1
|
Wei M, Chen P, Zheng P, Tao X, Yu X, Wu D. Purification and characterization of aspartic protease from Aspergillus niger and its efficient hydrolysis applications in soy protein degradation. Microb Cell Fact 2023; 22:42. [PMID: 36864487 PMCID: PMC9983247 DOI: 10.1186/s12934-023-02047-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Adding acid protease to feed can enhance protein digestibility, boost feed utilization, and stimulate the growth of animals in breading industry. In order to obtain an acid protease with high hydrolysis efficiency to plant protein, in this study, an aspartic protease from Aspergillus niger was heterologous expressed in Pichia pastoris (P. pastoris). The enzymatic properties and application in soybean protein degradation were also studied. RESULTS In our investigation, the high aspartic protease (Apa1) activity level of 1500 U/mL was achieved in 3 L bioreactor. After dialysis and anion exchange chromatography, the total enzyme activity and specific enzyme activity were 9412 U and 4852 U/mg, respectively. The molecular weight of the purified protease was 50 kDa, while the optimal pH and temperature were 3.0 and 50 °C, respectively. It was stable at pH 2.0-5.0 and 30-60 °C. Apa1 was used to hydrolyze soybean isolate protein (SPI) at 40 °C and pH 3.0, and a high hydrolysis degree (DH) of 61.65% was achieved. In addition, the molecular weight distribution of SPI hydrolysis products was studied, the result showed that the hydrolysis products were primarily oligopeptides with molecular weights of 189 Da or below. CONCLUSIONS In this study, Apa1 was successfully expressed in P. pastoris and high expression level was obtained. In addition, the highest protein hydrolysis rate to SPI degradation so far was achieved. The acid protease in this study provides a new protease that is suitable for the feed industry, which will be very helpful to improve the feed utilization and promote the development of the breeding industry.
Collapse
Affiliation(s)
- Mengyuan Wei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pengcheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaowei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Song P, Cheng L, Tian K, Zhang M, Mchunu NP, Niu D, Singh S, Prior B, Wang ZX. Biochemical characterization of two new Aspergillus niger aspartic proteases. 3 Biotech 2020; 10:303. [PMID: 32566441 DOI: 10.1007/s13205-020-02292-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 01/19/2023] Open
Abstract
Two new aspartic proteases, PepAb and PepAc (encoded by pepAb and pepAc), were heterologously expressed and biochemically characterized from Aspergillus niger F0215. They possessed a typical structure of pepsin-type aspartic protease with the conserved active residues D (84, 115), Y (131, 168) and D (281, 326), while their identity in amino acid sequences was only 19.0%. PepAb had maximum activity at pH 2.5 and 50 °C and PepAc at 3.0 and 50 °C. The specific activities of PepAb and PepAc toward casein were 1368.1 and 2081.4 U/mg, respectively. Their activities were significantly promoted by Cu2+ and Mn2+ and completely inhibited by pepstatin. PepAb exhibited higher catalytic efficiency (k cat/K m) toward soy protein isolates than casein, while PepAc showed higher catalytic efficiency toward casein. The hydrolysis capacities of PepAb and PepAc on soy protein isolates were slightly lower than that of previously identified A. niger aspartic protease, PepA (aspergillopepsin I), while the resultant peptide profiles were remarkably different for all three proteases.
Collapse
Affiliation(s)
- Peng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Lei Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Meng Zhang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Nokuthula Peace Mchunu
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4001 South Africa
| | - Bernard Prior
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa
| | - Zheng-Xiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
3
|
Guo Y, Tu T, Zheng J, Ren Y, Wang Y, Bai Y, Su X, Wang Y, Yao B, Huang H, Luo H. A novel thermostable aspartic protease from Talaromyces leycettanus and its specific autocatalytic activation through an intermediate transition state. Appl Microbiol Biotechnol 2020; 104:4915-4926. [DOI: 10.1007/s00253-020-10569-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023]
|
4
|
Huang Y, Wang Y, Xu Y. Purification and characterisation of an acid protease from the Aspergillus hennebergii
HX08 and its potential in traditional fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongguang Huang
- School of Liquor and Food Engineering, Guizhou University; Huaxi District of Guiyang City, Guiyang Guizhou Province, Guizhou 550025 China
| | - Yuxia Wang
- School of Life Science and Food Engineering; Yibin University; 8 Jiusheng Road Yibin Sichuan 644000 China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology; Jiangnan University; 1800 Lihu Ave Wuxi Jiangsu 214122 China
| |
Collapse
|
5
|
Yu X, Wu H, Zhang J. Effect of Monascus as a nitrite substitute on color, lipid oxidation, and proteolysis of fermented meat mince. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0075-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Vannabun A, Ketnawa S, Phongthai S, Benjakul S, Rawdkuen S. Characterization of acid and alkaline proteases from viscera of farmed giant catfish. FOOD BIOSCI 2014. [DOI: 10.1016/j.fbio.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Production optimization, purification, and characterization of a novel acid protease from a fusant by Aspergillus oryzae and Aspergillus niger. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2172-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Xu D, Li C, Wang Y, Sun L, Zhao H, Zhao M. Characterisation of acid proteases from a fusant F76 and its progenitors Aspergillus oryzae HN3042 and Aspergillus niger CICC2377. Int J Food Sci Technol 2013; 48:678-684. [DOI: 10.1111/j.1365-2621.2012.03142.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/12/2012] [Indexed: 07/02/2024]
Abstract
SummaryThe characteristics of a novel acid protease from a fusant F76 were comparatively evaluated with those from its progenitors Aspergillus oryzae HN3042 and A. niger CICC2377. The UV spectra of these three acid proteases were similar, but fluorescence spectra were different. The acid protease from F76 contained 7.1% α‐helix, 39.4% β‐sheet, 24.7% β‐turn and 32% aperiodic coil, unlike those from its progenitors. The acid protease from F76 was active in the temperature range of 35–55 °C with the optimum temperature of 40 °C and was stable in the pH range of 2.5–6.5 with the optimum pH of 3.5, while those values from A. oryzae HN3042 and A. niger CICC2377 were 45 °C, 4.0 and 40 °C, 3.5, respectively. The kinetic parameters of the acid protease from F76 were different from its progenitors and the Michaelis constant, maximum velocity, activation energy, and attenuation index were 0.96 mg mL−1, 135.14 μmol min−1 mg−1, 64.11 kJ mol−1 and 0.59, respectively.
Collapse
Affiliation(s)
- Defeng Xu
- Department of Food Quality and Safety Guangdong Ocean University Zhanjiang 524088 China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology of Guangdong Medical College Dongguan 523808 China
| | - Yaling Wang
- Department of Food Quality and Safety Guangdong Ocean University Zhanjiang 524088 China
| | - Lijun Sun
- Department of Food Quality and Safety Guangdong Ocean University Zhanjiang 524088 China
| | - Haifeng Zhao
- College of Light Industry and Food sciences South China University of Technology Guangzhou 510641 China
| | - Mouming Zhao
- College of Light Industry and Food sciences South China University of Technology Guangzhou 510641 China
| |
Collapse
|
9
|
Yin LJ, Hsu TH, Jiang ST. Characterization of acidic protease from Aspergillus niger BCRC 32720. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:662-666. [PMID: 23286670 DOI: 10.1021/jf3041726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An acid protease from the broth of a 24 h cultivated Aspergillus niger BCRC 32720 was purified to electrophoretical homogeneity by CM Sepharose FF and Sephacryl S-100 HR chromatographs. The specific activity, purification fold, and yield were 23.29 kU/mg, 2.5, and 24.2%, respectively. Molecular mass (M) and N-terminal amino acid sequence were 47.5 kDa and SKGSAVTT, whereas the pH and temperature optima were at 2.5 and 50 °C, respectively. It was stable at pH 2.0-4.0 or ≤40 °C and activated by Fe(2+) and cysteine, but partially inhibited by phenylmethanesulfonyl fluoride and tosyllysine chloromethyl ketone and highly inhibited by Ag(+), Sn(2+), Fe(3+), Sb(3+), and pepstatin A. It was considered to be an aspartic protease.
Collapse
Affiliation(s)
- Li-Jung Yin
- Department of Seafood Science, National Kaohsiung Marine University, Nan-Tzu, Kaohsiung 81143, Taiwan
| | | | | |
Collapse
|
10
|
Yasuda M, Tachibana S, Kuba-Miyara M. Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Appl Microbiol Biotechnol 2012; 96:49-60. [PMID: 22864970 DOI: 10.1007/s00253-012-4300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/14/2022]
Abstract
Red koji or red mold rice is prepared by growing a genus Monascus on steamed rice. For centuries, it has been used in Asia for the production of fermented foods including red rice wine and fermented tofu. Although red koji is an important source of various hydrolytic enzymes critical for food fermentation, information on the enzymatic properties in red koji has been limited. Hydrolytic enzymes produced by Monascus fungi may play important roles in ripening of tofuyo (Japanese fermented tofu) regarding the chemical and physical properties of the product. This review provides an introduction of red koji, its properties, and the application of hydrolytic enzymes, especially aspartic proteinases and carboxypeptidases from Monascus fungi. We also describe tofuyo and a novel fermented soybean protein food using a microbial action originating from red koji.
Collapse
Affiliation(s)
- Masaaki Yasuda
- Okinawa Study Center, The Open University of Japan, 1 Senbaru, Okinawa 903-0213, Japan.
| | | | | |
Collapse
|
11
|
Lakshman PN, Toyokawa Y, Tachibana S, Toyama H, Taira T, Yasuda M. Reducing the antigenicity of milk whey protein using acid proteinases from Monascus pilosus. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Application of an acid proteinase from Monascus purpureus to reduce antigenicity of bovine milk whey protein. J Ind Microbiol Biotechnol 2011; 38:1485-92. [PMID: 21298320 DOI: 10.1007/s10295-010-0933-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/18/2010] [Indexed: 10/18/2022]
Abstract
An acid proteinase from Monascus purpureus No. 3403, MpuAP, was previously purified and some characterized in our laboratory (Agric Biol Chem 48:1637-1639, 1984). However, further information about this enzyme is lacking. In this study, we investigated MpuAP's comprehensive substrate specificity, storage stability, and prospects for reducing antigenicity of whey proteins for application in the food industry. MpuAP hydrolyzed primarily five peptide bonds, Gln(4)-His(5), His(10)-Leu(11), Ala(14)-Leu(15), Gly(23)-Phe(24) and Phe(24)-Phe(25) in the oxidized insulin B-chain. The lyophilized form of the enzyme was well preserved at 30-40°C for 7 days without stabilizers. To investigate the possibility of reducing the antigenicity of the milk whey protein, enzymatic hydrolysates of the whey protein were evaluated by inhibition ELISA. Out of the three main components of whey protein, casein and α-lactalbumin were efficiently degraded by MpuAP. The sequential reaction of MpuAP and trypsin against the whey protein successfully degraded casein, α-lactalbumin and β-lactoglobulin with the highest degree of hydrolysis. As a result, the hydrolysates obtained by using the MpuAP-trypsin combination showed the lowest antigenicity compared with the single application of pepsin, trypsin or pepsin-trypsin combination. Therefore, the overall result suggested that the storage-stable MpuAP and trypsin combination will be a productive approach for making hypoallergic bovine milk whey protein hydrolysates.
Collapse
|