1
|
Unar IN, Maitlo G, Abro M, Ali I, Laghari AQ, Solangi ZA, Koondhar NA, Ansari NM, Kim JO. Modeling and simulation of juice clarifier using computational fluid dynamics for enhanced sugar quality. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
2
|
Molina-Cortés A, Quimbaya M, Toro-Gomez A, Tobar-Tosse F. Bioactive compounds as an alternative for the sugarcane industry: Towards an integrative approach. Heliyon 2023; 9:e13276. [PMID: 36816322 PMCID: PMC9932480 DOI: 10.1016/j.heliyon.2023.e13276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Here, a comprehensive review of sugarcane industrialization and its relationship with bioactive compounds (BCs) detected in various products and by-products generated during its processing is presented. Furthermore, it is discussed how these compounds have revealed important antioxidant, antineoplastic, antidiabetic, and antimicrobial activities. From this bibliographic research highlights the significance of two types of BCs of natural origin (phenolic compounds (PCs) and terpenoids) and a group of compounds synthesized during industrial transformation processes (Maillard reaction products (MRPs)). It was found that most of the studies about the BCs from sugarcane have been conducted by identifying, isolating, and analyzing ones or a few compounds at a specific period, this being a conventional approach. However, given the complexity of the synthesis processes of all these BCs and the biological activities they can manifest in a specific biological context, novel approaches are needed to address these analyses holistically. To overcome this challenge, integrating massive and multiscale methods, such as omics sciences, seems necessary to enrich these studies. This work is intended to contribute to the state of the art that could support future research about the exploration, characterization, or evaluation of different bioactive molecules from sugarcane and its derivatives.
Collapse
Affiliation(s)
- Andrea Molina-Cortés
- Facultad de Ingeniería y Ciencias - Doctorado en Ingeniería y Ciencias Aplicadas, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Mauricio Quimbaya
- Facultad de Ingeniería y Ciencias - Doctorado en Ingeniería y Ciencias Aplicadas, Pontificia Universidad Javeriana Cali, Cali, Colombia,Facultad de Ingeniería y Ciencias - Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Angie Toro-Gomez
- Facultad de Ciencias Naturales, Exactas y de la Educación - Maestría en Bioingeniería, Universidad del Cauca, Popayán, Colombia
| | - Fabian Tobar-Tosse
- Facultad de Ingeniería y Ciencias - Doctorado en Ingeniería y Ciencias Aplicadas, Pontificia Universidad Javeriana Cali, Cali, Colombia,Facultad de Ciencias de la Salud - Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia,Corresponding author. Facultad de Ciencias de la Salud - Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia.
| |
Collapse
|
3
|
Qiu Z, Han X, Fu A, Jiang Y, Zhang W, Jin C, Li D, Xia J, He J, Deng Y, Xu N, Liu X, He A, Gu H, Xu J. Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 368:128324. [PMID: 36400276 DOI: 10.1016/j.biortech.2022.128324] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
After several rounds of milling process for sugars extraction from sugarcane, certain amounts of water-soluble carbohydrates (WSC) still remain in sugarcane bagasse. It is a bottleneck to utilize WSC in sugarcane bagasse biorefinery, since these sugars are easily degraded into inhibitors during pretreatment. Herein, a simple pre-fermentation step before pretreatment was conducted, and 98 % of WSC in bagasse was fermented into d-lactic acid. The obtained d-lactic acid was stably preserved in bagasse and 5-hydroxymethylfurfural (HMF) generation was sharply reduced from 46.0 mg/g to 6.2 mg/g of dry bagasse, after dilute acid pretreatment. Consequently, a higher d-lactic acid titer (57.0 g/L vs 33.2 g/L) was achieved from the whole slurry of the undetoxified and pretreated sugarcane bagasse by one-pot simultaneous saccharification and co-fermentation (SSCF), with the overall yield of 0.58 g/g dry bagasse. This study gave an efficient strategy for enhancing lactic acid production using the lignocellulosic waste from sugar industry.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China; Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Anqing Fu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yalan Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenyue Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Dengchao Li
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hanqi Gu
- Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
4
|
Xu Z, Wang C, Yan H, Zhao Z, You L, Ho CT. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chem 2022; 373:131396. [PMID: 34710683 DOI: 10.1016/j.foodchem.2021.131396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022]
Abstract
Sugarcane contains various anthocyanins, which are responsible for the colors present in sugarcane. In this study, the color intensification of the major anthocyanin, cyanidin-3-O-glucoside, by phenolic acids/aldehydes (ferulic acid, vanillic acid, p-coumaric acid, syringic aldehyde and vanillic aldehyde) was investigated. The color enhancement of cyanidin-3-O-glucoside (hyperchromic effect and bathochromic shift) was affected by the temperature and concentration of phenolic acids/aldehydes present. Reactions were spontaneous and exothermic, as determined using different thermodynamic parameters (ΔG0, ΔH0, ΔS0). Quantum chemical calculations demonstrated their intermolecular interaction differences, and AIM analysis indicated that hydrogen bonds and van der Waals force interactions contributed to color. Pyranoanthocyanins derived from cyanidin-3-O-glucoside and ferulic/p-coumaric acids during storage were recognized as cyanidin-3-O-glucoside-vinylphenol and cyanidin-3-O-glucoside-vinylguaiacol, respectively, by UPLC-ESI-QTOF-MS/MS. The electron-donating substituents on the aromatic ring of ferulic/p-coumaric acids stabilized the intermediately formed carbenium ion. Decarboxylation and further oxidation of the pyran moieties to the aromatic heterocycles resulted in the final products.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No.11, Fucheng Road, Haidian District, Beijing 100048, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No.11, Fucheng Road, Haidian District, Beijing 100048, China
| | - Huaifeng Yan
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), 381 Wushan Road, Guangzhou 510640, China.
| | - Lijun You
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), 381 Wushan Road, Guangzhou 510640, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
6
|
Takahashi M, Ishmael M, Asikin Y, Hirose N, Mizu M, Shikanai T, Tamaki H, Wada K. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarumL.). J Food Sci 2016; 81:C2647-C2655. [DOI: 10.1111/1750-3841.13531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Takahashi
- Faculty of Agriculture; Univ. of the Ryukyus; Senbaru 1 Nishihara Okinawa 903-0213 Japan
| | - Mutanda Ishmael
- United Graduate School of Agricultural Science; Kagoshima Univ; Korimoto 1-21-24 Kagoshima 890-0065 Japan
| | - Yonathan Asikin
- Faculty of Agriculture; Univ. of the Ryukyus; Senbaru 1 Nishihara Okinawa 903-0213 Japan
| | - Naoto Hirose
- Regional Agricultural System Section; Okinawa Prefectural Agricultural Research Center; 820 Makabe Itoman Okinawa 901-0336 Japan
| | - Masami Mizu
- Product Development Div; Mitsui Sugar Co. Ltd; Nihonbashi, 36-2 Hakozaki-Cho Tokyo 103-8423 Japan
| | - Takesi Shikanai
- Faculty of Agriculture; Univ. of the Ryukyus; Senbaru 1 Nishihara Okinawa 903-0213 Japan
| | - Hajime Tamaki
- Faculty of Agriculture; Univ. of the Ryukyus; Senbaru 1 Nishihara Okinawa 903-0213 Japan
| | - Koji Wada
- Faculty of Agriculture; Univ. of the Ryukyus; Senbaru 1 Nishihara Okinawa 903-0213 Japan
| |
Collapse
|
7
|
Agrawal R, Srivastava A, Verma AK. Immobilization of β-glucosidase onto silicon oxide nanoparticles and augment of phenolics in sugarcane juice. Journal of Food Science and Technology 2016; 53:3002-3012. [PMID: 27765970 DOI: 10.1007/s13197-016-2269-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2016] [Accepted: 05/29/2016] [Indexed: 12/15/2022]
Abstract
Purified β-glucosidase was immobilized on SiO2 nanoparticles with 52 % efficiency and 14.1 % yield. It had a temperature optima at 60 °C and pH optima of 5.0. Immobilized enzyme was fairly stable at 60-70 °C. After immobilization, the Km value of β-glucosidase for p-nitrophenyl-β-d-glucopyranoside (pNPG) increased from 0.9 to 1.074 mM and Vmax decreased from 3.5 to 1.513 U/mg. The immobilized enzyme showed improved storage stability at temperature 4 and 25 °C and was reusable for up to ten cycles with 70 % residual activity in pNPG and 60 % residual activity in sugarcane juice treatment. Sugarcane juice density, viscosity; surface tension etc. changed after treatment with immobilized β-glucosidase. β-Glucosidase treated sugarcane juice showed higher phenolics than untreated sugarcane juice. Caffeic acid which was absent in juice, was detected in β-glucosidase treated juice at a concentration of about 1 mg/L.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Bioenergy, Department of Biotechnology-Indian Oil Corporation Centre, Sector 13, Faridabad, Haryana 121007 India
| | - Anjana Srivastava
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263145 India
| | - A K Verma
- Department of Biochemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263145 India
| |
Collapse
|
8
|
Agrawal R, Verma A, Satlewal A. Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Chaieb N, López-Mesas M, Luis González J, Mars M, Valiente M. Hollow fibre liquid phase micro-extraction by facilitated anionic exchange for the determination of flavonoids in faba beans (Vicia faba L.). PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:346-352. [PMID: 26046919 DOI: 10.1002/pca.2569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/31/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Flavonoids are polyphenolic compounds found ubiquitously in foods of plant origin. They are commonly extracted from plant materials with ethanol, methanol, water, their combination or even with acidified extracting solutions. The disadvantages of these methods are the use of high quantity of organic solvent, the possible loss of analytes in the different steps and the laborious process of the techniques. In addition, the complexity of the phenolic mixtures present in plant materials requires a preliminary clean-up and fractionation of the crude extracts. OBJECTIVE To develop a hollow fibre liquid phase micro-extraction (HF-LPME) method for a one step clean-up and pre-concentration of flavonoids. METHODOLOGY Two flavonoids (catechin and rutin) has been extracted by HF-LPME and analysed by HPLC. The related driving force for the liquid membrane has been studied by means of facilitated and non-facilitated transport. Different ionic and non-ionic water insoluble compounds [trioctylamine (TOA), tributyl phosphate (TBP), trioctylphosphine oxide (TOPO) and methyltrioctylammonium chloride (aliquat 336)] were used as carriers. The liquid membrane was constituted by a solution of n-decanol in the presence or absence of carriers. RESULTS Maximum enrichment factors were obtained with n-decanol/aliquat 336 (20%) as organic liquid membrane, sodium hydroxide (NaOH) (0.1 M) as donor solution, sodium chloride (NaCl) (2 M) as acceptor solution and 3 h as extraction time. Under these conditions, good results for validation parameters were obtained [for linearity, limit of detection (LOD), limit of quantitation (LOQ) and repeatability]. CONCLUSIONS The developed method is simple, effective and has been successfully applied to determine catechin and rutin in ethanolic extracts of faba beans.
Collapse
Affiliation(s)
- Nadia Chaieb
- Centre Grup de Tècniques de Separació en Química (GTS), Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Horticultural Sciences, Agro-Biodiversity Unit, Higher Agronomic Institute (ISA), University of Sousse-IRESA, Chott-Mariem, 4042, Sousse, Tunisia
- Regional Office of Agriculture Development Research Semi Arid North West, B.P. 221-7100, Le Kef, Tunisia
| | - Montserrat López-Mesas
- Centre Grup de Tècniques de Separació en Química (GTS), Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Johannes Luis González
- Centre Grup de Tècniques de Separació en Química (GTS), Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Messaoud Mars
- Department of Horticultural Sciences, Agro-Biodiversity Unit, Higher Agronomic Institute (ISA), University of Sousse-IRESA, Chott-Mariem, 4042, Sousse, Tunisia
| | - Manuel Valiente
- Centre Grup de Tècniques de Separació en Química (GTS), Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
10
|
Caderby E, Baumberger S, Hoareau W, Fargues C, Decloux M, Maillard MN. Sugar cane stillage: a potential source of natural antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11494-11501. [PMID: 24228787 DOI: 10.1021/jf4039474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.
Collapse
Affiliation(s)
- Emma Caderby
- eRcane, 40 route Gabriel Macé, F-97490 Sainte-Clotilde, France
| | | | | | | | | | | |
Collapse
|
11
|
Giacobbo A, Bernardes AM, de Pinho MN. Nanofiltration for the Recovery of Low Molecular Weight Polysaccharides and Polyphenols from Winery Effluents. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.809762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Li X, Ma H, Huang H, Li D, Yao S. Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 2013; 27:456-69. [DOI: 10.1080/14786419.2012.706299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Fan ZL, Wang ZY, Zuo LL, Tian SQ. Protective effect of anthocyanins from lingonberry on radiation-induced damages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:4732-43. [PMID: 23249859 PMCID: PMC3546787 DOI: 10.3390/ijerph9124732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Abstract
There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB) are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05) enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN) in bone marrow polychromatic erythrocytes (PCEs). These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.
Collapse
Affiliation(s)
- Zi-Luan Fan
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China; E-Mail:
| | - Zhen-Yu Wang
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China; E-Mail:
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mail:
| | - Li-Li Zuo
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mail:
| | - Shuang-Qi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; E-Mail:
| |
Collapse
|
14
|
Navas MJ, Jiménez-Moreno AM, Bueno JM, Sáez-Plaza P, Asuero AG. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part IV: Extraction of Anthocyanins. Crit Rev Anal Chem 2012. [DOI: 10.1080/10408347.2012.680343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Prasad KN, Kong KW, Ramanan RN, Azlan A, Ismail A. Determination and Optimization of Flavonoid and Extract Yield from Brown Mango using Response Surface Methodology. SEP SCI TECHNOL 2012. [DOI: 10.1080/01496395.2011.606257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|