1
|
Franchin M, Saliba ASMC, Giovanini de Oliveira Sartori A, Orestes Pereira Neto S, Benso B, Ikegaki M, Wang K, Matias de Alencar S, Granato D. Food-grade delivery systems of Brazilian propolis from Apis mellifera: From chemical composition to bioactivities in vivo. Food Chem 2024; 432:137175. [PMID: 37633143 DOI: 10.1016/j.foodchem.2023.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Brazilian propolis from Apis mellifera is widely studied worldwide due to its unique chemical composition and biological properties, such as antioxidant, antimicrobial, and anti-inflammatory. However, although many countries produce honey, another bee product, the consumption of propolis as a functional ingredient is linked to hydroethanolic extract. Hence, other food uses of propolis still have to be incorporated into food systems. Assuming that propolis is a rich source of flavonoids and is regarded as a food-grade ingredient for food and pharmaceutical applications, this review provides a theoretical and practical basis for optimising the bioactive properties of Brazilian propolis, encompassing the extraction processes and incorporating its bioactive compounds in the delivery systems for food applications. Overall, pharmacotechnical resources can optimise the extraction and enhance the chemical stability of phenolic compounds to ensure the bioactivity of food formulations.
Collapse
Affiliation(s)
- Marcelo Franchin
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
2
|
Umaña E, Solano G, Zamora G, Tamayo-Castillo G. Costa Rican Propolis Chemical Compositions: Nemorosone Found to Be Present in an Exclusive Geographical Zone. Molecules 2023; 28:7081. [PMID: 37894560 PMCID: PMC10609476 DOI: 10.3390/molecules28207081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The chemistry of Costa Rican propolis from Apis mellifera remains underexplored despite its potential applications. This study identified its chemical composition, linking chemotypes to antioxidant potential. METHODS Proton nuclear magnetic resonance (1H NMR) spectra were obtained for 119 propolis extracts and analyzed using multivariate analyses. In parallel, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was used to assess antioxidant activity. A generalized linear regression model (GLM) correlated this with its chemical profiles and geographical origin. Chromatographic methods were used to isolate active and inactive compounds, which were identified using nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). RESULTS Principal component analysis (PCA) revealed three chemical profile groups for the 119 propolis extracts, explaining 73% of the total variance with two components. Radical scavenging activity was found to correlate with chemical composition. Isolation yielded n-coniferyl benzoate in type I (EC50 = 190 µg/mL, ORAC = 0.60 µmol TE/µmol) and nemorosone in type II (EC50 = 300 µg/mL, ORAC = 0.7 µmol TE/µmol). Type III was represented in terpene-like components, which exhibited lower antioxidant activity. CONCLUSIONS This study categorizes Costa Rican propolis into three chemical types and identifies two key components linked to antioxidant activity. Notably, nemorosone, a valuable natural product, was found to be highly concentrated in a particular region of Costa Rica.
Collapse
Affiliation(s)
- Eduardo Umaña
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia 3000, Costa Rica;
| | - Godofredo Solano
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
| | - Gabriel Zamora
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia 3000, Costa Rica;
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
- Escuela de Química, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
3
|
Dutra RP, de Sousa MM, Mignoni MSPM, de Oliveira KGM, Pereira EB, Figueredo AS, da Costa AAC, Dias TG, Vasconcelos CC, Silva LA, Reis AS, Lopes AJO. Brazilian Amazon Red Propolis: Leishmanicidal Activity and Chemical Composition of a New Variety of Red Propolis. Metabolites 2023; 13:1027. [PMID: 37755307 PMCID: PMC10535413 DOI: 10.3390/metabo13091027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Leishmaniasis is caused by protozoans of the genus Leishmania, and its treatment is highly toxic, leading to treatment discontinuation and the emergence of resistant strains. In this study, we assessed the leishmanicidal activity and chemical composition of red propolis collected from the Amazon-dominated region of northern Tocantins State, Brazil. The MTT assay was employed to determine the samples' activity against Leishmania amazonensis promastigotes and their cytotoxicity against RAW macrophages. Spectrophotometric assays were utilised to measure the concentrations of total phenolics and flavonoids, while high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS) was used to determine the chemical composition. An in silico study was conducted to evaluate which compounds from Brazilian Amazon red propolis may correlate with this biological activity. Brazilian Amazon red propolis exhibited a high concentration of phenolic compounds and an inhibitory activity against L. amazonensis, with an IC50 ranging from 23.37 to 36.10 µg/mL. Moreover, fractionation of the propolis yielded a fraction with enhanced bioactivity (16.11 µg/mL). Interestingly, neither the propolis nor its most active fraction showed cytotoxicity towards macrophages at concentrations up to 200 µg/mL. The red colour and the presence of isoflavonoid components (isoflavones, isoflavans, and pterocarpans) confirm that the substance is Brazilian red propolis. However, the absence of polyprenylated benzophenones suggests that this is a new variety of Brazilian red propolis. The in silico study performed with two of the main leishmanicidal drug targets using all compounds identified in Amazon red propolis reported that liquiritigenin was the compound that exhibited the best electronic interaction parameters, which was confirmed in an assay with promastigotes using a standard. The findings indicate that Amazon red propolis possesses leishmanicidal activity, low toxicity, and significant biotechnological potential.
Collapse
Affiliation(s)
- Richard Pereira Dutra
- Laboratory of Natural Products Chemistry, Federal University of Maranhão, Imperatriz 65915-240, Brazil
- Program in Health and Technology, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | - Marcos Marinho de Sousa
- Laboratory of Natural Products Chemistry, Federal University of Maranhão, Imperatriz 65915-240, Brazil
- Program in Health and Technology, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | - Maria Simone Pereira Maciel Mignoni
- Laboratory of Natural Products Chemistry, Federal University of Maranhão, Imperatriz 65915-240, Brazil
- Program in Health and Technology, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | | | - Euzineti Borges Pereira
- Laboratory of Natural Products Chemistry, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | - Aline Santana Figueredo
- Laboratory of Pathology and Immunoparasitology, Federal University of Maranhão, São Luís 65080-805, Brazil
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085–580, Brazil
| | - Arthur André Castro da Costa
- Laboratory of Pathology and Immunoparasitology, Federal University of Maranhão, São Luís 65080-805, Brazil
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085–580, Brazil
| | - Tatielle Gomes Dias
- Program in Health and Technology, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | - Cleydlenne Costa Vasconcelos
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085–580, Brazil
| | - Lucilene Amorim Silva
- Laboratory of Pathology and Immunoparasitology, Federal University of Maranhão, São Luís 65080-805, Brazil
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085–580, Brazil
| | - Aramys Silva Reis
- Program in Health and Technology, Federal University of Maranhão, Imperatriz 65915-240, Brazil
| | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| |
Collapse
|
4
|
Cuesta-Rubio O, Monzote L, Fernández-Acosta R, Pardo-Andreu GL, Rastrelli L. A review of nemorosone: Chemistry and biological properties. PHYTOCHEMISTRY 2023; 210:113674. [PMID: 37044362 DOI: 10.1016/j.phytochem.2023.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Nemorosone is a bicyclic polyprenylated acylphloroglucinol derivative originally isolated from Clusia spp. and it can be obtained through chemical synthesis employing different synthetic strategies. Since its discovery, it has attracted great attention both from a biological and chemical viewpoint. In the present article, we attempted to review various chemical and biological topics around nemorosone, with an emphasis on its antiproliferative activities. For this purpose, relevant data was collected from different scientific databases including Google Scholar, PubMed, Scopus and ISI Web of Knowledge. This natural compound has shown activity against several types of malignancies such as leukemia, human colorectal, pancreatic, and breast cancer because it modulates multiple molecular pathways. Nemorosone has both cytostatic and cytotoxic activity and it also seems to induce apoptosis and ferroptosis. Additionally, it has antimicrobial capabilities against Gram-positive bacteria and parasites belonging to genus Leishmania. Its promising antiproliferative pre-clinical effects deserve further attention for anticancer and anti-parasitic drug development and translation to the clinic.
Collapse
Affiliation(s)
- Osmany Cuesta-Rubio
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de la Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Lianet Monzote
- Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí, Autopista Novia del Mediodía Km 6 1/2, 11400, La Habana, Cuba.
| | - Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 St. # 2317, La Coronela, 13600, Havana, Cuba.
| | - Gilberto Lázaro Pardo-Andreu
- Center for Research and Biological Evaluation, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 St. # 2317, 13600, Havana, Cuba.
| | - Luca Rastrelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| |
Collapse
|
5
|
Afata TN, Dekebo A. Chemical Composition and Antimicrobial Effect of Western Ethiopian Propolis. Chem Biodivers 2023; 20:e202200922. [PMID: 36575948 DOI: 10.1002/cbdv.202200922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Propolis or bee glue is commonly named as a natural resinous mixture produced by honeybees (Apis mellifera) from substances collected from parts of plants, buds, and exudate. The result of the ethyl acetate - methanol (3 : 2) volume by volume fraction yielded a total of two compounds namely betulinic acid and β-amyrin isolated from Bodji Dirmaji and Fincha'a district propolis, respectively. The crude ethanolic extract was portioned with the different solvent systems by increasing the polarities in the following order of hexane, ethyl acetate, and methanol. Column chromatographic method on normal silica gel was used to isolate the compounds. The structures of the compounds were characterized using 1D NMR techniques. The study revealed that western Ethiopian propolis was rich in saponins, tannins, flavonoids, steroids, triterpenes, and glycosides. The antibacterial activity for the isolated compound (betulinic acid) showed the highest inhibition for S. aureus (11.2±1.6), E. coli (17.7±1.1), and A. niger (12.6±1.2) mm.
Collapse
Affiliation(s)
- Tariku Neme Afata
- Department of Environmental Health Science and Technology, Jimma University, Ethiopia.,Oromia Region, Dambi Dollo Teachers College, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia.,Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
6
|
Cuesta-Rubio O, Hernández IM, Fernández MC, Rodríguez-Delgado I, De Oca Porto RM, Piccinelli AL, Celano R, Rastrelli L. Chemical characterization and antioxidant potential of ecuadorian propolis. PHYTOCHEMISTRY 2022; 203:113415. [PMID: 36049527 DOI: 10.1016/j.phytochem.2022.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The chemical composition and the antioxidant potential of Ecuadorian propolis samples (n = 19) collected in different provinces were investigated. HPLC-DAD-ESI/MSn and GC-EI-MS analysis of the methanol extracts enabled us to define six types of Ecuadorian propolis based on their secondary metabolite composition. 68 compounds were identified, 59 of which are reported for the first time in Ecuadorian propolis. The detected compounds include flavonoids, diterpenes, triterpenes, organic acid derivatives, alkylresorcinol derivatives and nemorosone. Plants belonging to genera Populus, Mangifera and Clusia seemed to be vegetable sources employed by bees to produce Ecuadorian propolis. Total phenolic content and antioxidant activity of propolis extracts were determined by the Folin-Ciocalteu assay and 2,2-diphenyl-1-picrylhydrazyl and ferric reducing/antioxidant potential assays, respectively. As expected, the variable chemical composition affected the differences in terms of antioxidant potential.
Collapse
Affiliation(s)
- Osmany Cuesta-Rubio
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Ingrid Márquez Hernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Mercedes Campo Fernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Irán Rodríguez-Delgado
- Universidad Técnica de Machala, Facultad de Ciencias Agropecurarias, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Rodny Montes De Oca Porto
- Instituto de Medicina del Deporte, Laboratorio Antidoping, Calle 100 y Aldabó, 1210800, La Habana, Cuba.
| | - Anna Lisa Piccinelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Rita Celano
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Luca Rastrelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| |
Collapse
|
7
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022; 27:molecules27144594. [PMID: 35889466 PMCID: PMC9320184 DOI: 10.3390/molecules27144594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.
Collapse
|
9
|
Kurek-Górecka A, Keskin Ş, Bobis O, Felitti R, Górecki M, Otręba M, Stojko J, Olczyk P, Kolayli S, Rzepecka-Stojko A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. PLANTS (BASEL, SWITZERLAND) 2022; 11:1203. [PMID: 35567206 PMCID: PMC9104821 DOI: 10.3390/plants11091203] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Propolis composition depends on several factors. The classification of propolis is based on its geographical location, color and agricultural characteristics. It is also classified according to the flora where the bees collect the resins, which represent the raw material for propolis production. Propolis possesses high antioxidant activity determined by its phenolic compounds. Due to diverse composition and possible impact on human health, eight samples of propolis were evaluated for their phenolic composition and antioxidant activity. Samples of Polish, Romanian, Turkish and Uruguayan origin propolis were used for phenolic spectrum determination using high performance liquid chromatography and photodiode array detection and in vitro DPPH and ABTS methods were used to determine the antioxidant activity of the extracts. PCA and HCA models were applied to evaluate the correlation between isolated polyphenols and antioxidant activity. The results confirmed variability in propolis composition depending on the geographical region of collection and the plant sources, and correlation between chemical composition and antioxidant activity. Results of PCA and HCA analyses confirm that Polish propolis is similar to that from different provinces of Romania, while Turkish and Uruguay are completely different. Polish and Romanian propolis belong to the poplar type. The assessed phenolic compounds of propolis samples used in the study are responsible for its antioxidant effect. The observed antioxidant activity of the analyzed samples may suggest directing subsequent research on prophylactic and therapeutic properties concerning cardiovascular, metabolic, neurodegenerative, and cancerous diseases, which are worth continuing.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Şaban Keskin
- Vocational School of Health Services, Bilecik Seyh Edebali University, 11106 Bilecik, Turkey;
| | - Otilia Bobis
- Life Science Institute, Apiculture and Sericulture Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Rafael Felitti
- Oral Rehabilitation and Prosthodontics, Private Practice, Felix Olmedo 3716, Montevideo 11700, Uruguay;
| | - Michał Górecki
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| | - Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| | - Jerzy Stojko
- Department of Toxycology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Sevgi Kolayli
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61100 Trabzon, Turkey;
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| |
Collapse
|
10
|
Wieczorek PP, Hudz N, Yezerska O, Horčinová-Sedláčková V, Shanaida M, Korytniuk O, Jasicka-Misiak I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022; 27:1600. [PMID: 35268700 PMCID: PMC8911684 DOI: 10.3390/molecules27051600] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
This review aims to analyze propolis as a potential raw material for the development and manufacture of new health-promoting products. Many scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases via searching the word "propolis". The different extraction procedures, key biologically active compounds, biological properties, and therapeutic potential of propolis were analyzed. It was concluded that propolis possesses a variety of biological properties because of a very complex chemical composition that mainly depends on the plant species visited by bees and species of bees. Numerous studies found versatile pharmacological activities of propolis: antimicrobial, antifungal, antiviral, antioxidant, anticancer, anti-inflammatory, immunomodulatory, etc. In this review, the composition and biological activities of propolis are presented from a point of view of the origin and standardization of propolis for the purpose of the development of new pharmaceutical products on its base. It was revealed that some types of propolis, especially European propolis, contain flavonoids and phenolic acids, which could be markers for the standardization and quality evaluation of propolis and its preparations. One more focus of this paper was the overview of microorganisms' sensitivity to propolis for further development of antimicrobial and antioxidant products for the treatment of various infectious diseases with an emphasis on the illnesses of the oral cavity. It was established that the antimicrobial activity of different types of propolis is quite significant, especially to Gram-negative bacteria and lipophilic viruses. The present study could be also of interest to the pharmaceutical industry as a review for the appropriate design of standardized propolis preparations such as mouthwashes, toothpastes, oral drops, sprays, creams, ointments, suppositories, tablets, and capsules, etc. Moreover, propolis could be regarded as a source for the isolation of biologically active substances. Furthermore, this review can facilitate partially overcoming the problem of the standardization of propolis preparations, which is a principal obstacle to the broader use of propolis in the pharmaceutical industry. Finally, this study could be of interest in the area of the food industry for the development of nutritionally well-balanced products. The results of this review indicate that propolis deserves to be better studied for its promising therapeutic effects from the point of view of the connection of its chemical composition with the locality of its collection, vegetation, appropriate extraction methods, and standardization.
Collapse
Affiliation(s)
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Oksana Yezerska
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
| | | | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksii Korytniuk
- Department of Occupational and Facial Surgery and Dentistry, Ukrainian Military Medical Academy, 01015 Kyiv, Ukraine;
| | - Iza Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
11
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
12
|
Cui J, Duan X, Ke L, Pan X, Liu J, Song X, Ma W, Zhang W, Liu Y, Fan Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2021; 157:105106. [PMID: 34958852 DOI: 10.1016/j.fitote.2021.105106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
Propolis is an aromatic substance which is collected by bees and mixed with bee saliva. The plant sources of propolis are mainly consisted with plant exudates from bark, buds and etc. Flavonoids are secondary metabolites widely found in natural plants, which have a variety of health care functions and are the main active ingredients of propolis. This article summarized the types, active ingredients, pharmacological effects, extraction methods and applications of propolis flavonoids, the aim was to provide the theoretical basis for further research and development of propolis flavonoids.
Collapse
Affiliation(s)
- Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liting Ke
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingxue Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Salatino A, Salatino MLF, Negri G. How diverse is the chemistry and plant origin of Brazilian propolis? APIDOLOGIE 2021; 52:1075-1097. [PMID: 34611369 PMCID: PMC8485119 DOI: 10.1007/s13592-021-00889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Propolis is a honey bee product containing chiefly beeswax and resins originated from plant buds or exudates. Propolis resin exerts a diversity of biological activities, such as antitumoral, anti-inflammatory, antimicrobial, and defense of the hive against pathogens. Chemical standardization and identification of botanical sources is crucial for characterization of propolis. Types of Brazilian propolis are characteristic of geographical regions and respective biomes, such as savannas (Cerrado), mangroves, dry forest (Caatinga), rain forests (Amazon, Atlantic, and Interior forests), altitudinal fields ("Campos Rupestres"), Pantanal, and Araucaria forests. Despite the wide diversity of Brazilian biomes and flora, relatively few types of Brazilian propolis and corresponding resin plant sources have been reported. Factors accounting for the restricted number of known types of Brazilian propolis and plant sources are tentatively pointed out. Among them, the paper discusses constraints that honey bees must overcome to collect plant exudates, including the characteristics of the lapping-chewing mouthpart of honey bee, which limit their possibilities to cut and chew plant tissues, as well as chemical requirements that plant resins must fulfil, involving antimicrobial activity of its constituents and innocuity to the insects. Although much still needs to be done toward a more comprehensive picture of Brazilian propolis types and corresponding plant origins, the prospects indicate that the actual diversity of plant sources of honey bee propolis will remain relatively low.
Collapse
Affiliation(s)
- Antonio Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Maria Luiza Faria Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Giuseppina Negri
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| |
Collapse
|
14
|
Cavalcante GM, Camara CA, Silva EMSD, Santos MS, Leite AB, Queiroz AC, Evelyn Da Silva A, Araújo MV, Alexandre-Moreira MS, Silva TMS. Leismanicidal Activity of Propolis Collected in the Semiarid Region of Brazil. Front Pharmacol 2021; 12:702032. [PMID: 34276385 PMCID: PMC8281046 DOI: 10.3389/fphar.2021.702032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of the current study is to investigate the chemical composition, cytotoxic effect, and leishmanicidal activity of propolis collected in the semi-arid region of Bahia, Brazil. Methods: EtOH extract, hexane, EtOAc and MeOH fractions from propolis were analyzed by ultra-performance liquid chromatography coupled with diode array detector and quadrupole time-of-flight mass spectrometry. The identification was based on the exact mass, general fragmentation behaviors and UV absorption of the flavonoids. The in vitro cytotoxic effect and leishmanicidal activity of ethanolic extract, hexane, ethyl acetate, and methanolic fractions of propolis were evaluated. Results: Five triterpenes and twenty-four flavonoids were identified. The propolis did not present toxicity to the host cell up to the maximum concentration tested. In addition, all tested samples showed statistically significant activity against promastigotes of Leishmania chagasi and Leishmania amazonensis. Regarding the activity against amastigote forms of L. amazonensis, the hexane fraction, presented statistically significant activity with IC50 of 1.3 ± 0.1 μg/ml. Conclusion: The results support the idea that propolis can be used for future antileishmania studies.
Collapse
Affiliation(s)
- Giani Maria Cavalcante
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| | - Celso Amorim Camara
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Mariana Silva Santos
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Anderson Brandão Leite
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Aline Cavalcanti Queiroz
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil.,Microbiology, Immunology and Parasitology Laboratory, Campus Arapiraca, Federal University of Alagoas, Alagoas, Brazil
| | - Amanda Evelyn Da Silva
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Morgana Vital Araújo
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Magna Suzana Alexandre-Moreira
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Tania Maria Sarmento Silva
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
15
|
da Silva Barboza A, Aitken-Saavedra JP, Ferreira ML, Fábio Aranha AM, Lund RG. Are propolis extracts potential pharmacological agents in human oral health? - A scoping review and technology prospecting. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113846. [PMID: 33485981 DOI: 10.1016/j.jep.2021.113846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antimicrobial potential of propolis - a honey bee product - was correlated with its traditional use as a natural medicine, mainly known for antimicrobial and antioxidant properties. Moreover, research on natural products in dentistry has increased in recent years in the search for products with greater therapeutic activity, lower toxicity, better biocompatibility, and more affordable cost to the population. OBJECTIVE Considering that the beneficial effect of propolis is acknowledged for several oral conditions, this study aimed to synthesize the research and technological forecasts of existing evidence on the use of propolis extract as a potential antimicrobial agent in dentistry. METHODS Studies were identified through an investigation in the PubMed, Web of Science, Scopus, and Scielo electronic databases. Additionally, the following patent databases were screened: Google Patents, WIPO, INPI, Espacenet, and Questel Orbit. The data were tabulated and analyzed using Microsoft Office Excel 2013 and Questel Orbit. RESULTS A total of 174 scientific articles and 276 patents fulfilled all the criteria and were included in the investigation. The highest number of patents (n = 144) was produced by China. Additionally, the most prevalent studies were performed on an experimental basis (72%), followed by clinical studies (n = 27) and review articles (n = 21). The effect of using propolis has been extensively observed in oral care products, periodontics, pathology, and cariology, among other dental specialties. CONCLUSION It was possible to identify the current scientific and technological scenario of the application of propolis in dentistry, with the number of patents increasing in recent years. However, all studies related to the use of propolis in dentistry have shown a potentially safe antimicrobial agent in an extensive field of application.
Collapse
Affiliation(s)
- Andressa da Silva Barboza
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil
| | - Juan Pablo Aitken-Saavedra
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil; Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Monika Lamas Ferreira
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil
| | - Andreza Maria Fábio Aranha
- Post-graduate Program in Integrated Dental Sciences, School of Dentistry, University of Cuiabá, Cuiabá, MT, Brazil
| | - Rafael Guerra Lund
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil; Post-graduate Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Cruz AIC, Costa MDC, Mafra JF, Ferreira MA, Miranda FM, Costa JA, Watanabe YN, Ribeiro PR, Araújo FM, Evangelista-Barreto NS. A sodium alginate bilayer coating incorporated with green propolis extract as a powerful tool to extend Colossoma macropomum fillet shelf-life. Food Chem 2021; 355:129610. [PMID: 33773460 DOI: 10.1016/j.foodchem.2021.129610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
Abstract
Fish deterioration imposes great economic losses and serious human health hazards. The objective of this work was to evaluate the effect of a sodium alginate bilayer coating incorporated to the green propolis extract in shelf-life, physical-chemical properties, microbiological properties and sensory acceptance of Colossoma macropomum fillets. Additionally, the chemical composition, along with the antioxidant and antibacterial activities of Brazilian green propolis extract (GPE) were investigated. GPE showed promising antioxidant and antibacterial activities. Twenty-seven metabolites were identified by gas chromatography (GC-MS), which mainly comprised terpenoids (52.14%). Cyclolaudenol was the major constituent of the GPE and it is described for the first time in green propolis extracts. C. macropomum fillets treated with the sodium alginate bilayer coating showed high sensory acceptance, reduced microbial deterioration and extended shelf-life (up to 11 days) during cold storage. Taken together, these results show that GPE can be a great alternative of a natural preservative for fish coating.
Collapse
Affiliation(s)
- Alexsandra Iarlen Cabral Cruz
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Milena da Cruz Costa
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Jessica Ferreira Mafra
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Mariza Alves Ferreira
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Fabricio Mendes Miranda
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Laboratório de Química, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - João Albany Costa
- Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Yuji Nascimento Watanabe
- Centro de Formação de Professores-CFP, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil.
| | - Floricéa Magalhães Araújo
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil.
| | - Norma Suely Evangelista-Barreto
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| |
Collapse
|
17
|
Zulhendri F, Felitti R, Fearnley J, Ravalia M. The use of propolis in dentistry, oral health, and medicine: A review. J Oral Biosci 2021; 63:23-34. [PMID: 33465498 DOI: 10.1016/j.job.2021.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Propolis is a resinous product that is collected from plants by bees to cover holes and crevices in their hives. Propolis has potent antibacterial, antiviral, anti-inflammatory, wound healing, and anticancer properties. Propolis has been used therapeutically by humans for centuries, including the treatment of dental caries and mouth infections. HIGHLIGHT This review article attempts to analyze the potential use of propolis in general dentistry and oral health management. CONCLUSION Propolis is potentially useful in dentistry and oral health management based on available in vitro, in vivo, and ex vivo studies, as well as human clinical trials.
Collapse
Affiliation(s)
| | - Rafael Felitti
- Oral Rehabilitation and Prosthodontics, Private Practice, Montevideo, Uruguay.
| | - James Fearnley
- Apiceutical Research Centre, NorthYorkshire, United Kingdom.
| | | |
Collapse
|
18
|
Sampietro DA, Bertini Sampietro MS, Vattuone MA. Efficacy of Argentinean propolis extracts on control of potato soft rot caused by Erwinia carotovora subsp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4575-4582. [PMID: 32424855 DOI: 10.1002/jsfa.10516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Erwinia carotovora subsp. cause the potato soft rot, which is a major disease in agriculture. Antibacterial agents currently applied on potato soft rot often offer a restricted control and have several disadvantages. Propolis has shown a wide range of antimicrobial activity, although its effect has not been investigated on E. carotovora subsp. In this work, we tested extracts from propolis samples of Northwest Argentina against E. carotovora subsp. RESULTS Ethanolic propolis extracts (EPEs) from samples of Santiago del Estero province, particularly from sample 4 (EPE4), showed the highest antibacterial activity, which was associated with the highest content of flavonoids. 2',4'-Dihydroxychalcone, 2',4'-dihydroxy-3'-methoxychalcone, galangin, and pinocembrin were identified as antibacterial constituents of EPE4. 2',4'-Dihydroxychalcone showed an antibacterial activity (minimum inhibitory concentration, MIC = 0.3-1.2 μg gallic acid equivalents (GAE) mL-1 ; minimum bactericidal concentration, MBC = 0.6-4.8 μg GAE mL-1 ) lower than that of bacterimycin (MIC = 2.4-9.6 μg mL-1 ; MBC = 19.2-38.4 μg GAE mL-1 ) and streptocycline (MIC = 19.2-38.4 μg mL-1 ; MBC = 38.4-76.8 μg mL-1 ). Preventive assays on unwounded and wounded potatoes showed that their immersion in EPE4 containing 87.5 μg GAE mL-1 or streptocycline containing 40 μg mL-1 was equally effective in controlling potato soft rot, reducing the disease incidence by 64.6-67.0% (unwounded tubers) and 88.0-86.0% (wounded tubers) and the disease severity by 49.8-49.8% (unwounded tubers) and 54.5-68.5% (wounded tubers). CONCLUSIONS Flavonoid-rich propolis extracts from Northwest Argentina efficiently reduced in vivo the incidence and severity of potato soft rot caused by E. carotovora subsp.
Collapse
Affiliation(s)
- Diego Alejandro Sampietro
- Laboratorio de Biología de Agentes Bioactivos y Fitopatógenos (LABIFITO), San Miguel de Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, San Miguel de Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Maria Sofia Bertini Sampietro
- Facultad de Ciencias Naturales e Instituto "Miguel Lillo", Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Marta Amelia Vattuone
- Laboratorio de Biología de Agentes Bioactivos y Fitopatógenos (LABIFITO), San Miguel de Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
19
|
Chemical composition and antimycoplasma activity of a brown propolis from southern Brazil. Journal of Food Science and Technology 2020; 57:4228-4235. [PMID: 33071344 DOI: 10.1007/s13197-020-04461-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 01/26/2023]
Abstract
Extracts of a sample of brown propolis produced in the district of Itapará (Southern Brazil) were obtained with solvents with increasing polarity. The extracts were analyzed by RPHPLC-DAD-ESI-MS/MS and evaluated toward activity against Mycoplasma bovis, M. gallisepticum, M. genitalium, M. hominis, M. hyorinis, M. penetrans and M. pneumonieae. Typical components of "alecrim-do-campo" propolis (e.g. prenylated phenylpropanoids and caffeoyl-quinic acids) were characterized in the analyzed extraccts, in addition to several flavonols. Less polar extracts showed higher anti-mycoplasma activity (MIC value commonly 3.9 μg/mL) than alcoholic and aqueous extracts (MIC value often 7.8-250 μg/mL). The results indicate that Itapará propolis is a promising source for the development of therapeutic drugs.
Collapse
|
20
|
Costa AG, Yoshida NC, Garcez WS, Perdomo RT, Matos MDFC, Garcez FR. Metabolomics Approach Expands the Classification of Propolis Samples from Midwest Brazil. JOURNAL OF NATURAL PRODUCTS 2020; 83:333-343. [PMID: 32031802 DOI: 10.1021/acs.jnatprod.9b00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Propolis samples collected from five areas in Mato Grosso do Sul state, Midwest Brazil, comprising portions of the Cerrado, Pantanal, and Atlantic Forest ecosystems, were investigated for metabolomic profiles and evaluated for antioxidant and antitumor potential. Chemical profiles were determined by HPLC-DAD-MS/MS data and evaluated using principal component analysis and hierarchical clustering analysis to discern chemical composition patterns. Based on phytogeographical origin and chemical composition, 20 potential markers were identified and five groups were distinguished: (I) Cerrado/Central, (II) Atlantic Forest/South, (III) Cerrado-Pantanal transition area/Northwest, (IV) Cerrado/North, and (V) Pantanal/West. Drawing on HPLC-DAD-MS/MS and NMR data, 47 compounds were successfully or tentatively identified, including prenylated phenylpropanoids, flavonoids, isoflavonoids, and di- and triterpenoids, among other constituents. Isoflavonoids, typically found in red propolis from Northeast Brazil, are being reported for the first time in a propolis sample from the Midwest. A new prenylated aromatic compound, (E)-3-[4-hydroxy-3-(2-hydroxy-3-methylbut-3-en-1-yl)-5-(3-methylbut-2-en-1-yl)phenyl]propenoic acid, was obtained. Samples in group II exhibited promising antitumor potential against prostate and breast carcinoma cells, as did samples in groups III and IV against the latter cell line. The sample in group I, despite containing the highest amount of total phenolic compounds and being the only sample to exhibit scavenging activity against DPPH, was not the most cytotoxic against the cell lines tested.
Collapse
Affiliation(s)
- Alberto G Costa
- Institute of Chemistry , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79074-460 , Brazil
| | - Nídia C Yoshida
- Institute of Chemistry , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79074-460 , Brazil
| | - Walmir S Garcez
- Institute of Chemistry , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79074-460 , Brazil
| | - Renata T Perdomo
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79070-900 , Brazil
| | - Maria de Fátima C Matos
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79070-900 , Brazil
| | - Fernanda R Garcez
- Institute of Chemistry , Universidade Federal de Mato Grosso do Sul , Campo Grande , MS 79074-460 , Brazil
| |
Collapse
|
21
|
Silva CCFD, Salatino A, Motta LBD, Negri G, Salatino MLF. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Hochheim S, Guedes A, Faccin-Galhardi L, Rechenchoski DZ, Nozawa C, Linhares RE, Filho HHDS, Rau M, Siebert DA, Micke G, Cordova CMMD. Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Headspace analysis and characterisation of South African propolis volatile compounds using GCxGC–ToF–MS. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chemical Diversity and Biological Activity of African Propolis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:415-450. [PMID: 31637531 DOI: 10.1007/978-3-030-12858-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural remedies have for centuries played a significant role in traditional medicine and continue to be a unique reservoir of new chemical entities in drug discovery and development research. Propolis is a natural substance, collected by bees mainly from plant resins, which has a long history of use as a folk remedy to treat a variety of ailments. The highly variable phytochemical composition of propolis is attributed to differences in plant diversity within the geographic regions from which it is collected. Despite the fact that the last five decades has seen significant advancements in the understanding of the chemistry and biological activity of propolis, a search of the literature has revealed that studies on African propolis to date are rather limited. The aim of this contribution is to report on the current body of knowledge of African propolis, with a particular emphasis on its chemistry and biological activity. As Africa is a continent with a rich flora and a vast diversity of ecosystems, there is a wide range of propolis phytochemicals that may be exploited in the development of new drug scaffolds.
Collapse
|
25
|
Mora DPP, Santiago KB, Conti BJ, de Oliveira Cardoso E, Conte FL, Oliveira LPG, de Assis Golim M, Uribe JFC, Gutiérrez RM, Buitrago MR, Popova M, Trusheva B, Bankova V, García OT, Sforcin JM. The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res 2018; 33:591-601. [DOI: 10.1002/ptr.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Karina Basso Santiago
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | - Bruno José Conti
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | | | | | | | | | - Milena Popova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Boryana Trusheva
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Vassya Bankova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | | | - José Maurício Sforcin
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| |
Collapse
|
26
|
Celerino de Moraes Porto IC, Chaves Cardoso de Almeida D, Vasconcelos Calheiros de Oliveira C G, Sampaio Donato TS, Moreira Nunes L, Gomes do Nascimento T, dos Santos Oliveira JM, Batista da Silva C, Barbosa dos Santos N, de Alencar e Silva Leite ML, Diniz Basílio-Júnior I, Braga Dornelas C, Barnabé Escodro P, da Silva Fonseca EJ, Umeko Kamiya R. Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent. Altern Ther Health Med 2018; 18:219. [PMID: 30021632 PMCID: PMC6052596 DOI: 10.1186/s12906-018-2281-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Propolis is a natural substance produced by bees and is known to have antimicrobial activity. Our aim was to evaluate the antimicrobial effect of micellar nanocomposites loaded with an ethyl acetate extract of Brazilian red propolis as a cavity cleaning agent and its influence on the color and microtensile bond strength (μTBS) of the dentin/resin interface. METHODS An ultra-performance liquid chromatography coupled with a diode array detector (UPLC-DAD) assay was used to determine the flavonoids and isoflavones present in an ethyl acetate extract of Brazilian red propolis (EARP) and micellar nanocomposites loaded with EARP (MNRP). The antimicrobial activity of EARP and MNRP was tested against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. One of the following experimental treatments was applied to etched dentin (phosphoric acid, 15 s): 5 μL of MNRP (RP3, 0.3%; RP6, 0.6%; or RP1, 1.0% w/v), placebo, and 2% chlorhexidine digluconate. Single Bond adhesive (3 M/ESPE) was applied and a 4-mm-thick resin crown (Z350XT, 3 M/ESPE) was built up. After 24 h, the teeth were sectioned into sticks for the μTBS test and scanning electron microscopy. Spectrophotometry according to the CIE L*a*b* chromatic space was used to evaluate the color. Data were analyzed using one-way ANOVA and the Tukey test or Kruskal-Wallis test and the same test for pairwise comparisons between the means (P < 0.05). RESULTS The UPLC-DAD assay identified the flavonoids liquiritigenin, pinobanksin, pinocembrin, and isoliquiritigenin and the isoflavonoids daidzein, formononetin, and biochanin A in the EARP and micellar nanocomposites. EARP and MNRP presented antimicrobial activity against the cariogenic bacteria Streptococcus mutans and Lactobacillus acidophilus, and for Candida albicans. ΔE values varied from 2.31 to 3.67 (P = 0.457). The mean μTBS for RP1 was significantly lower than for the other groups (P < 0.001). Dentin treated with RP1 showed the shortest resin tags followed by RP6 and RP3. CONCLUSIONS The EARP and (MNRP) showed antimicrobial activity for the main agents causing dental caries (Streptococcus mutans and Lactobacillus acidophilus) and for Candida albicans. MNRP at concentrations of 0.3 and 0.6% used as a cavity cleaner do not compromise the aesthetics or μTBS of the dentin/resin interface.
Collapse
|
27
|
Gonçalves CB, Marinho MV, Dias DF, Dos Santos MH, Martins FT, Doriguetto AC. Synthesis, characterization, and structural determination of copper(II) complexes with alkyl derivatives of hydroxybenzophenones. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1280783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Marcelo Henrique Dos Santos
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, Brazil
- Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Brazil
| | | | | |
Collapse
|
28
|
Al-Ghamdi AA, Bayaqoob NIM, Rushdi AI, Alattal Y, Simoneit BRT, El-Mubarak AH, Al-Mutlaq KF. Chemical compositions and characteristics of organic compounds in propolis from Yemen. Saudi J Biol Sci 2016; 24:1094-1103. [PMID: 28663710 PMCID: PMC5478286 DOI: 10.1016/j.sjbs.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/04/2022] Open
Abstract
Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM) of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS). The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%). The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates), n-alkenes (145 ± 89 mg g−1), n-alkanes (65 ± 29 mg g−1), n-alkanoic acids (40 ± 26 mg g−1), long chain wax esters (38 ± 25 mg g−1), n-alkanols (8 ± 3 mg g−1) and methyl n-alkanoates (6 ± 4 mg g−1). The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.
Collapse
Affiliation(s)
- Ahmad A Al-Ghamdi
- Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nowfal I M Bayaqoob
- Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed I Rushdi
- ETAL Consulting and Services, 2951 SE Midvale Dr., Corvallis, OR 97333, USA.,Department of Earth and Environmental Sciences, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Yehya Alattal
- Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Bernd R T Simoneit
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Aarif H El-Mubarak
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.,Department of Biochemistry, Faculty of Science, University of Gezira, Wad Medani, Sudan
| | - Khalid F Al-Mutlaq
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6057650. [PMID: 27525023 PMCID: PMC4972909 DOI: 10.1155/2016/6057650] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing (1)H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated.
Collapse
|
30
|
Vernyuy TP, Ngenge TA, Carol DME, Emmanuel T, Joseph MT, Popova M, Bankova V. Chemical Constituents and Anti-ulcer Activity of Propolis from the North-West Region of Cameroon. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/rjphyto.2016.45.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Giménez A, Schmeda-Hirschmann G. Chemical profiling and antioxidant activity of Bolivian propolis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2142-53. [PMID: 26138367 DOI: 10.1002/jsfa.7330] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/04/2015] [Accepted: 06/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. RESULTS TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. CONCLUSION High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis.
Collapse
Affiliation(s)
- Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
- Facultad de Ciencias de la Salud, Programa de Magister en Ciencias Biomédicas, Universidad de Talca, 3460000, Talca, Chile
| | - Cristina Quispe
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique, 1110939, Chile
| | - Felipe Jiménez-Aspee
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
| | - Alberto Giménez
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
| |
Collapse
|
32
|
Shittu OK, Lawal B, Alozieuwa BU, Haruna GM, Abubakar AN, Berinyuy EB. Alteration in biochemical indices following chronic administration of methanolic extract of Nigeria bee propolis in Wistar rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Anu Aravind A, Asha K, Rameshkumar K. Phytochemical analysis and antioxidant potential of the leaves of Garcinia travancorica Bedd. Nat Prod Res 2015; 30:232-6. [DOI: 10.1080/14786419.2015.1043551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A.P. Anu Aravind
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, Kerala, India
| | - K.R.T. Asha
- Govt. Arts College, Paramakudy, Tamilnadu, India
| | - K.B. Rameshkumar
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, Kerala, India
| |
Collapse
|
34
|
Boisard S, Le Ray AM, Landreau A, Kempf M, Cassisa V, Flurin C, Richomme P. Antifungal and antibacterial metabolites from a French poplar type propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:319240. [PMID: 25873978 PMCID: PMC4385655 DOI: 10.1155/2015/319240] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
During this study, the in vitro antifungal and antibacterial activities of different extracts (aqueous and organic) obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains: Candida albicans, C. glabrata, and Aspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains including Staphylococcus aureus. Organic extracts showed a significant antifungal activity against C. albicans and C. glabrata (MIC80 between 16 and 31 µg/mL) but only a weak activity towards A. fumigatus (MIC80 = 250 µg/mL). DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially against S. aureus (SA) and several of its methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains (MIC100 30-97 µg/mL). A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.
Collapse
Affiliation(s)
- Séverine Boisard
- EA 921 SONAS/SFR 4207 QUASAV, Université d'Angers, 16 boulevard Daviers, 49045 Angers Cedex 01, France
| | - Anne-Marie Le Ray
- EA 921 SONAS/SFR 4207 QUASAV, Université d'Angers, 16 boulevard Daviers, 49045 Angers Cedex 01, France
| | - Anne Landreau
- EA 921 SONAS/SFR 4207 QUASAV, Université d'Angers, 16 boulevard Daviers, 49045 Angers Cedex 01, France
| | - Marie Kempf
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers Cedex 09, France
- Groupe d'Etude des Interactions Hôte Pathogène (GEIHP), Université d'Angers, 4 rue Larrey, 49933 Angers Cedex, France
| | - Viviane Cassisa
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers Cedex 09, France
- Groupe d'Etude des Interactions Hôte Pathogène (GEIHP), Université d'Angers, 4 rue Larrey, 49933 Angers Cedex, France
| | - Catherine Flurin
- Ballot-Flurin Apiculteurs-Abeilles Santé, 75 place Lagardère, 65700 Maubourguet, France
| | - Pascal Richomme
- EA 921 SONAS/SFR 4207 QUASAV, Université d'Angers, 16 boulevard Daviers, 49045 Angers Cedex 01, France
| |
Collapse
|
35
|
Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:296086. [PMID: 25861357 PMCID: PMC4377393 DOI: 10.1155/2015/296086] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022]
Abstract
The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).
Collapse
|
36
|
Nedji N, Loucif-Ayad W. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60601-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 2014; 19:19610-32. [PMID: 25432012 PMCID: PMC6271758 DOI: 10.3390/molecules191219610] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 12/02/2022] Open
Abstract
Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - George Q Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Antitumoural activity of Brazilian red propolis fraction enriched with xanthochymol and formononetin: An in vitro and in vivo study. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Propolis: a review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 2014; 24:263-82. [PMID: 24201459 DOI: 10.1097/der.0000000000000011] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Propolis (bee glue) is the resinous substance that bees collect from living plants for the construction and adaptation of their nests. It has antibacterial, antifungal, and antiviral properties and may have a wide range of other beneficial biological activities. Propolis is available as a dietary supplement, in products for the protection of health and prevention of diseases, in biopharmaceuticals, and as a constituent of (bio)cosmetics. In this article, the following aspects of propolis are reviewed: the nature and chemical composition, its biological properties and applications, contact allergy and allergic contact dermatitis (sensitizing potential, products causing contact allergy, clinical picture, frequency of sensitization, coreactivity and cross-reactivity, the allergens in propolis), and other adverse effects.
Collapse
|
40
|
Rushdi AI, Adgaba N, Bayaqoob NIM, Al-Khazim A, Simoneit BIT, El-Mubarak AH, Al-Mutlaq KF. Characteristics and chemical compositions of propolis from Ethiopia. SPRINGERPLUS 2014; 3:253. [PMID: 24926420 PMCID: PMC4047273 DOI: 10.1186/2193-1801-3-253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/08/2014] [Indexed: 01/07/2023]
Abstract
Introduction Propolis is a sticky material mixed by honeybees to utilize it in protecting their hives from infection by bacteria and fungi. The therapeutic properties of propolis are due to its chemical composition with bio-active compounds; therefore, researchers are interested in studying its chemical constituents and biological properties. The main objective of this study is to determine the chemical compositions, characteristics and relative concentrations of organic compounds in the extractable organic matter of propolis samples collected from four different areas in Ethiopia. Results The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC-MS).The results showed that the total extract yields ranged from 27.2% to 64.2% (46.7 ± 19.1%). The major compounds were triterpenoids (85.5 ± 15.0% of the total extracts, mainly α-, β-amyrins and amyryl acetates), n-alkanes (5.8 ± 7.5%), n-alkenes (6.2 ± 7.0%,), methyl n-alkanoates (0.4 ± 0.2%), and long chain wax esters (0.3 to 2.1%). Conclusion The chemical compositions of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.
Collapse
Affiliation(s)
- Ahmed I Rushdi
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia ; College of Earth, Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331 USA ; Department of Earth and Environmental Sciences, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Nuru Adgaba
- Bee Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia
| | - Noofal I M Bayaqoob
- Bee Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia
| | - Ahmed Al-Khazim
- Bee Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia
| | - Bernd I T Simoneit
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia ; Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 USA
| | - Aarif H El-Mubarak
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia
| | - Khalid F Al-Mutlaq
- Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
41
|
Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta 2014; 120:181-90. [DOI: 10.1016/j.talanta.2013.11.094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022]
|
42
|
López BGC, Schmidt EM, Eberlin MN, Sawaya AC. Phytochemical markers of different types of red propolis. Food Chem 2014; 146:174-80. [DOI: 10.1016/j.foodchem.2013.09.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023]
|
43
|
Boisard S, Le Ray AM, Gatto J, Aumond MC, Blanchard P, Derbré S, Flurin C, Richomme P. Chemical composition, antioxidant and anti-AGEs activities of a French poplar type propolis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1344-1351. [PMID: 24443994 DOI: 10.1021/jf4053397] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accumulation in tissues and serum of advanced glycation end-products (AGEs) plays an important role in pathologies such as Alzheimer's disease or, in the event of complications of diabetes, atherosclerosis or renal failure. Therefore, there is a potential therapeutic interest in compounds able to lower intra and extracellular levels of AGEs. Among them, natural antioxidants (AO) with true anti-AGEs capabilities would represent good candidates for development. The purpose of this study was to evaluate the AO and anti-AGEs potential of a propolis batch and then to identify the main compounds responsible for these effects. In vivo, protein glycation and oxidative stress are closely related. Thus, AO and antiglycation activities were evaluated using both DPPH and ORAC assays, respectively, as well as a newly developed automated anti-AGEs test. Several propolis extracts exhibited very good AO and anti-AGEs activities, and a bioguided fractionation allowed us to identify pinobanksin-3-acetate as the most active component.
Collapse
Affiliation(s)
- Séverine Boisard
- EA 921 SONAS/SFR 4207 QUASAV, Université d'Angers , 16 Boulevard Daviers, 49045 Angers cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Clusianone, a naturally occurring nemorosone regioisomer, uncouples rat liver mitochondria and induces HepG2 cell death. Chem Biol Interact 2014; 212:20-9. [PMID: 24491676 DOI: 10.1016/j.cbi.2014.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
Abstract
Clusianone is a member of the polycyclic polyprenylated acylphloroglucinol family of natural products; its cytotoxic mechanism is unknown. Clusianone is a structural isomer of nemorosone, which is a mitochondrial uncoupler and a well-known cytotoxic anti-cancer agent; thus, we addressed clusianone action at the mitochondria and its potential cytotoxic effects on cancer cells. In the HepG2 hepatocarcinoma cell line, clusianone induced mitochondrial membrane potential dissipation, ATP depletion and phosphatidyl serine externalization; this later event is indicative of apoptosis induction. In isolated mitochondria from rat liver, clusianone promoted protonophoric mitochondrial uncoupling. This was evidenced by the dissipation of mitochondrial membrane potential, an increase in resting respiration, an inhibition of Ca(2+) influx, stimulation of Ca(2+) efflux in Ca(2+)-loaded mitochondria, a decrease in ATP and NAD(P)H levels, generation of ROS, and swelling of valinomycin-treated organelles in hyposmotic potassium acetate media. The cytotoxic and uncoupling actions of clusianone were appreciably less than those of nemorosone, likely due to the presence of an intra-molecular hydrogen bond with the juxtaposed carbonyl group at the C15 position. Therefore, clusianone is capable of pharmacologically increasing the leakage of protons from the mitochondria and with favorable cytotoxicity in relation to nemorosone.
Collapse
|
45
|
Braga TV, Dores RGRD, Ramos CS, Evangelista FCG, Tinoco LMDS, Varotti FDP, Carvalho MDG, Sabino ADP. Antioxidant, Antibacterial and Antitumor Activity of Ethanolic Extract of the <i>Psidium guajava</i> Leaves. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.523365] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Righi AA, Negri G, Salatino A. Comparative chemistry of propolis from eight brazilian localities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:267878. [PMID: 23690840 PMCID: PMC3639640 DOI: 10.1155/2013/267878] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/14/2023]
Abstract
Propolis is a complex honeybee product with resinous aspect, containing plant exudates and beeswax. Their color, texture, and chemical composition vary, depending on the location of the hives and local flora. The most studied Brazilian propolis is the green (alecrim-do-campo) type, which contains mainly prenylated phenylpropanoids and caffeoylquinic acids. Other types of propolis are produced in Brazil, some with red color, others brown, grey, or black. The aim of the present work was to determine the chemical profiles of alcohol and chloroform extracts of eight samples of propolis, corresponding to six Brazilian regions. Methanol and chloroform extracts were obtained and analyzed by HPLC/DAD/ESI/MS and GC/MS. Two chemical profiles were recognized among the samples analyzed: (1) black Brazilian propolis, characterized chiefly by flavanones and glycosyl flavones, stemming from Picos (Piauí state) and Pirenópolis (Goiás state); (2) green Brazilian propolis, characterized by prenylated phenylpropanoids and caffeoylquinic acids, stemming from Cabo Verde (Bahia state), Lavras and Mira Bela (Minas Gerais state), Pariquera-Açu and Bauru (São Paulo state), and Ponta Grossa (Paraná state). The present work represents the first report of prenylated flavonoids in Brazilian propolis and schaftoside (apigenin-8-C-glucosyl-6-C-arabinose) in green propolis.
Collapse
Affiliation(s)
- A. A. Righi
- Botany Department, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - G. Negri
- Psychobiology Department, Federal University of the State of São Paulo, São Paulo, SP, Brazil
| | - A. Salatino
- Botany Department, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
da Cunha MG, Franchin M, Galvão L, de Ruiz A, de Carvalho JE, Ikegaki M, de Alencar SM, Koo H, Rosalen PL. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. Altern Ther Health Med 2013; 13:23. [PMID: 23356696 PMCID: PMC3568042 DOI: 10.1186/1472-6882-13-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/21/2013] [Indexed: 11/16/2022]
Abstract
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
Collapse
|
48
|
Development of an electroanalytical method for the determination of lead in Argentina raw propolis based on bismuth electrodes. Microchem J 2013. [DOI: 10.1016/j.microc.2012.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Buehler H, Jastrow H, Ergun S, Strumberg D. 7-epi-nemorosone from Clusia rosea induces apoptosis, androgen receptor down-regulation and dysregulation of PSA levels in LNCaP prostate carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1298-1306. [PMID: 22981203 DOI: 10.1016/j.phymed.2012.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/30/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
The aim of this work was to characterize the antitumoral activity of the plant compound 7-epi-nemorosone in prostate carcinoma cell lines. Prostate cancer is the most frequently diagnosed malignancy and the second-leading cause of cancer death in men. In spite of the current therapeutic options for this cancer entity, many patients die due to metastases in distant organs and acquired chemotherapy resistance. Thus, approaches to provide improvements in outcome and quality of life for such patients are urgently needed. Recently, the polyisoprenylated benzophenone 7-epi-nemorosone, originally collected by honeybees from Clusia rosea and Clusia grandiflora (Clusiaceae), has been described to be a potent antitumoral agent. Here, its activity in prostate carcinoma is reported. 7-epi-nemorosone was isolated from Caribbean propolis employing RP-HPLC techniques. Its cytotoxicity was assessed using the MTT proliferation assay in human androgen-dependent prostate carcinoma LNCaP cells including an MDR1(+) sub-line. No cross-resistance was detected. FACS-based cell cycle analysis revealed a significant increase in the sub-G0/G1, G1, and depletion in the S phase populations. A concomitant down-regulation of cyclins D1/D3 and CDK 4/6 in LNCaP cells was detected by Western blot. Annexin-V-FITC labeling and caspase-3 cleavage assays showed that 7-epi-nemorosone induced apoptotic events. Major signal transduction elements such as p38 MAPK and Akt/PKB as well as androgen receptor AR and PSA production were found to be down-regulated after exposure to the drug. ERK1/2 protein levels and phosphorylation status were down-regulated accompanied by up-regulation but inhibition of the activity of their immediate upstream kinases MEK1/2. Additionally, Akt/PKB enzymatic activity was effectively inhibited at a similar concentration as for MEK1/2. Here, we demonstrate for the first time that 7-epi-nemorosone exerts cytotoxicity in an androgen-dependent prostate carcinoma entity by targeting the MEK1/2 signal transducer.
Collapse
|
50
|
Abstract
A concise total synthesis of (±)-7-epi-nemorosone is reported. Our synthetic approach establishes a viable route to polycyclic polyprenylated acylphloroglucinol natural products (PPAP's) bearing a C-7 endo prenyl side chain. Key steps include retro-aldol-vinyl cerium addition to a hydroxy adamantane core scaffold and palladium-mediated deoxygenation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | | |
Collapse
|