40% to 21.06%, 4.20 mg/100 mL, and 53.08%, respectively. Two efficient shelf-life prediction models of PCFB were established with the Arrhenius model using pH and sensory evaluation as indexes. These findings demonstrate that PCFB is a novel, high-quality beverage and provide a foundation for potential industrial production of PCFB using A. aegerita.
Collapse
Affiliation(s)
- Changli Xu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Yun Yang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xuefeng Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| |
Collapse
|
5
|
Zhang L, Yan M, Liu C. A comprehensive review of secondary metabolites from the genus Agrocybe: Biological activities and pharmacological implications. Mycology 2023; 15:162-179. [PMID: 38813473 PMCID: PMC11132692 DOI: 10.1080/21501203.2023.2292994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 05/31/2024] Open
Abstract
The genus Agrocybe, situated within the Strophariaceae family, class Agaricomycetes, and phylum Basidiomycota, encompasses a myriad of species exhibiting significant biological activities. This review presents an integrative overview of the secondary metabolites derived from Agrocybe species, elucidating their respective biological activities and potential pharmacological applications. The metabolites under scrutiny encompass a diverse array of biological macromolecules, specifically polysaccharides and lectins, as well as a diverse group of 80 documented small molecular chemical constituents, classified into sterols, sesquiterpenes, volatile compounds, polyenes, and other compounds, their manifesting anti-inflammatory, anticancer, antioxidant, hepatoprotective, antimicrobial, and antidiabetic activities, these metabolites, in which polysaccharides exhibit abundant activities, underscore the potential of the Agrocybe genus as a valuable source of biologically active natural products. The present review emphasises the need for escalated research into Agrocybe, including investigations into the biosynthetic pathways of these metabolites, which could foster the development of novel pharmaceutical therapies to address various health challenges.
Collapse
Affiliation(s)
- Liqiu Zhang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Das A, Chen CM, Mu SC, Yang SH, Ju YM, Li SC. Medicinal Components in Edible Mushrooms on Diabetes Mellitus Treatment. Pharmaceutics 2022; 14:pharmaceutics14020436. [PMID: 35214168 PMCID: PMC8875793 DOI: 10.3390/pharmaceutics14020436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mushrooms belong to the family “Fungi” and became famous for their medicinal properties and easy accessibility all over the world. Because of its pharmaceutical properties, including anti-diabetic, anti-inflammatory, anti-cancer, and antioxidant properties, it became a hot topic among scientists. However, depending on species and varieties, most of the medicinal properties became indistinct. With this interest, an attempt has been made to scrutinize the role of edible mushrooms (EM) in diabetes mellitus treatment. A systematic contemporary literature review has been carried out from all records such as Science Direct, PubMed, Embase, and Google Scholar with an aim to represents the work has performed on mushrooms focuses on diabetes, insulin resistance (IR), and preventive mechanism of IR, using different kinds of mushroom extracts. The final review represents that EM plays an important role in anticipation of insulin resistance with the help of active compounds, i.e., polysaccharide, vitamin D, and signifies α-glucosidase or α-amylase preventive activities. Although most of the mechanism is not clear yet, many varieties of mushrooms’ medicinal properties have not been studied properly. So, in the future, further investigation is needed on edible medicinal mushrooms to overcome the research gap to use its clinical potential to prevent non-communicable diseases.
Collapse
Affiliation(s)
- Arpita Das
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan;
| | - Shu-Chi Mu
- Department of Pediatrics, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Shu-Hui Yang
- Fengshan Tropical Horticultural Experiment Branch, Taiwan Agricultural Research Institute, Kaohsiung City 83052, Taiwan;
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6560)
| |
Collapse
|
7
|
Wang YX, Zhang T, Huang XJ, Yin JY, Nie SP. Heteroglycans from the fruiting bodies of Agrocybe cylindracea: Fractionation, physicochemical properties and structural characterization. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Díaz-Godínez G, Téllez-Téllez M. Mushrooms as Edible Foods. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Liu X, Wu X, Tan H, Xie B, Deng Y. Large inverted repeats identified by intra-specific comparison of mitochondrial genomes provide insights into the evolution of Agrocybe aegerita. Comput Struct Biotechnol J 2020; 18:2424-2437. [PMID: 33005305 PMCID: PMC7508693 DOI: 10.1016/j.csbj.2020.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
Genomic structure and content of Agrocybe aegerita mitochondrial DNA contain essential information regarding the evolution of this gourmet mushroom. In this study, eight isolates of A. aegerita were sequenced and assembled into complete mitochondrial genomes. The mtDNA of the isolate Ag0067 contained two genotypes, both of which were quadripartite architecture consisting of two identical inverted repeats, separated by a small single-copy region and a large single-copy region. The only difference was opposite directions of the small single-copy region. The mtDNAs ranged from 116,329 bp to 134,035 bp, harboring two large identical inverted repeats. Genes of plasmid-origin were present in regions flanked by inverted repeat ID2. Most of the core genes evolved at a relatively low rate, whereas five tRNA genes located in corresponding regions of Ag0002:1-14000 and Ag0002:50001-61000 showed higher diversity. A long fragment inversion (10 Kb) was suggested to have occurred during the differentiation of two main clades, leading to two different gene orders. The number and distribution of the introns varied greatly among the A. aegerita mtDNAs. Fast invasion of short insertions likely resulted in the diversity of introns as well as other non-coding regions, increasing the variation of the mtDNAs. We raised a model about the evolution of the large repeats to explain the unusual features of A. aegerita mtDNAs. This study constructed quadripartite architecture of A. aegerita mtDNAs analogous to chloroplast DNA, proposed an interconversion model of the divergent mitochondrial genotypes with large inverted repeats. The findings could increase our knowledge of fungal evolution.
Collapse
Affiliation(s)
- Xinrui Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Tan
- Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- School of Bioengineering, Jiangnan University, Wuxi 214062, China
| | - Baogui Xie
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
11
|
Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential. Molecules 2020; 25:molecules25061395. [PMID: 32204362 PMCID: PMC7144561 DOI: 10.3390/molecules25061395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
The detailed chemical analysis of the methanol extract of Meripilus giganteus (Pers.) P. Karst. led to the isolation of two new cerebrosides, mericeramides A (1) and B (2) together with cerebroside B (3), ergosterol (4), 3β-hydroxyergosta-7,22-diene (5), cerevisterol (6), 3β-hydroxyergosta-6,8(14),22-triene (7), 3β-O-glucopyranosyl-5,8-epidioxyergosta-6,22-diene (8) and (11E,13E)-9,10-dihydroxy-11,13-octadecadienoic acid (9). The structures of the compounds were determined on the basis of NMR and MS spectroscopic analysis. Mericeramide A (1) is the first representative of halogenated natural cerebrosides. The isolated fungal metabolites 1-9 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) assay. Compounds 2, 5 and 9 proved to possess considerable antioxidant effects, with 2.50 ± 0.29, 4.94 ± 0.37 and 4.27 ± 0.05 mmol TE/g values, respectively. The result obtained gives a notable addition to the chemical and bioactivity profile of M. giganteus, highlighting the possible contribution of this species to a versatile and balanced diet.
Collapse
|
12
|
Motoshima RA, Rosa TDF, Mendes LDC, Silva EVD, Viana SR, Amaral BSD, de Souza DH, Lião LM, Corradi da Silva MDL, de Sousa LR, Carbonero ER. Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom. Carbohydr Polym 2018; 201:532-538. [DOI: 10.1016/j.carbpol.2018.08.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
|
13
|
Yong T, Chen S, Xie Y, Shuai O, Li X, Chen D, Su J, Jiao C, Liang Y. Hypouricemic Effects of Extracts From Agrocybe aegerita on Hyperuricemia Mice and Virtual Prediction of Bioactives by Molecular Docking. Front Pharmacol 2018; 9:498. [PMID: 29867500 PMCID: PMC5962791 DOI: 10.3389/fphar.2018.00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Agrocybe aegerita has long been utilized for promoting diuresis in traditional Chinese medicine (TCM) with a close correlation to hypouricemia. Ethanol (AAE) and water (AAW) extracts of the compound led to a remarkable decrease in serum uric acid levels (SUA) in hyperuricemia mice, approaching that of the normal control. Both AAE and AAW exhibited suppression effects on hepatic xanthine oxidase (XOD) activities and elevation effects on renal OAT1 (organic anion transporter 1). However, only little negative impact was observed on the inner organ functions. The molecular docking was used to screen our in-home compound database for A. aegerita, and four compounds including 2-formyl-3,5-dihydroxybenzyl acetate, 2,4-dihydroxy-6-methylbenzaldehyde, 2-(6-hydroxy-1H-indol-3-yl)acetamide, and 6-hydroxy-1H-indole-3-carbaldehyde (HHC) were identified as potential active compounds. Their inhibitory mechanism on XOD might be attributed to their localization in the tunnel for the entrance of substrates to XOD active site, preventing the entrance of the substrates. To confirm the activity of the screened compounds experimentally, HHC was selected due to its high ranking and availability. The assaying result suggested the significant inhibitory activity of HHC on XOD. Also, these compounds were predicted to carry good ADME (absorption, distribution, metabolism, and excretion) properties, thereby necessitating further investigation. The current results provided an insight into the hypouricemic effects of macrofungi and their bioactives, which might provide the significant theoretical foundation for identifying and designing novel hypouricemia compounds.
Collapse
Affiliation(s)
- Tianqiao Yong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Shaodan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Chunwei Jiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Yalei Liang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| |
Collapse
|
14
|
Cultivated maitake mushroom demonstrated functional food quality as determined by in vitro bioassays. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Anti-metastatic activity of Agrocybe aegerita galectin (AAL) in a mouse model of breast cancer lung metastasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Thakur M. Wild Macro-Fungi from Northwest Himalayas: Future Prospects and Challenges. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Landi N, Pacifico S, Ragucci S, Di Giuseppe AM, Iannuzzi F, Zarrelli A, Piccolella S, Di Maro A. Pioppino mushroom in southern Italy: an undervalued source of nutrients and bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5388-5397. [PMID: 28503801 DOI: 10.1002/jsfa.8428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Agrocybe aegerita (V. Brig.) Singer, commonly known as Pioppino, is a popular edible mushroom, known in the Campania Region (Italy). Despite its habitual consumption, little nutritional and biochemical information is available. Thus, nutritional values, anti-radical properties and chemical composition of the wild Pioppino were compared to those of the cultivated Agaricus bisporus (J.E. Lange) Imbach (known as Champignon), equally analysed. RESULTS Macronutrient components (proteins, carbohydrates and lipids), free and protein amino acids and fatty acid content of poplar mushroom were achieved. Total phenol content of a defatted Pioppino alcoholic extract (PM) was determined, whereas DPPH and ABTS methods were applied to determine the radical scavenging capabilities of the extract. Ferricyanide and ORAC-fluorescein methods were also performed. Finally, LC-HRMS was used to identify and quantify the main metabolites in the extract. PM was mainly constituted of disaccharides, hexitol derivatives and malic acid. Coumaric acid isomers and C6 C1 compounds were also detected. CONCLUSION All data revealed that wild Pioppino is an excellent functional food, by far exceeding that of the Champignon. Therefore, these data are useful to promote the consumption of this mushroom encouraging thus its biological cultivation, due to wild availability is strongly compromised by the extensive use of fungicides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonella Ma Di Giuseppe
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Iannuzzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Armando Zarrelli
- Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Naples, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
18
|
Xu LM, Hinsinger DD, Jiang GF. The complete mitochondrial genome of the Agrocybe aegerita, an edible mushroom. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:791-792. [PMID: 33473982 PMCID: PMC7800570 DOI: 10.1080/23802359.2017.1398618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Agrocybe aegerita is a medicinally and nutritionally important edible basidiomycete. Despite previous phylogenetic studies, the taxonomy of A. aegerita complex remains unclear due to lacking of resolutive data. Herein, the complete mitochondrial genome of A. aegerita is reported and analyzed. The mitogenome length was 116,329 bp, with a GC content of 27.6%, include 17 typical protein-coding genes, two ribosomal protein genes (rps3), two ribosomal RNA genes and a set of 32 transfer RNA genes. A phylogenetic analyses using complete mitogenome in Agaricales showed that A. aegerita is closely related to the genus Pleurotus and represents a clade clearly independent from other Agaricales species.
Collapse
Affiliation(s)
- Li-Ming Xu
- Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Damien Daniel Hinsinger
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Guo-Feng Jiang
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
19
|
|
20
|
Petrović J, Glamočlija J, Stojković D, Ćirić A, Barros L, Ferreira ICFR, Soković M. Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom Agrocybe aegerita (Brig.) Sing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6711-8. [PMID: 26396420 PMCID: PMC4573151 DOI: 10.1007/s13197-015-1783-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/31/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
A very well-known and appreciated mushroom, Agrocybe aegerita (Brig.) Sing, was the subject of chemical profiling, antioxidant assays and sensory evaluation test in cream cheese. Methanolic extract obtained from a wild sample of A. aegerita fruiting body was fully chemically identified. Sample was found to be rich in carbohydrates (84.51 g/100 g dw), ash and proteins (6.69 g/100 g dw and 6.68 g/100 g dw, respectively). Trehalose was the main free sugar while malic acid was the most abundant organic acid. Four isoforms of tocopherols were identified; γ- tocopherol was the dominant isoform with 86.08 μg/100 g dw, followed by β- tocopherol, δ-tocopherol and α-tocopherol (8.80 μg/100 g dw, 3.40 μg/100 g dw and 2.10 μg/100 g dw, respectively). Polyunsaturated fatty acids were predominant, with linoleic acid as the most prominent one (78.40 %). Methanolic extract of chestnut mushroom exhibited high antioxidant activity. Sensory evaluation test included grading by panelists and comparing the overall acceptability of cream cheese alone and enriched cream cheese with dry powder of A. aegerita. General conclusion of the participants was that the newly developed product was more likeable in comparison to cream cheese alone. Due to the health-beneficial effects of antioxidants and wealth of chemically identified nutrients, A. aegerita is a promising starting material for incorporation on larger scale products.
Collapse
Affiliation(s)
- Jovana Petrović
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Jasmina Glamočlija
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dejan Stojković
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Ćirić
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lillian Barros
- />Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- />Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Marina Soković
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
21
|
|
22
|
Chen ZM, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res 2015; 29:1985-9. [DOI: 10.1080/14786419.2015.1017493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zi-Ming Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P.R. China
| | - Shun-Lin Wang
- School of Information Science and Technology, Lingnan Normal University, Zhanjiang 524048, P.R. China
| |
Collapse
|
23
|
Lethal protein in mass consumption edible mushroom Agrocybe aegerita linked to strong hepatic toxicity. Toxicon 2014; 90:273-85. [DOI: 10.1016/j.toxicon.2014.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/10/2014] [Accepted: 08/19/2014] [Indexed: 01/19/2023]
|
24
|
Sapozhnikova Y, Byrdwell WC, Lobato A, Romig B. Effects of UV-B Radiation Levels on Concentrations of Phytosterols, Ergothioneine, and Polyphenolic Compounds in Mushroom Powders Used As Dietary Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3034-3042. [PMID: 24628700 DOI: 10.1021/jf403852k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Compositional changes of powder dietary supplements made from mushrooms exposed to different levels of UV-B irradiation were evaluated for the bioactive naturally occurring mushroom antioxidant, ergothioneine; other natural polyphenolic compounds, e.g., flavonoids, lignans, etc.; and selected phytosterols. Four types of mushroom powder consisting of white, brown (Agaricus bisporus), oyster (Pleurotus ostreatus), and shiitake (Lentinula edodes) mushrooms from three different treatment groups (control, low and high UV-B exposures) were evaluated. Ergothioneine concentrations found in mushroom powders were 0.4-10.4 mg/g dry weight (dw) and were not appreciably affected by UV-B radiation. No individual polyphenols were detected above 0.1 μg/g. Phytosterols ergosterol (2.4-6.2 mg/g dw) and campesterol (14-43 μg/g dw) were measured in mushroom powder samples. Ergosterol concentrations decreased significantly with the increased level of UV-B treatment for all mushroom powder types, except for white. These results provide some new information on effects of UV-B radiation on these important natural bioactive compounds in mushrooms.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- Eastern Regional Research Center, Agricultural Research Service, USDA , Wyndmoor, Pennsylvania 19038, United States
| | - William Craig Byrdwell
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA , , Beltsville, Maryland 20705, United States
| | - Amada Lobato
- Monterey Mushrooms, Inc. , Watsonville, California 95076, United States
| | - Bill Romig
- Mid-Atlantic Perishable Commodities Services , Townsend, Delaware 19734, United States
| |
Collapse
|
25
|
Kleofas V, Sommer L, Fraatz MA, Zorn H, Rühl M. Fruiting Body Production and Aroma Profile Analysis of <i>Agrocybe aegerita</i> Cultivated on Different Substrates. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nr.2014.56022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhang X, Cao F, Sun Z, Yu W, Zhao L, Wang T. Sulfation of Agrocybe chaxingu polysaccharides can enhance the immune response in broiler chicks. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
28
|
Ruthes AC, Carbonero ER, Córdova MM, Baggio CH, Santos ARS, Sassaki GL, Cipriani TR, Gorin PAJ, Iacomini M. Lactarius rufus (1→3),(1→6)-β-D-glucans: structure, antinociceptive and anti-inflammatory effects. Carbohydr Polym 2013; 94:129-36. [PMID: 23544521 DOI: 10.1016/j.carbpol.2013.01.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/23/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
Medicinal health benefits uses of edible as well as non-edible mushrooms have been long recognized. The pharmacological potential of mushrooms, especially antitumor, immunostimulatory and anti-inflammatory activities has been documented. Wild ectomycorrhizal mushroom, Lactarius rufus had the anti-inflammatory and antinociceptive potential of their polysaccharides evaluated using the formalin model. Two structurally different (1→3),(1→6)-linked β-D-glucans were isolated from fruiting bodies. Soluble (FSHW) β-D-glucan 1-30 mg kg(-1) produced potent inhibition of inflammatory pain caused by formalin when compared with the insoluble one (IHW), suggesting that solubility and/or branching degree could alter the activity of β-glucans. Their structures were determined using mono- and bi-dimensional NMR spectroscopy, methylation analysis, and controlled Smith degradation. They were β-D-glucans, with a main chain of (1→3)-linked Glcp residues, substituted at O-6 by single-unit Glcp side chains (IHW), on average to every fourth residue of the backbone, or by mono- and few oligosaccharide side chains for soluble β-glucan.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J 2012; 443:369-78. [PMID: 22268569 PMCID: PMC3316157 DOI: 10.1042/bj20112061] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo.
Collapse
|
30
|
Wong WL, Abdulla MA, Chua KH, Kuppusamy UR, Tan YS, Sabaratnam V. Hepatoprotective Effects of Panus giganteus (Berk.) Corner against Thioacetamide- (TAA-) Induced Liver Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:170303. [PMID: 22649470 PMCID: PMC3357533 DOI: 10.1155/2012/170303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022]
Abstract
Panus giganteus, a culinary and medicinal mushroom consumed by selected indigenous communities in Malaysia, is currently being considered for large scale cultivation. This study was undertaken to investigate the hepatoprotective effects of P. giganteus against thioacetamide- (TAA-) induced liver injury in Sprague-Dawley rats. The rats were injected intraperitoneally with TAA thrice weekly and were orally administered freeze-dried fruiting bodies of P. giganteus (0.5 or 1 g/kg) daily for two months, while control rats were given vehicle or P. giganteus only. After 60 days, rats administered with P. giganteus showed lower liver body weight ratio, restored levels of serum liver biomarkers and oxidative stress parameters comparable to treatment with the standard drug silymarin. Gross necropsy and histopathological examination further confirmed the hepatoprotective effects of P. giganteus. This is the first report on hepatoprotective effects of P. giganteus. The present study showed that P. giganteus was able to prevent or reduce the severity of TAA-induced liver injury.
Collapse
Affiliation(s)
- Wei-Lun Wong
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Shin Tan
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Park JH, Kim SW, Do YJ, Kim H, Ko YG, Yang BS, Shin D, Cho YM. Spent mushroom substrate influences elk (cervus elaphus canadensis) hematological and serum biochemical parameters. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:320-4. [PMID: 25049569 PMCID: PMC4092955 DOI: 10.5713/ajas.2011.11329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/07/2011] [Accepted: 12/05/2011] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effect of spent mushroom substrate (SMS) derived from Pleurotus eryngii on the hematological and biochemical blood properties of elk. A total of 18, two and three-year-old elk were fed three different levels of SMS (0, 15 and 20%) in a corn-wheat bran diet for 80 days. The results indicated significantly high levels of blood monocytes, hemoglobin (Hb), and hematocrit (HCT) in elk fed 15% or 20% SMS (p<0.05) compared to control animals. Serum blood urea nitrogen (BUN) and glucose concentrations were also significantly elevated in elk fed both 15% and 20% SMS. The inclusion of SMS in the elk diet did not affect serum total cholesterol, triglyceride, or low density lipoprotein (LDL)-cholesterol concentrations; however, high density lipoprotein (HDL)-cholesterol concentration was significantly increased in SMS-fed groups. In addition, 20% SMS in the diet increased serum iron and testosterone concentrations in elk. These results indicate that adding SMS to the diet of elk can increase their Hgb, serum BUN, glucose, and HDL-cholesterol concentration; therefore, diets containing SMS may enhance the physiologic condition of elk during growth.
Collapse
Affiliation(s)
- Jae Hong Park
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Sang Woo Kim
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Yoon Jung Do
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Hyun Kim
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Yeoung Gyu Ko
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Boh Suk Yang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Daekeun Shin
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| | - Young Moo Cho
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
| |
Collapse
|
32
|
Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.110] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Liu LY, Zhang L, Feng T, Li ZH, Dong ZJ, Li XY, Su J, Li Y, Liu JK. Unusual illudin-type sesquiterpenoids from cultures of Agrocybe salicacola. NATURAL PRODUCTS AND BIOPROSPECTING 2011; 1:87-92. [PMCID: PMC4131650 DOI: 10.1007/s13659-011-0018-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/26/2011] [Indexed: 06/01/2023]
Abstract
Seven new illudin-type sesquiterpenoids, agrocybins A–G (1–7), along with three known analogues (8–10), have been isolated from the culture broth of the fungus Agrocybe salicacola. Their structures were elucidated on the basis of extensive spectroscopic data analysis and comparison with data reported in the literature. The relative stereoconfigurations of 1 and 6 were elucidated by the X-ray crystallographic diffraction analysis. Compound 1 was highly cyclized containing seven chiral carbons which arranged compactly in six rings. ![]()
Collapse
Affiliation(s)
- Liang-Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Ling Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zheng-Hui Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ze-Jun Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Xing-Yao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ji-Kai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
34
|
Wang G, Liu LY, Zhu YC, Liu JK. Illudin T, a new sesquiterpenoid from basidiomycete Agrocybe salicacola. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:430-433. [PMID: 21534041 DOI: 10.1080/10286020.2011.566218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new sesquiterpenoid (1), illudin T, was isolated from the culture of basidiomycete Agrocybe salicacola. The structure of the new compound was elucidated on the basis of spectral data.
Collapse
Affiliation(s)
- Gang Wang
- Anhui Key Laboratory of Modernized Chinese Materia Medica, Anhui College of Traditional Chinese Medicine, Hefei, China
| | | | | | | |
Collapse
|
35
|
|
36
|
Spatial distribution of Beta glucan containing wild mushroom communities in subtropical dry forest, Thailand. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-010-0067-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Ding Z, Lu Y, Lu Z, Lv F, Wang Y, Bie X, Wang F, Zhang K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Agrocybone, a novel bis-sesquiterpene with a spirodienone structure from basidiomycete Agrocybe salicacola. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.04.128] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Zhu YC, Wang G, Liu JK. Two new sesquiterpenoids from basidiomycete Agrocybe salicacola. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:464-469. [PMID: 20552485 DOI: 10.1080/10286020.2010.489822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two new aromadendrane-type sesquiterpenoids (1 and 2), together with a known aromadendrane sesquiterpenoid (3), were isolated from the culture of basidiomycete Agrocybe salicacola. The structures and relative configurations of the new compounds were determined by spectroscopic methods and single-crystal X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Ying-Cheng Zhu
- Anhui Key Laboratory of Modernized Chinese Materia Medica, Anhui College of Traditional Chinese Medicine, Hefei, China
| | | | | |
Collapse
|
40
|
Smiderle FR, Olsen LM, Carbonero ER, Baggio CH, Freitas CS, Marcon R, Santos AR, Gorin PA, Iacomini M. Anti-inflammatory and analgesic properties in a rodent model of a (1→3),(1→6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol 2008; 597:86-91. [DOI: 10.1016/j.ejphar.2008.08.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/18/2008] [Accepted: 08/21/2008] [Indexed: 11/27/2022]
|