1
|
Wei J, Liu B, Zhong R, Chen Y, Fang F, Huang X, Pang X, Zhang Z. Characterization of a longan pericarp browning related peroxidase with a focus on its role in proanthocyanidin and lignin polymerization. Food Chem 2024; 461:140937. [PMID: 39191036 DOI: 10.1016/j.foodchem.2024.140937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The longan pericarp turns brown dramatically after harvesting, but the mechanism is not well understood. In this work, two peroxidases were purified from longan pericarp and found to be identical to the class III peroxidases PRX53-2 and PRX53-3. In vitro, PRX53-2/3 catalyzed the browning of several pericarp abundant proanthocyanidin and lignin monomers, such as (-)-epicatechin (EC), (+)-catechin (CT) and coniferyl alcohol (ConA). PRX53-2 was upregulated and highly-expressed, while PRX53-3 was expressed at low levels after harvesting; thus, PRX53-2 was considered a browning-related gene. The reaction with both proanthocyanidin and lignin presented a greater degree of brown coloration compared to the single substrate reactions. Several procyanidins isomers, EC-ConA and CT-ConA were detected in the double-substrate reaction. These results not only demonstrate that the effects of PRX53-2 on proanthocyanidin and lignin polymerization may be crucial for longan pericarp browning, but also help in developing new strategies or preservatives to delay pericarp browning.
Collapse
Affiliation(s)
- Junbin Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, 510640, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Ruihao Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Ying Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Xuemei Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lin Y, Chen J, Lin Y, Lin M, Wang H, Fan Z, Lu W, Chen Y, Lin H. DNP and ATP modulate the pulp softening and breakdown in fresh longan by acting on the antioxidant system and the metabolisms of membrane lipids and cell wall polysaccharides. Food Chem 2024; 460:140531. [PMID: 39059331 DOI: 10.1016/j.foodchem.2024.140531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Compared to the control longan, DNP treatment elevated pulp breakdown index, reduced the values of pulp firmness, CSP, ISP, cellulose, and hemicellulose by enhancing the activities of PE, PG, Cx, XET, and β-Gal. Additionally, DNP treatment increased the levels of PLD, lipase, LOX, PA, and SFA, and decreased the values of PC, PI, USFA, U/S, and IUFA, displaying higher cell membrane permeability and more severe cell membrane damage in longan pulp. Furthermore, DNP treatment weakened the levels of SOD, CAT, APX, AsA, GSH, TP, and TF, thereby exacerbating ROS outbreak and MDA production. These results indicate that DNP treatment destroyed the antioxidant system to cause ROS eruption. This disruption further disturbed the metabolisms of membrane lipids and cell wall polysaccharides, leading to the breakdown of cell membrane and cell wall, and eventually aggravated longan pulp softening and breakdown. However, ATP treatment exhibited the opposite effects of DNP treatment.
Collapse
Affiliation(s)
- Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Jin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wangjin Lu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Zhao Y, Yan M, Zhang K, Wu X, Wang Z, Shao T, Lei J, Chen X, Liu H. Effects of 1-Methylcyclopropene Treatment on Postharvest Quality and Metabolism of Different Kiwifruit Varieties. Foods 2024; 13:3632. [PMID: 39594051 PMCID: PMC11593305 DOI: 10.3390/foods13223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The kiwifruit (Actinidia) is an important nutritional and economic fruit crop. However, the short edible window period of kiwifruit has seriously affected its market value. 1-Methylcyclopropene (1-MCP), as a novel ethylene inhibitor, is widely applied to delay fruit ripening and senescence. To our knowledge, there are limited studies on the effects of 1-MCP on fruit quality and metabolism of different kiwifruit varieties. Three kiwifruit cultivars (i.e., 'Xuxiang', 'Huayou', and 'Hayward') widely cultivated in China were chosen as our research objects. The variations of storage quality and metabolic characteristics of kiwifruits treated with various 1-MCP concentration (0 μL/L, 0.5 μL/L, and 1.0 μL/L) were systematically investigated. The results showed that 1-MCP treatment significantly improved the quality of kiwifruit during storage. Among them, for 'Xuxiang' and 'Hayward' varieties, 1.0 μL/L 1-MCP treatment could delay the decrease in fruit firmness, the increase in maturity index and cellulase activity, and inhibit the decrease in ascorbic acid (AsA) level. However, the 0.5 μL/L 1-MCP had a great influence on the chlorophyll content and maturity index of the 'Huayou' cultivar, and the preservation effect was satisfactory. In addition, gas chromatography-mass spectrometry (GC-MS) based metabolomics studies revealed that 1-MCP treatment affected carbohydrates metabolism, fatty acids metabolism, and amino acids metabolism in different kiwifruit varieties. Correlation analysis indicated that sugars metabolism has the closest relationship with postharvest physiological quality. This research indicated that the effectiveness of 1-MCP treatments was dependent on fruit variety and treatment concentration. Furthermore, these findings provide a theoretical foundation for extending the shelf life of different kiwifruit varieties.
Collapse
Affiliation(s)
- Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| | - Meiru Yan
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Kun Zhang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xuan Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Zi Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Ting Shao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Jing Lei
- Shaanxi Rural Science and Technology Development Center, Xi’an 710054, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| | - Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| |
Collapse
|
4
|
Li F, Xia X, Li L, Song L, Ye Y, Jiang Y, Liu H. Elucidation of pineapple softening based on cell wall polysaccharides degradation during storage. FRONTIERS IN PLANT SCIENCE 2024; 15:1492575. [PMID: 39563955 PMCID: PMC11574306 DOI: 10.3389/fpls.2024.1492575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
The degradation of cell wall polysaccharides in pineapple fruit during softening was investigated in the present study. Two pectin fractions and two hemicellulose fractions were extracted from the cell wall materials of 'Comte de Paris' pineapple fruit at five softening stages, and their compositional changes were subsequently analyzed. The process of softening of the fruit corresponded to an increase in the water-soluble pectin (WSP) and 1 M KOH-soluble hemicellulose (HC1) fractions, and a decrease in the acid-soluble pectin (ASP) fraction, which suggested the solubilization and conversion of cellular wall components. However, the content of 4 M KOH-soluble hemicellulose (HC2) decreased and then returned to the initial level. Furthermore, WSP, ASP, and HC1 showed an increment in the content of low molecular weight polymers while a decline in the high molecular weight polymers throughout softening, and not significant change in the contents of different molecular polymers of HC2 was observed. Moreover, the galacturonic acid (GalA) content in the main chain of WSP was maintained at a relatively constant level, but the major branch monosaccharide galactose (Gal) in WSP decreased. Different from WSP, the molar percentages of Gal and GalA in ASP decreased. The Gal or Arabinose (Ara) in HC1 exhibited a gradual decline while the molar percentages of xylose (Xyl) and glucose (Glu) in the main chain increased. These suggested that the main chain of ASP degraded while the branched chains of ASP, WSP and HC1 depolymerized during pineapple softening. Overall, fruit softening of 'Comte de Paris' pineapple was found to be the result of differential modification of pectin and hemicellulose.
Collapse
Affiliation(s)
- Fengjun Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingzhou Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Lilang Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Longlong Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuping Ye
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Postharvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Preparation of Vanillin-Taurine Antioxidant Compound, Characterization, and Evaluation for Improving the Post-Harvest Quality of Litchi. Antioxidants (Basel) 2023; 12:antiox12030618. [PMID: 36978866 PMCID: PMC10044817 DOI: 10.3390/antiox12030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Litchi’s post-harvest pericarp browning is one of the main constraints that drastically affect its visual attributes and market potential. Therefore, the vanillin-taurine Schiff base (VTSB) compound prepared from natural compounds of vanillin and taurine exhibited higher DPPH-radical-scavenging invitro antioxidant activity than vanillin. VTSB first-time report to mitigate the postharvest browning of litchi fruit. In this study, litchi fruits were dipped in 0.3 mM (based on pre-experiment) VTSB solution and stored at 25 ± 1 °C for six days to examine their effects on browning and postharvest quality. Fruit treated with VTSB had lower levels of browning degree (BD), browning index (BI), weight loss, soluble quinone (SQ), relative electrolyte leakage (REL), and malondialdehyde (MDA) than control fruit. Additionally, total anthocyanins and phenolic concentrations, Total soluble solids (TSS), and 2,2-diphenyl-1-picrylhydrazyl-free radical scavenging activity (DPPH-RSA) were preserved higher in VTSB-treated litchi fruit. The levels of Ascorbate peroxidase (APX), Superoxide dismutase (SOD), and Catalase (CAT) were higher in treated fruit, whereas polyphenol oxidase (PPO) and Peroxidase (POD) were decreased during the postharvest period. This study suggested that VTSB would be very useful for different post-harvest problems in the fruit and vegetable industry.
Collapse
|
6
|
Yan H, Chen H, Zhao J, Yao T, Ding X. Postharvest H2O2 treatment affects flavor quality, texture quality and ROS metabolism of ‘Hongshi’ kiwifruit fruit kept at ambient conditions. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Wei HY, Li Y, Yan J, Peng SY, Wei SJ, Yin Y, Li KT, Cheng X. Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130186. [PMID: 36265381 DOI: 10.1016/j.jhazmat.2022.130186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Exopolysaccharides (EPS) are macromolecules with environment beneficial properties. Currently, numerous studies focus on the absorption of heavy metals by EPS, but less attention has been paid to the effects of EPS on the plants. This study explored the effects of EPS from Lactobacillus plantarum LPC-1 on the structure and function of cell walls in rice seedling roots under cadmium (Cd) stress. The results showed that EPS could regulate the remodeling process of the cell walls of rice roots. EPS affects the synthesis efficiency and the content of the substances that made up the cell wall, and thus plays an essential role in limiting the uptake and transport of Cd in rice root. Furthermore, EPS could induce plant resistance to heavy metals by regulating the lignin biosynthesis pathway in rice roots. Finally, the cell wall remodeling induced by EPS likely contributes to plant stress responses by activating the reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- Hong-Yu Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Li
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jiao Yan
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sai-Jin Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Kun-Tai Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of food science and technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xin Cheng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Valeric acid delays aril breakdown of longan (Dimocarpus longan Lour.) fruit in relation to the regulation of histone deacetylase activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jiang F, Zhou L, Zhou W, Zhong Z, Yu K, Xu J, Zou L, Liu W. Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
11
|
The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh longan fruit. Food Chem 2021; 351:129294. [PMID: 33640774 DOI: 10.1016/j.foodchem.2021.129294] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Cell wall polysaccharides in fruits act a pivotal role in their resistance to fungal invasion. Lasiodiplodia theobromae (Pat.) Griff. & Maubl. is a primary pathogenic fungus causing the spoilage of fresh longan fruit. In this study, the influences of L. theobromae inoculation on the disassembly of cell wall polysaccharides in pericarp of fresh longans and its association with L. theobromae-induced disease and softening development were investigated. In contrast to the control, samples with L. theobromae infection showed more severe disease development, lower firmness, lower amounts of cell wall materials, covalent-soluble pectin, ionic-soluble pectin, cellulose and hemicellulose, whereas higher value of water-soluble pectin, higher activities of cell wall polysaccharide-disassembling enzymes (cellulase, β-galactosidase, polygalacturonase and pectinesterase). These findings revealed that cell wall polysaccharides disassembly induced by enzymatic manipulation was an essential pathway for L. theobromae to infect harvested longans, and thus led to the disease occurrence and fruit softening.
Collapse
|
12
|
Lin Y, Chen G, Lin H, Lin M, Wang H, Lin Y. Chitosan postharvest treatment suppresses the pulp breakdown development of longan fruit through regulating ROS metabolism. Int J Biol Macromol 2020; 165:601-608. [DOI: 10.1016/j.ijbiomac.2020.09.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
|
13
|
Wu F, Jiang G, Yan H, Xiao L, Liang H, Zhang D, Jiang Y, Duan X. Redox regulation of glutathione peroxidase by thioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chem 2020; 345:128664. [PMID: 33340895 DOI: 10.1016/j.foodchem.2020.128664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 10/02/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Thioredoxins (Trxs) are important redox regulators in organisms. However, their involvement in fruit senescence and quality deterioration remains unclear. In this study, one Trx (DlTrx1) and one NADPH-dependent Trx reductase (DlNRT1) cDNAs, were cloned from longan fruit. The DlTrx1 could be effectively reduced by the DlNTR1. Expression of DlTrx1 and DlNTR1 were up-regulated during fruit senescence and quality deterioration. We further identified 33 potential Trx target proteins in longan, including one glutathione peroxidase (DlGpx). DlTrx1 could physically interact with DlGpx. DlTrx1 in combination with DlNTR1 effectively activated DlGpx activity by regulating its redox state. Cys90 in DlGPx could form a disulfide bond with either Cys42 or Cys71, which were the sites of redox modulation. Furthermore, DlGpx exhibited a higher ratio of disulfide bonds to sulfhydryl groups in senescent or deteriorative fruit. We propose that Trx-mediated redox regulation of DlGpx is involved in senescence or quality deterioration of harvested longan fruit.
Collapse
Affiliation(s)
- Fuwang Wu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Foshan University, Foshan 528225, China
| | - Guoxiang Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huiling Yan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xiao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Liang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
14
|
Ripening-related cell wall modifications in olive (Olea europaea L.) fruit: A survey of nine genotypes. Food Chem 2020; 338:127754. [PMID: 32829296 DOI: 10.1016/j.foodchem.2020.127754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
The production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive. In this work, cell wall metabolism was studied in fruits from nine olive cultivars ('Arbequina', 'Argudell', 'Empeltre', 'Farga', 'Manzanilla', 'Marfil', 'Morrut', 'Picual' and 'Sevillenca') picked at three maturity stages (green, turning and ripe). Yields of alcohol-insoluble residue (AIR) recovered from fruits, as well as calcium content in fruit pericarp, decreased along ripening. Cultivar-specific diversity was observed in time-course change patterns of enzyme activity, particularly for those acting on arabinosyl- and galactosyl-rich pectin side chains. Even so, fruit firmness levels were associated to higher pectin methylesterase (PME) activity and calcium contents. In turn, fruit firmness correlated inversely with ascorbate content and with α-l-arabinofuranosidase (AFase) and β-galactosidase (β-Gal) activities, resulting in preferential loss of neutral sugars from cell wall polymers.
Collapse
|
15
|
Effects of hydrogen peroxide treatment on pulp breakdown, softening, and cell wall polysaccharide metabolism in fresh longan fruit. Carbohydr Polym 2020; 242:116427. [DOI: 10.1016/j.carbpol.2020.116427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
|
16
|
Cell wall composition of alginate coated and pulsed light treated fresh-cut cantaloupes ( Cucumis melo L. Var. Reticulatus Cv. Glamour) during chilled storage. Journal of Food Science and Technology 2020; 57:2206-2221. [PMID: 32431347 DOI: 10.1007/s13197-020-04257-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
This study was to investigate the effects of optimised alginate coating combined with repetitive pulsed light (RPL) on cell wall composition of fresh-cut cantaloupes during chilled storage. Fresh-cut cantaloupes were coated with alginate (1.86%, w/v) followed by RPL treatment (0.9 J cm-2 at every 48 h up to 26 days) during storage of 36 days. Cell wall composition of fresh-cut cantaloupes was determined at every 12 days while microscopic analysis was conducted on day 2 and day 36. Alginate was effective in maintaining high pectin fractions of fresh-cut cantaloupes while RPL showed greater contribution in maintaining hemicellulose fraction. However, the combination of alginate and RPL was the most effective treatment to maintain the overall cell wall fractions that contributed to the cell wall integrity of fresh-cut cantaloupes during storage. The alginate + RPL samples also had the greatest cell turgidity and shape with well-defined cell walls at the end of storage.
Collapse
|
17
|
Effects of chitosan treatment on the storability and quality properties of longan fruit during storage. Food Chem 2019; 306:125627. [PMID: 31610328 DOI: 10.1016/j.foodchem.2019.125627] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Effects of various concentrations of Kadozan (chitosan) treatment on storability and quality properties of harvested 'Fuyan' longans were investigated. Compared to the control samples, Kadozan treated-longans displayed lower fruit respiration rate, lower pericarp cell membrane permeability, pericarp browning index, pulp breakdown index, fruit disease index, and weight loss, but higher rate of commercially acceptable fruit, higher levels of pericarp chlorophyll, carotenoid, anthocyanin, flavonoid and total phenolics, higher amounts of pulp total soluble sugar, sucrose, total soluble solids, and vitamin C. These results revealed Kadozan treatment could increase storability and retain better quality of harvested longan fruit. Among different concentrations of Kadozan, the dilution of 1:500 (VKadozan: VKadozan + Water) showed the best results in storability and maintained the best quality of longans during storage. These findings demonstrated that Kadozan could be a facile and eco-friendly postharvest handling approach for increasing storability and lengthening shelf-life of harvested 'Fuyan' longan fruit.
Collapse
|
18
|
Lin Y, Lin H, Chen Y, Wang H, Lin M, Ritenour MA, Lin Y. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage. Food Chem 2019; 305:125439. [PMID: 31499287 DOI: 10.1016/j.foodchem.2019.125439] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022]
Abstract
Compared to the control longans, hydrogen peroxide (H2O2)-treated longans exhibited higher index of pulp breakdown, higher fruit respiration rate, higher activities of pulp phosphohexose isomerase (PGI), succinate dehydrogenase (SDH), cytochrome C oxidase (CCO), ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO), but lower activity of pulp nicotinamide adenine dinucleotide kinase (NADK). H2O2-treated longans also exhibited lower total activities of pulp glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), lower levels of pulp NADP(H), but higher levels of pulp NAD(H). These data indicated that H2O2-stimulated longan pulp breakdown was owing to a decreased proportion of pentose phosphate pathway (PPP), the increased proportions of Embden-Meyerhof-Parnas pathway (EMP), tricarboxylic acid (TCA) cycle and cytochrome pathway (CCP) in total respiratory pathways. These findings further revealed that H2O2 could enhance respiration rate, and thus accelerate pulp breakdown occurrence and shorten the shelf life of longan fruit.
Collapse
Affiliation(s)
- Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Mark A Ritenour
- Indian River Research & Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce 34945-3138, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Li T, Shi D, Wu Q, Yin C, Li F, Shan Y, Duan X, Jiang Y. Mechanism of Cell Wall Polysaccharides Modification in Harvested 'Shatangju' Mandarin ( Citrus reticulate Blanco) Fruit Caused by Penicillium italicum. Biomolecules 2019; 9:biom9040160. [PMID: 31022937 PMCID: PMC6523094 DOI: 10.3390/biom9040160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on 'shatangju' mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect 'shatangju' mandarin.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| | - Dingding Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Qixian Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Chunxiao Yin
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Fengjun Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| |
Collapse
|
20
|
Ali S, Khan AS, Malik AU, Nawaz A, Shahid M. Postharvest application of antibrowning chemicals modulates oxidative stress and delays pericarp browning of controlled atmosphere stored litchi fruit. J Food Biochem 2018; 43:e12746. [PMID: 31353553 DOI: 10.1111/jfbc.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023]
Abstract
Litchi fruit were treated with methionine [(0.25%) MN] and cysteine [(025%) CN] alone or in combination, and kept under 1% O2 + 5% CO2 controlled atmosphere (CA) at 5 ± 1ºC for 28 days. Among different treatments, CN was most effective to inhibit browning, than MN and CN + MN under CA conditions. Application of 0.25% CN significantly delayed browning index, reduced disease incidence, weight loss, malondialdehyde (MDA) contents, electrolyte leakage, hydrogen peroxide (H2 O2 ), superoxide anion (O2 -• ) and polyphenol oxidase (PPO) and peroxidase (POD) activities with higher contents of total anthocyanins under CA-storage. In addition, 0.25% CN treatment showed higher contents of ascorbic acid, total phenolics (TPC), and 2,2-diphenyl-1-picrylhydrazyl-radical scavenging capacity and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) enzymes having maintained quality attributes. Therefore, 0.25% CN pre-treatment could be considered a promising way for managing browning, and conserving litchi fruit quality under CA-storage. PRACTICAL APPLICATIONS: Litchi fruit are highly perishable due to rapid pericarp browning having limited postharvest market potential. The browning takes place due to enzymatic reactions and phenolic oxidation. However, it can be delayed by exogenous antibrowning treatments and suitable storage environment. The delayed incidence of pericarp browning may help to maintain its quality with extended storage potential suitable for domestic and international markets. So, the outcomes of the current work may help to maintain overall quality and to extend its storage potential that would be helpful in extending its market life with maintained visual quality at domestic and international destinations.
Collapse
Affiliation(s)
- Sajid Ali
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.,Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Ahmad Sattar Khan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aamir Nawaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Shahid
- Department of Chemistry and Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
21
|
Lin Y, Lin Y, Lin H, Lin M, Li H, Yuan F, Chen Y, Xiao J. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chem 2018; 264:1-8. [PMID: 29853352 DOI: 10.1016/j.foodchem.2018.05.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 02/08/2023]
|
22
|
Chen Y, Zhang S, Lin H, Sun J, Lin Y, Wang H, Lin M, Shi J. Phomopsis longanae Chi-Induced Changes in Activities of Cell Wall-Degrading Enzymes and Contents of Cell Wall Components in Pericarp of Harvested Longan Fruit and Its Relation to Disease Development. Front Microbiol 2018; 9:1051. [PMID: 29875756 PMCID: PMC5974112 DOI: 10.3389/fmicb.2018.01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
The main goal of this study was to investigate the influences of Phomopsis longanae Chi infection on activities of cell wall-degrading enzymes (CWDEs), and contents of cell wall components in pericarp of harvested “Fuyan” longan (Dimocarpus longan Lour. cv. Fuyan) fruit and its relation to disease development. The results showed that, compared with the control samples, P. longanae-inoculated longans showed higher fruit disease index, lower content of pericarp cell wall materials (CWMs), as well as lower contents of pericarp cell wall components (chelate-soluble pectin (CSP), sodium carbonate-soluble pectin, hemicelluloses, and cellulose), but higher content of pericarp water-soluble pectin (WSP). In addition, the inoculation treatment with P. longanae significantly promoted the activities of CWDEs including pectinesterase, polygalacturonase, β-galactosidase, and cellulase. The results suggested that the P. longanae stimulated-disease development of harvested longans was due to increase in activities of pericarp CWDEs, which might accelerate the disassembly of pericarp cell wall components. In turn, resulting in the degradation of pericarp cell wall, reduction of pericarp mechanical strength, and subsequently leading to the breakdown of longan pericarp tissues. Eventually resulting in development of disease development and fruit decay in harvested longans during storage at 28°C.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO, United States
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
23
|
The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced pericarp browning and disease development of harvested longan fruit. Food Chem 2018; 247:16-22. [DOI: 10.1016/j.foodchem.2017.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
|
24
|
Chen Y, Hung YC, Chen M, Lin H. Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Xi FF, Guo LL, Yu YH, Wang Y, Li Q, Zhao HL, Zhang GH, Guo DL. Comparison of reactive oxygen species metabolism during grape berry development between 'Kyoho' and its early ripening bud mutant 'Fengzao'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:634-642. [PMID: 28806719 DOI: 10.1016/j.plaphy.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 05/24/2023]
Abstract
Enzymes and non-enzyme elements related to the metabolism of reactive oxygen species (ROS), such as catalase (CAT), superoxide dismutase (SOD), ascorbic acid (AsA), glutathione (GSH), NADPH oxidase (NOX), hydrogen peroxide (H2O2), superoxide anion (O2-), lipoxygenase (LOX) and malondialdehyde (MDA), were measured in 'Kyoho' and its early ripening bud mutant 'Fengzao' to compare ROS level changes and investigate the potential roles of ROS in grape berry development and the ripening process. In addition, the anthocyanin and sugar contents as well as berry diameter were also investigated at different berry development stages. The results showed that the H2O2 content and LOX activity exhibited obviously different trends between 'Fengzao' and 'Kyoho' during the berry development stages. Before berry softening, the SOD activity, LOX activity and H2O2 content were significant lower in 'Fengzao' than in 'Kyoho', but there were no significant differences in the production rate of O2-, ROS scavengers (CAT, AsA, GSH) and MDA content between them, which indicated that the higher oxidation status in 'Fengzao'. It may promote the faster development of 'Fengzao' berry than 'Kyoho' before berry softening (EL31-33). The significant higher LOX and CAT activities at EL-34, as well as significant higher LOX activity and H2O2 content at EL-35 in 'Fengzao' than in 'Kyoho' indicated H2O2 was acted as the appropriate oxidative stress factor and the signal molecule to further accelerate the berry ripening of 'Fengzao'. The increasing O2- and H2O2 after EL-35 in 'Fengzao' further promoted the ripening process. Furthermore, after the spraying of 300 μmol/L H2O2 solution on 'Kyoho' at EL-31 stage, the berries matured 15 days earlier than the untreated. Evidence in this study indicated that the overall oxidation status (ROS levels) in 'Fengzao' is higher than in 'Kyoho' and H2O2 could promote the early ripening of 'Kyoho' berry.
Collapse
Affiliation(s)
- Fei-Fei Xi
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Li-Li Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yan Wang
- Department of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Hui-Li Zhao
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
| |
Collapse
|
26
|
Chen Y, Sun J, Lin H, Hung YC, Zhang S, Lin Y, Lin T. Paper-based 1-MCP treatment suppresses cell wall metabolism and delays softening of Huanghua pears during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2547-2552. [PMID: 27706823 DOI: 10.1002/jsfa.8072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Huanghua pear will lose its firmness quickly during postharvest storage at ambient temperature, and hence has limited storage and marketing potential. In this study, Huanghua pears treated with paper containing 0 (control) or 0.9 μL L-1 1-methylcyclopropene (1-MCP) for 12 h, and then stored at (25 ± 1) °C for 30 days, were investigated for the effect on fruit firmness, cell wall composition and activities of cell wall-degrading enzymes. RESULTS Huanghua pears without 1-MCP treatment softened rapidly during room-temperature storage and cell wall composition analyses showed an increase in water-soluble pectin (WSP) and decreases in cell wall materials (CWM) and cell wall components such as Na2 CO3 -soluble pectin (NSP), cellulose and hemicellulose. In contrast, the 1-MCP-treated fruits maintained higher firmness than the control; also, the treatment prevented the formation of WSP and reduced the degradation of CWM and cell wall components including NSP, cellulose and hemicellulose. 1-MCP treatment also significantly lowered the activities of cell wall-degrading enzymes such as pectinesterase, polygalacturonase, β-galactosidase and cellulase during storage. CONCLUSION 1-MCP treatment can slow down the softening of Huanghua pears through reducing cell wall-degrading enzyme activities and hence maintain the integrity of the cell wall structure. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA
| | - Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
27
|
Lin Y, Chen M, Lin H, Hung YC, Lin Y, Chen Y, Wang H, Shi J. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system. Food Chem 2017; 228:497-505. [PMID: 28317755 DOI: 10.1016/j.foodchem.2017.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023]
Abstract
As compared with P. longanae-inoculated longans, DNP treatment for P. longanae-inoculated longans exhibited higher fruit disease index and pericarp browning index, lower ATP amount and energy charge level, lower activities of SOD, CAT and APX, lower amounts of AsA and GSH, lower levels of DPPH radical scavenging activity and reducing power, higher O2- generating rate and MDA amount. However, supply of ATP for P. longanae-inoculated longans showed the contrary effects. These results gave convincing evidence that DNP treatment for accelerating pericarp browning and disease development of harvested longans caused by P. longanae was due to decreases of energy production and ROS scavenging capacity, and increases of O2- accumulation and membrane lipid peroxidation. Whereas, supply of ATP for retarding pericarp browning and disease development of harvested longans caused by P. longanae was due to increases of energy production and ROS scavenging capacity, and reductions of O2- accumulation and membrane lipid peroxidation.
Collapse
Affiliation(s)
- Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
28
|
Inhibitory effects of propyl gallate on membrane lipids metabolism and its relation to increasing storability of harvested longan fruit. Food Chem 2017; 217:133-138. [DOI: 10.1016/j.foodchem.2016.08.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/27/2016] [Accepted: 08/22/2016] [Indexed: 11/22/2022]
|
29
|
Airianah OB, Vreeburg RAM, Fry SC. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. ANNALS OF BOTANY 2016; 117:441-55. [PMID: 26865506 PMCID: PMC4765547 DOI: 10.1093/aob/mcv192] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. METHODS We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. KEY RESULTS Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. CONCLUSIONS GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue.
Collapse
Affiliation(s)
- Othman B Airianah
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Robert A M Vreeburg
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
30
|
Belge B, Comabella E, Graell J, Lara I. Post-storage cell wall metabolism in two sweet cherry (Prunus avium L.) cultivars displaying different postharvest performance. FOOD SCI TECHNOL INT 2014; 21:416-27. [DOI: 10.1177/1082013214541863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
The biochemical processes underlying firmness loss of sweet cherry ( Prunus avium L.) fruit are poorly understood. Studies on cell wall metabolism of sweet cherry have been generally undertaken during on-tree development or at harvest maturity, while published reports on postharvest changes are scarce and fragmentary. In this work, cell wall modifications after storage at 0 ℃ were studied in two cherry cultivars (‘Celeste’ and ‘Somerset’) displaying different postharvest potential. Firmness was largely determined by the yields of the Na2CO3- and KOH-soluble fractions, enriched in covalently-bound pectins and in matrix glycans, respectively, and correlated well with ascorbic acid contents. The yields of these two cell wall fractions were correlated inversely with pectinmethylesterase and endo-1,4-β-d-glucanase activities, indicating a relevant role of these two enzymes in postharvest firmness changes in sweet cherry. The amount of solubilised cell wall materials was closely associated to the contents of dehydroascorbic acid, suggesting the possible involvement of oxidative mechanisms in cell wall disassembly. These data may help understanding the evolution of fruit quality during the marketing period, and give hints for the design of suitable management strategies to preserve key attributes.
Collapse
Affiliation(s)
- Burcu Belge
- Departament de Química, Universitat de Lleida, Lleida, Spain
- Unitat de Postcollita-XaRTA, Universitat de Lleida, Lleida, Spain
| | - Eva Comabella
- Departament de Química, Universitat de Lleida, Lleida, Spain
- Unitat de Postcollita-XaRTA, Universitat de Lleida, Lleida, Spain
| | - Jordi Graell
- Unitat de Postcollita-XaRTA, Universitat de Lleida, Lleida, Spain
- Departament de Tecnologia d’Aliments, Universitat de Lleida, Lleida, Spain
| | - Isabel Lara
- Departament de Química, Universitat de Lleida, Lleida, Spain
- Unitat de Postcollita-XaRTA, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
31
|
Wang D, Zhang H, Wu F, Li T, Liang Y, Duan X. Modification of pectin and hemicellulose polysaccharides in relation to aril breakdown of harvested longan fruit. Int J Mol Sci 2013; 14:23356-68. [PMID: 24287911 PMCID: PMC3876050 DOI: 10.3390/ijms141223356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/16/2022] Open
Abstract
To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara+Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit.
Collapse
Affiliation(s)
- Duoduo Wang
- Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (D.W.); (H.Z.); (F.W.); (T.L.)
| | - Haiyan Zhang
- Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (D.W.); (H.Z.); (F.W.); (T.L.)
| | - Fuwang Wu
- Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (D.W.); (H.Z.); (F.W.); (T.L.)
| | - Taotao Li
- Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (D.W.); (H.Z.); (F.W.); (T.L.)
| | - Yuxiang Liang
- Guangzhou No.6 Middle School, Guangzhou 510300, China; E-Mail:
| | - Xuewu Duan
- Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (D.W.); (H.Z.); (F.W.); (T.L.)
| |
Collapse
|
32
|
Machová E, Bystrický S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int J Biol Macromol 2013; 61:308-11. [PMID: 23916650 DOI: 10.1016/j.ijbiomac.2013.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/16/2013] [Accepted: 07/27/2013] [Indexed: 11/29/2022]
Abstract
Microbial and plant polysaccharides in nature are frequently exposed to oxidative burst. They may act as antioxidants buffering the radical attack. This paper presents antioxidant properties of prepared yeast mannans, commercial β-glucans as well as the chemically prepared carboxymethylated β-glucan (CM-glucan). The hydroxyl radical antioxidant assay and the DPPH radical-scavenging assay were used. Yeast mannans and β-glucans (1.6 mg mL(-1)) showed antioxidant capacities against OH(·) up to 14.1%, while CM-glucan was significantly higher antioxidant (65.4%). In the DPPH(·) assay, the antioxidant capacities of yeast mannans and β-glucans (1.0 mg mL(-1)) were lower and reached up to ~6.5%. All polysaccharides tested were effectively degraded by OH(·) and the presence of salicylate considerably inhibited their degradation. Measure of Fe(2+) chelation revealed less than 13.1% effectivity for all polysaccharides. In all antioxidant and degradation experiments the yeast mannans showed very similar results to commercial β-glucans. The antioxidant capacities of polysaccharides may be assessed by simple HPLC monitoring.
Collapse
Affiliation(s)
- Eva Machová
- Institute of Chemistry, Department of Immunochemistry of Glycoconjugates, Centre of Excellence Glycomed, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia.
| | | |
Collapse
|
33
|
Lin YF, Hu YH, Lin HT, Liu X, Chen YH, Zhang S, Chen QX. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2889-95. [PMID: 23427826 DOI: 10.1021/jf305481h] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1), also known as polyphenol oxidase (PPO), is a key enzyme in pigment biosynthesis of organisms. The inhibitory effects of propyl gallate on the activity of mushroom tyrosinase and effects of propyl gallate on pericarp browning of harvested longan fruits in relation to phenolic metabolism were investigated. The results showed that propyl gallate could potently inhibit diphenolase activity of tyrosinase. The inhibitor concentration leading to 50% activity lost (IC50) was determined to be 0.685 mM. Kinetic analyses showed that propyl gallate was a reversible and mixed type inhibitor on this enzyme. The inhibition constants (K(IS) and K(I)) were determined to be 2.135 and 0.661 mM, respectively. Furthermore, the results also showed that propyl gallate treatment inhibited activities of PPO and POD in pericarp of harvested longan fruits, and maintained higher contents of total phenol and flavonoid of longan pericarp. Moreover, propyl gallate treatment also delayed the increases of browning index and browning degree in pericarp of harvested longan fruits. Therefore, application of propyl gallate may be a promising method for inhibiting tyrosinase activity, controlling pericarp browning, and extending shelf life of harvested longan fruits.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | |
Collapse
|