1
|
Huang Y, Wang L, Xie J, Chen H, Ou G, Zeng L, Li Y, Li W, Fan H, Zheng J. Exploring the chemical composition, medicinal benefits, and antioxidant activity of Plumula nelumbinis essential oil from different habitats in China. Saudi Pharm J 2023; 31:101829. [PMID: 37961070 PMCID: PMC10638055 DOI: 10.1016/j.jsps.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Plumula nelumbinis, a widely used traditional Chinese medicine known for its calming and nerve-soothing properties, contains essential oil as a primary component. However, research on P. nelumbinis essential oil (PNEO) is limited. This study aimed to investigate PNEO components, network target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and antioxidant activity of P. nelumbinis from ten different habitats. GC-MS analysis identified 14 compounds in the essential oil, with CP12 (β-Sitosterol) having the highest concentration. Five compounds were identified for the first time in P. nelumbinis, with three of them reported for the first time in the Nelumbo. Network target analysis revealed 185 potential targets for 11 compounds and GO and KEGG enrichment analyses showed that PNEO was mainly located in the plasma membrane and could regulate a variety of molecular functions. KEGG pathway enrichment analysis revealed that the essential oil was primarily enriched in pathways related to cancer and the nervous system. PNEO demonstrated strong antioxidant activity, with N8 (Fujiannanping) showing the highest ABTS scavenging capacity and N7 (Hunanxiangtan) showing the highest DPPH radical scavenging capacity. Cell experiments showed that CP4, CP5 and CP10 had protective effects against H2O2-induced oxidative damage. The study suggests that P. nelumbinis from different regions may have slightly different pharmacological effects due to the presence of unique compounds, and further research is necessary to explore the potential therapeutic benefits of PNEO.
Collapse
Affiliation(s)
- Yujing Huang
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Likang Wang
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Xie
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Haoming Chen
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guanrong Ou
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liya Zeng
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yexin Li
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weizhen Li
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxia Fan
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem 2023; 412:135581. [PMID: 36731239 DOI: 10.1016/j.foodchem.2023.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.
Collapse
|
3
|
Current trends and next generation of future edible oils. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Arooj M, Imran S, Inam‐ur‐Raheem M, Rajoka MSR, Sameen A, Siddique R, Sahar A, Tariq S, Riaz A, Hussain A, Siddeeg A, Aadil RM. Lotus seeds ( Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci Nutr 2021; 9:3971-3987. [PMID: 34262752 PMCID: PMC8269573 DOI: 10.1002/fsn3.2313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nelumbinis semen is commonly known as lotus seeds that have been used as a vegetable, functional food, and medicine for 7,000 years. These are low caloric, a rich source of multiple nutrients and bioactive constituents, which make it a unique therapeutic food. N. semen plays an important part in the physiological functions of the body. Nowadays, people are more conscious about their health and desire to treat disease naturally with minimal side effects. So, functional foods are getting popularity due to a wide range of essential constituents, which are associated to decrease the risk of chronic diseases. These bioactive compounds from seeds are involved in anti-adipogenic, antioxidant, antitumor, cardiovascular, hepato-protective, anti-inflammatory, anti-fertility, anti-microbial, anti-viral, hypoglycemic, etc. Moreover, the relationship between functional compounds along with their mechanism of action in the body, their extraction from the seeds for further research would be of great interest.
Collapse
Affiliation(s)
- Muzalfa Arooj
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Saira Imran
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Aysha Sameen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rabia Siddique
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Amna Sahar
- Department of Food EngineeringUniversity of AgricultureFaisalabadPakistan
| | - Shiza Tariq
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Ayesha Riaz
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
5
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
6
|
Nutritional composition and quality characterization of lotus (Nelumbo nucifera Gaertn.) seed flour supplemented cookies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00622-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. Journal of Food Science and Technology 2020; 57:2259-2268. [PMID: 32431352 DOI: 10.1007/s13197-020-04263-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Chitosan (CS) is considered a versatile biopolymer with promising applications. However, it is not a good chain-breaking antioxidant due to the lack of H-atom donors. In this work, CS was combined with quercetin (Q), a natural antioxidant, via a free radical-mediated procedure to strengthen the antioxidant capacity. The successful formation of Q-grafted CS (Q-CS) was confirmed by ultraviolet-visible absorbance and Fourier transform infrared spectroscopy. After combination, the obtained Q-CS had a phenolic content of 13.9 mg QE/g Q-CS and showed a lower crystallinity and thermal stability than the native CS. The 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), superoxide, and hydroxyl radical scavenging activities of Q-CS were higher than those of CS, illustrating that grafting with Q is an available way to improve the antioxidant capacity of CS. In addition, Q-CS showed higher minimal inhibitory concentrations against tested bacteria than CS, suggesting that combining with Q has a negative effect on the antibacterial activity of CS. Our results indicate that Q-CS may have great potential for applications in the fields of food and healthcare.
Collapse
|
8
|
Jing Y, Diao Y, Yu X. Free radical-mediated conjugation of chitosan with tannic acid: Characterization and antioxidant capacity. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Chen G, Zhu M, Guo M. Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health promoting activities and beyond. Crit Rev Food Sci Nutr 2019; 59:S189-S209. [DOI: 10.1080/10408398.2018.1553846] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, PR China
| | - Mingzhi Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, PR China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
10
|
Yu X, Jing Y, Jiang Y. Preparation of proanthocyanidin–chitosan complex and its antioxidant and antibacterial properties. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0642-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Yan F, Yu X, Jing Y. Optimized preparation, characterization, and antioxidant activity of chitooligosaccharide-glycine Maillard reaction products. Journal of Food Science and Technology 2017; 55:712-720. [PMID: 29391636 DOI: 10.1007/s13197-017-2982-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
Abstract
In this study, chitooligosaccharide (COS) and glycine (Gly) were selected to prepare Maillard reaction products, which were designated COS-Gly-MRPs. Changes in the FTIR and fluorescence spectra confirmed the formation of the COS-Gly-MRPs. Using ferric reducing antioxidant power (FRAP) as a response, the optimal reaction conditions, i.e., a time of 107 min, temperature of 121 °C, pH of 6.0, and nCOS:nGly = 2.5:1, were obtained by one-variable-at-a-time method and by response surface methodology. The resulting COS-Gly-MRPs exhibited much stronger antioxidant activity than their substrates. The FRAP of COS-Gly-MRPs was 32.14 mmol Fe2+/L, and the radical scavenging activity of COS-Gly-MRPs reached 78.6, 89.0, 92.3, and 86.0% for ABTS, superoxide, DPPH, and hydroxyl radicals, respectively. After 7 days of storage, COS-Gly-MRPs-treated fruit juices showed higher antioxidant capacity than those treated with a mixture of COS and Gly.
Collapse
Affiliation(s)
- Fang Yan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| | - Xueqing Yu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| | - Yingjun Jing
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
12
|
Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds ( Paeonia suffruticosa Andr.). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9164905. [PMID: 29081895 PMCID: PMC5634581 DOI: 10.1155/2017/9164905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 11/17/2022]
Abstract
Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.
Collapse
|
13
|
Zhang LL, Zhang LF, Xu JG, Hu QP. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr Res 2017; 61:1353356. [PMID: 28804441 PMCID: PMC5533134 DOI: 10.1080/16546628.2017.1353356] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/04/2017] [Indexed: 12/02/2022] Open
Abstract
Eugenol and its isomer isoeugenol are both used as flavouring agents or food additives in food products, and have both some similar biological properties. However, the difference in biological activities between eugenol and isoeugenol is rarely studied. In this study, the profiles of antioxidant, DNA-protective effects and antibacterial activities of eugenol and isoeugenol against several common foodborne pathogens were investigated and compared under various experiment conditions. Results showed that eugenol and isoeugenol had strong antioxidant activity, the protective effect against DNA damage and antibacterial activity. In addition, it was found that isoeugenol exhibited the higher biological activities mentioned above than eugenol, which was because isoeugenol had a carbon–carbon double bond closer to the benzene ring compared with eugenol. However, the specific reason needs to be further studied.
Collapse
Affiliation(s)
- Liang-Liang Zhang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
| | - Li-Fang Zhang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
| | - Jian-Guo Xu
- School of Food Science, Shanxi Normal University, Linfen, China
| | - Qing-Ping Hu
- School of Life Science, Shanxi Normal University, Linfen, China
| |
Collapse
|
14
|
Chen S, Bi Y, Sun S, Chen J. The Content and Composition of Total, Free, and Esterified Sterols of Lotus Plumule Oil by GC–MS/FID. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2952-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Shavisi N, Khanjari A, Basti AA, Misaghi A, Shahbazi Y. Effect of PLA films containing propolis ethanolic extract, cellulose nanoparticle and Ziziphora clinopodioides essential oil on chemical, microbial and sensory properties of minced beef. Meat Sci 2016; 124:95-104. [PMID: 27846444 DOI: 10.1016/j.meatsci.2016.10.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 11/24/2022]
Abstract
This study was conducted to examine the effects of polylactic acid (PLA) film containing propolis ethanolic extract (PE), cellulose nanoparticle (CN) and Ziziphora clinopodioides essential oil (ZEO) on chemical, microbial and sensory properties of minced beef during storage at refrigerated temperature for 11days. The initial total volatile base nitrogen (TVB-N) was 8.2mg/100g and after 7days reached to 29.1mg/100g in control, while it was lower than 25mg/100g for treated samples. At the end of storage time in control samples peroxide value (PV) reached to 2.01meqperoxide/1000g lipid, while the values for the treated samples remained lower than 2meqperoxide/1000g lipid. Final microbial population decreased approximately 1-3logCFU/g in treated samples compared to control (P<0.05). Films containing 2% ZEO alone and in combination with different concentrations of PE and CN extended the shelf life of minced beef during storage in refrigerated condition for at least 11days without any unfavorable organoleptic properties.
Collapse
Affiliation(s)
- Nassim Shavisi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Khanjari
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Misaghi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
16
|
Zhu M, Liu T, Guo M. Current Advances in the Metabolomics Study on Lotus Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:891. [PMID: 27379154 PMCID: PMC4913082 DOI: 10.3389/fpls.2016.00891] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/06/2016] [Indexed: 05/08/2023]
Abstract
Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject.
Collapse
Affiliation(s)
- Mingzhi Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Ting Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center – Chinese Academy of SciencesWuhan, China
| |
Collapse
|
17
|
Hu M, Peng W, Liu Y, Wu N, Zhao C, Xie D, Yan D, Zhang X, Tao X, Wu CJ. Optimum Extraction of Polysaccharide fromAreca catechuUsing Response Surface Methodology and its Antioxidant Activity. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meibian Hu
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Wei Peng
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Yujie Liu
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Na Wu
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Chongbo Zhao
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Dashuai Xie
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Dan Yan
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Xiaofei Zhang
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Xingbao Tao
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| | - Chun-Jie Wu
- College of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 610075 People's Republic of China
| |
Collapse
|
18
|
Qi S, Huang H, Huang J, Wang Q, Wei Q. Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Wu P, Ma G, Li N, Deng Q, Yin Y, Huang R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa(Ait.) Hassk. Food Chem 2014; 173:194-202. [PMID: 25466012 DOI: 10.1016/j.foodchem.2014.10.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/10/2014] [Accepted: 10/04/2014] [Indexed: 02/03/2023]
Abstract
This study investigated the in vitro and in vivo antioxidant activities of the flavonoids rich extract from Rhodomyrtus tomentosa Hassk (R. tomentosa) berries. The in vitro antioxidant assay demonstrated that the flavonoids rich extract (62.09% rutin equivalent) extracted by ethanol and purified by AB-8 macroporous resin was strong in reducing power, superoxide radical, hydroxyl radical and DPPH radical scavenging activity, as well as inhibiting lipid peroxidation. In the in vivo assays, the flavonoids rich extract significantly enhanced the activities of antioxidant enzymes in serums of mice after they were administered with the extract. The results suggested that the flavonoids rich extract from R. tomentosa fruits possesses potent antioxidant properties. In addition, the chemical compositions of flavonoids rich extract were identified by UPLC-TOF-MS/MS. Six flavonoids were tentatively identified as myricetin, quercetin, dihydromyricetin, kaempferol, quercetin 7,4'-diglucoside and vitexin. Therefore, R. tomentosa berries could be used as a new source of antioxidant ingredient.
Collapse
Affiliation(s)
- Pingping Wu
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Guangzhi Ma
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Nianghui Li
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Qian Deng
- Milne Fruit Products, Inc, 804 Bennett Avenue, Prosser, WA 99350, USA
| | - Yanyan Yin
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ruqiang Huang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
20
|
Machado BAS, Pereira CG, Nunes SB, Padilha FF, Umsza-Guez MA. Supercritical Fluid Extraction Using CO2: Main Applications and Future Perspectives. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.811422] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2091-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
REN Q, XING H, BAO Z, SU B, YANG Q, YANG Y, ZHANG Z. Recent Advances in Separation of Bioactive Natural Products. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60560-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Xu JD, Zhang LW, Liu YF. Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3’, 4’, 7-triacetoxyethoxyquercetin. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Qi S, Zhou D. Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese Sausage. Meat Sci 2013; 93:257-62. [DOI: 10.1016/j.meatsci.2012.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/19/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
25
|
Zhang Y, Zheng B, Tian Y, Huang S. Microwave-assisted extraction and anti-oxidation activity of polyphenols from lotus (Nelumbo nucifera Gaertn.) seeds. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0210-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
26
|
Li X. Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6418-24. [PMID: 22656066 DOI: 10.1021/jf204970r] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The original pyrogallol (1,2,3-trihydroxybenzene) method, which was developed specifically for superoxide dismutase, is now widely used for measuring superoxide-scavenging of other antioxidants. However, the strong pH effect has been ignored. In this study, the influencing factors have been systematically investigated for the first time, and a number of experiments have proved that the pH is of major importance. As major antioxidants contain carboxylic acid, ester, or lactone groups, pH 8.2 should be modified to physiological pH 7.4. The improved procedure is as follows. A pyrogallol solution (in 1 M HCl) is thoroughly mixed with pH 7.4 Tris-HCl buffer; A(325 nm) is measured every 30 s for 5 min at 37 °C. As the ΔA(325 nm, control) value reflects the initial concentration of substrate (•)O(2)(-), it should be well controlled to guarantee the accuracy of the method. The improved pyrogallol method is a reliable and cheap superoxide-scavenging assay suitable for all types of antioxidants.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine , Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, 510006 Guangzhou, China.
| |
Collapse
|
27
|
Lv L, Jiang C, Li J, Zheng T. Protective effects of lotus (Nelumbo nucifera Gaertn) germ oil against carbon tetrachloride-induced injury in mice and cultured PC-12 cells. Food Chem Toxicol 2012; 50:1447-53. [DOI: 10.1016/j.fct.2012.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
28
|
Wu Z, Ming J, Gao R, Wang Y, Liang Q, Yu H, Zhao G. Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10737-10746. [PMID: 21892831 DOI: 10.1021/jf202722w] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Few data are available about the effects of complexation of polyphenols with polysaccharide on their bioavailability. The complex of tea polyphenols (TP) with oat β-glucan was characterized by ultraviolet-visible spectrometry, Fourier transform infrared spectrometry, differential scanning calorimetry, atomic force microscopy, and solid-state (13)C NMR spectroscopy. The results indicated that the bonds which governed the interaction between TP and oat β-glucan were strong hydrogen bonds. The in vitro antioxidant activity of TP, β-glucan, their complex, and physical mixture was assessed using four systems, namely, DPPH(•), OH(•), and O(2)(•-) scavenging activities and reducing power. The complexation and blending of TP and β-glucan exhibited different impacts on the index of in vitro and in vivo antioxidant capacities. In the concentration range of 0.5-2.5 mg mL(-1), the complex had highest O(2)(•-) scavenging activity, whereas the highest OH(•) scavenging activity was found with the physical mixture. For antioxidant testing in vivo, there was no significant difference between the complex and the physical mixture in terms of glutathione peroxidase activity and levels of malondialdehyde and total antioxidant capacity in serums. However, the complex exhibited much higher activities of superoxide dismutase and glutathione peroxidase in livers than the physical mixture. The present study provided a deeper understanding of the influence of molecular interaction between TP and oat β-glucan on their antioxidant activities.
Collapse
Affiliation(s)
- Zhen Wu
- College of Food Science, Southwest University , Chongqing 400715, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. FOOD AND BIOPRODUCTS PROCESSING 2011. [DOI: 10.1016/j.fbp.2010.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Abstract
This study provides new data on the various carotenoids found in bambangan (Mangifera pajang Kosterm.) peel and pulp extracts, such as all-trans-α- and β-carotene, cis-β-carotene, 9-cis-β-carotene, and cryptoxanthin. Chemical and biological antioxidant assays were determined to evaluate the antioxidant capacity of bambangan peel and pulp extracts. Bambangan pulp had higher α- and β-carotene contents (7.96 ± 1.53 and 20.04 ± 1.01 mg/100 g) than its peel (4.2 ± 0.14 and 13.09 ± 0.28 mg/100 g); the cryptoxanthin contents of bambangan peel and pulp were 0.60 and 1.18 mg/100 g, respectively. The antioxidant activity results determined by chemical assay using the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method showed that bambangan peel extract had higher DPPH radical scavenging activity than its pulp. In the biological assays bambangan peel and pulp had protective effects against hemoglobin and LDL oxidation at an extract concentration of 1 ppm. Bambangan peel is a therefore a potential source of natural antioxidants and could be utilized as a functional ingredient.
Collapse
|
31
|
Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. J Biomed Biotechnol 2010; 2010. [PMID: 20936182 PMCID: PMC2946633 DOI: 10.1155/2010/871379] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022] Open
Abstract
Antioxidant capacities of ethylacetate, butanol, and water fractions of peel, pulp, and seeds of Canarium odontophyllum Miq. (CO) were determined using various in vitro antioxidant models. Ethylacetate fraction of peel (EAFPE) exhibited the highest total phenolic (TPC), total flavonoid content (TFC), and antioxidant activities compared to pulp, seeds, and other solvent fractions. Antioxidant capacities were assayed by total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical activity, ferric reducing antioxidant power (FRAP), and hemoglobin oxidation assay. Total phenolic content of ethylacetate fractions was positively correlated with the antioxidant activity. This is the first report on the antioxidant activities from CO fruit fractions. Thus, EAFPE can be used potentially as a readily accessible source of natural antioxidants and as a possible pharmaceutical supplement.
Collapse
|
32
|
Herrero M, Mendiola JA, Cifuentes A, Ibáñez E. Supercritical fluid extraction: Recent advances and applications. J Chromatogr A 2009; 1217:2495-511. [PMID: 20022016 DOI: 10.1016/j.chroma.2009.12.019] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Among the different extraction techniques used at analytical and preparative scale, supercritical fluid extraction (SFE) is one of the most used. This review covers the most recent developments of SFE in different fields, such as food science, natural products, by-product recovery, pharmaceutical and environmental sciences, during the period 2007-2009. The revision is focused on the most recent advances and applications in the different areas; among them, it is remarkable the strong impact of SFE to extract high value compounds from food and natural products but also its increasing importance in areas such as heavy metals recovery, enantiomeric resolution or drug delivery systems.
Collapse
Affiliation(s)
- Miguel Herrero
- Instituto de Fermentaciones Industriales (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|