1
|
Wang J, Wang L, Zhang H, Mei X, Qiu L, Liu J, Zhou Y. Development of a time-resolved immunochromatographic strip for rapid and quantitative determination of deoxynivalenol. Front Vet Sci 2023; 10:1142820. [PMID: 37008353 PMCID: PMC10060663 DOI: 10.3389/fvets.2023.1142820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Deoxynivalenol (DON) contamination of food crops and feeds is almost impossible to avoid completely; however, through best management practices, this risk can be effectively managed and maximumly mitigated. Accurate and rapid detection of DON contamination as early in the entire value chain as possible is critical. To achieve this goal, we developed a DON test strip based on time-resolved fluorescence immunoassay (TRFIA) and a specific DON monoclonal antibody for the rapid quantification of DON in food crops and feeds. The strip displayed a good linearity (R2 = 0.9926), with a limit of quantification of 28.16 μg/kg, a wide linear range of 50 ~ 10,000 μg/kg. The intra-batch coefficient of variation (CV) and the inter-batch CV was <5.00 and 6.60%, respectively. This TRFIA-DON test strip was applied to detect DON in real samples, and the accuracy and reliability were confirmed by liquid chromatography-mass spectrometry (LC-MS/MS). Results showed that the relative standard deviation between the DON strips and LC-MS/MS was <9%. The recovery rates in corn samples ranged from 92 to 104%. The established TRFIA-DON test strip had the characteristics of high sensitivity, high accuracy, and a wide linear range which was suitable for rapid and quantitative determination of DON in food crops and feeds at both on-site and laboratory.
Collapse
Affiliation(s)
- Jingneng Wang
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Lihua Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinglin Mei
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Liangzhu Qiu
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Jing Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- *Correspondence: Jing Liu
| | - Yongsong Zhou
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
- Yongsong Zhou
| |
Collapse
|
2
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
3
|
Zhou J, Gui Y, Lv X, He J, Xie F, Li J, Cai J. Nanomaterial-Based Fluorescent Biosensor for Food Safety Analysis. BIOSENSORS 2022; 12:1072. [PMID: 36551039 PMCID: PMC9775463 DOI: 10.3390/bios12121072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues have become a major threat to public health and have garnered considerable attention. Rapid and effective detection methods are crucial for ensuring food safety. Recently, nanostructured fluorescent materials have shown considerable potential for monitoring the quality and safety of food because of their fascinating optical characteristics at the nanoscale. In this review, we first introduce biomaterials and nanomaterials for food safety analysis. Subsequently, we perform a comprehensive analysis of food safety using fluorescent biosensors based on nanomaterials, including mycotoxins, heavy metals, antibiotics, pesticide residues, foodborne pathogens, and illegal additives. Finally, we provide new insights and discuss future approaches for the development of food safety detection, with the aim of improving fluorescence detection methods for the practical application of nanomaterials to ensure food safety and protect human health.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Gui
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuqin Lv
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjie Li
- Institute of System and Engineering, Beijing 100010, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Surface Plasmon Resonance (SPR) biosensor for detection of mycotoxins: A review. J Immunol Methods 2022; 510:113349. [PMID: 36088984 DOI: 10.1016/j.jim.2022.113349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Mycotoxin is one of the most important natural pollutants, which poses a global threat to food safety. However, the pollution of mold in food production is inevitable. The detection technology of mycotoxins in food production is an important means to prevent the damage of mycotoxins, so rapid detection and screening to avoid pollution diffusion is essential. The focus of this review is to update the literature on the detection of mycotoxins by surface plasmon resonance (SPR) technology, rather than just traditional chromatographic methods. As a relatively novel and simple analytical method, SPR has been proved to be fast, sensitive and label-free, and has been widely used in real-time qualitative and quantitative analysis of various pollutants. This paper aims to give a broad overview of the sensors for detection and analysis of several common mycotoxins.
Collapse
|
5
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
6
|
Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxins present serious threats not only for public health, but also for the economy and environment. The problems become more complex and serious due to co-contamination of multiple hazardous mycotoxins in commodities and environment. To mitigate against this issue, accurate, affordable, and rapid multiplex detection methods are required. This review presents an overview of emerging rapid immuno-based multiplex methods capable of detecting mycotoxins present in agricultural products and feed ingredients published within the past five years. The scientific principles, advantages, disadvantages, and assay performance of these rapid multiplex immunoassays, including lateral flow, fluorescence polarization, chemiluminescence, surface plasmon resonance, surface enhanced Raman scattering, electrochemical sensor, and nanoarray are discussed. From the recent literature landscape, it is predicted that the future trend of the detection methods for multiple mycotoxins will rely on the advance of various sensor technologies, a variety of enhancing and reporting signals based on nanomaterials, rapid and effective sample preparation, and capacity for quantitative analysis.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Christopher T Elliott
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Ratthaphol Charlermroj
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
7
|
Suo Z, Liang X, Jin H, He B, Wei M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB 1. Anal Bioanal Chem 2021; 413:7587-7595. [PMID: 34748033 DOI: 10.1007/s00216-021-03723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023]
Abstract
The simultaneous detection of multiple mycotoxins is of great significance for food safety and human health. Herein, a simple, convenient and accurate fluorescent aptasensor was designed based on the dual cross DNA nanostructure for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1), in which the stable dual cross DNA nanostructure provided an assay platform using the fluorescent dye-labeled aptamers as a sensing element. Owing to the higher affinity of aptamers for their target, the aptamer probes were released from the assay platform in the presence of OTA and AFB1, resulting in an enhanced fluorescence at 570 nm and 670 nm. This "signal-on" fluorescent aptasensor assay system can effectively avoid background signals and minimize false positive. Furthermore, the designed method can realize the simultaneous detection of OTA and AFB1 during the whole experiment. The limits of detection (LOD) were as low as 0.0058 ng/mL for OTA, ranging from 0.01 to 50 ng/mL and 0.046 ng/mL for AFB1, ranging from 0.05 to 100 ng/mL. The proposed fluorescent aptasensor exhibits excellent performance in practical application and provides a novel approach for the simultaneous detection of multiple mycotoxins by simply changing the aptamers. A "signal-on" fluorescent aptasensor assay system based on the stable dual cross DNA nanostructure was successfully developed for simultaneous detection of OTA and AFB1 with lower detection limits in wider linear ranges.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Xiujun Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
8
|
Csarman F, Gusenbauer C, Wohlschlager L, van Erven G, Kabel MA, Konnerth J, Potthast A, Ludwig R. Non-productive binding of cellobiohydrolase i investigated by surface plasmon resonance spectroscopy. CELLULOSE (LONDON, ENGLAND) 2021; 28:9525-9545. [PMID: 34720466 PMCID: PMC8550311 DOI: 10.1007/s10570-021-04002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Future biorefineries are facing the challenge to separate and depolymerize biopolymers into their building blocks for the production of biofuels and basic molecules as chemical stock. Fungi have evolved lignocellulolytic enzymes to perform this task specifically and efficiently, but a detailed understanding of their heterogeneous reactions is a prerequisite for the optimization of large-scale enzymatic biomass degradation. Here, we investigate the binding of cellulolytic enzymes onto biopolymers by surface plasmon resonance (SPR) spectroscopy for the fast and precise characterization of enzyme adsorption processes. Using different sensor architectures, SPR probes modified with regenerated cellulose as well as with lignin films were prepared by spin-coating techniques. The modified SPR probes were analyzed by atomic force microscopy and static contact angle measurements to determine physical and surface molecular properties. SPR spectroscopy was used to study the activity and affinity of Trichoderma reesei cellobiohydrolase I (CBHI) glycoforms on the modified SPR probes. N-glycan removal led to no significant change in activity or cellulose binding, while a slightly higher tendency for non-productive binding to SPR probes modified with different lignin fractions was observed. The results suggest that the main role of the N-glycosylation in CBHI is not to prevent non-productive binding to lignin, but probably to increase its stability against proteolytic degradation. The work also demonstrates the suitability of SPR-based techniques for the characterization of the binding of lignocellulolytic enzymes to biomass-derived polymers. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-021-04002-6.
Collapse
Affiliation(s)
- Florian Csarman
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Gusenbauer
- Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Lena Wohlschlager
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes Konnerth
- Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Division of Chemistry of Renewable Resources, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
9
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
10
|
Lesnak M, Jursa D, Miskay M, Riedlova H, Barcova K, Adamek M. The determination of cystatin C in biological samples via the surface plasmon resonance method. Biotechniques 2021; 70:263-270. [PMID: 33998838 DOI: 10.2144/btn-2020-0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surface plasmon resonance imaging biosensors have a number of advantages that make them superior to other analytical methods. These include the possibility of label-free detection, speed and high sensitivity to low protein concentrations. The aim of this study was to create and analyze biochips, with the help of which it is possible to test cystatin C in patient urine samples and compare the results with the one-time traditional ELISA method. The main advantage of the surface plasmon resonance imaging method is the possibility of repeated measurements over a long period of time in accordance with clinical practice. The surface of the biochip was spotted with anticystatin C and a negative control of mouse IgG at a ratio of 1:1. The aforementioned biochip was first verified using standard tests and then with patient samples, which clearly confirmed the required sensitivity even for very low concentrations of cystatin C.
Collapse
Affiliation(s)
- Michal Lesnak
- Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumirova 13, Ostrava Vyskovice, 700 30, Czech Republic.,Nanotechnology Centre, VSB - Technical University of Ostrava, 17, Listopadu 15, Ostrava Poruba, 708 33, Czech Republic
| | - Dominik Jursa
- Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumirova 13, Ostrava Vyskovice, 700 30, Czech Republic
| | - Marek Miskay
- Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumirova 13, Ostrava Vyskovice, 700 30, Czech Republic
| | - Helena Riedlova
- Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumirova 13, Ostrava Vyskovice, 700 30, Czech Republic
| | - Karla Barcova
- Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumirova 13, Ostrava Vyskovice, 700 30, Czech Republic
| | - Milan Adamek
- Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 760 05, Czech Republic
| |
Collapse
|
11
|
Wang W, Wang R, Liao M, Kidd MT, Li Y. Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Hassan MM, Zareef M, Xu Y, Li H, Chen Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem 2020; 344:128652. [PMID: 33272760 DOI: 10.1016/j.foodchem.2020.128652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a growing ultrasensitive analytical technique to quantify toxic molecules in foodstuffs. Monitoring the levels of chemical contaminants not only ensures food security but also offers a guideline on the production, processing, and risk analysis of consumer's health protection. The objective of this study was to point out the possible challenges associated with the detection of mycotoxins in foodstuffs. Herein, we have discussed briefly as to selectivity, accuracy, precision, robustness, ruggedness, non-specific adsorption (NSA), cross-reactivity (for both label-free and the target analyte capture approaches like the application of antibody, aptamer, molecularly imprinted polymer (MIP), linear polymer affinity agents and/or specific surface-modified nanomaterials) and their potential solution.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
14
|
Li Y, Zhang N, Wang H, Zhao Q. An immunoassay for ochratoxin A using tetramethylrhodamine-labeled ochratoxin A as a probe based on a binding-induced change in fluorescence intensity. Analyst 2020; 145:651-655. [DOI: 10.1039/c9an01879d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an immunoassay, ochratoxin A (OTA) competitively displaces the bound tetramethylrhodamine (TMR)-OTA fluorescent probe from the antibody, causing a decrease in fluorescence.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
15
|
|
16
|
Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 2019; 300:125176. [DOI: 10.1016/j.foodchem.2019.125176] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
17
|
Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosens Bioelectron 2019; 143:111603. [DOI: 10.1016/j.bios.2019.111603] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
|
18
|
Microfluidic-Based Approaches for Foodborne Pathogen Detection. Microorganisms 2019; 7:microorganisms7100381. [PMID: 31547520 PMCID: PMC6843441 DOI: 10.3390/microorganisms7100381] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Food safety is of obvious importance, but there are frequent problems caused by foodborne pathogens that threaten the safety and health of human beings worldwide. Although the most classic method for detecting bacteria is the plate counting method, it takes almost three to seven days to get the bacterial results for the detection. Additionally, there are many existing technologies for accurate determination of pathogens, such as polymerase chain reaction (PCR), enzyme linked immunosorbent assay (ELISA), or loop-mediated isothermal amplification (LAMP), but they are not suitable for timely and rapid on-site detection due to time-consuming pretreatment, complex operations and false positive results. Therefore, an urgent goal remains to determine how to quickly and effectively prevent and control the occurrence of foodborne diseases that are harmful to humans. As an alternative, microfluidic devices with miniaturization, portability and low cost have been introduced for pathogen detection. In particular, the use of microfluidic technologies is a promising direction of research for this purpose. Herein, this article systematically reviews the use of microfluidic technology for the rapid and sensitive detection of foodborne pathogens. First, microfluidic technology is introduced, including the basic concepts, background, and the pros and cons of different starting materials for specific applications. Next, the applications and problems of microfluidics for the detection of pathogens are discussed. The current status and different applications of microfluidic-based technologies to distinguish and identify foodborne pathogens are described in detail. Finally, future trends of microfluidics in food safety are discussed to provide the necessary foundation for future research efforts.
Collapse
|
19
|
Nolan P, Auer S, Spehar A, Elliott CT, Campbell K. Current trends in rapid tests for mycotoxins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:800-814. [PMID: 30943116 DOI: 10.1080/19440049.2019.1595171] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There are an ample number of commercial testing kits available for mycotoxin analysis on the market today, including enzyme-linked immunosorbent assays, membrane-based immunoassays, fluorescence polarisation immunoassays and fluorometric assays. It can be observed from the literature that not only are developments and improvements ongoing for these assays but there are also novel assays being developed using biosensor technology. This review focuses on both the currently available methods and recent innovative methods for mycotoxin testing. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid on-site analysis, indicating the possible detection methods that will shape the future market.
Collapse
Affiliation(s)
- Philana Nolan
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | | | | | - Christopher T Elliott
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Katrina Campbell
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| |
Collapse
|
20
|
De Girolamo A, Cervellieri S, Cortese M, Porricelli ACR, Pascale M, Longobardi F, von Holst C, Ciaccheri L, Lippolis V. Fourier transform near-infrared and mid-infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1946-1953. [PMID: 30270446 DOI: 10.1002/jsfa.9392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) is the most common Fusarium mycotoxin occurring in wheat and wheat-derived products, with several adverse and toxic effects in animals and humans. Although bran fractions produced by milling wheat have numerous health benefits, cereal bran is the part of the grain with the highest concentration of DON, thus representing a risk for consumers. Increased efforts have been made to develop analytical methods suitable for rapid DON screening. RESULTS The applicability of Fourier transform near-infrared (FTNIR), or mid-infrared (FTMIR) spectroscopy, and their combination for rapid analysis of DON in wheat bran, was investigated for the classification of samples into compliant and non-compliant groups regarding the EU legal limit of 750 µg kg-1 . Partial least squares-discriminant analysis (PLS-DA) and principal component-linear discriminant analysis (PC-LDA) were employed as classification techniques using a cutoff value of 400 µg kg-1 DON to distinguish the two classes. Depending on the classification model, overall discrimination rates were from 87% to 91% for FTNIR and from 86% to 87% for the FTMIR spectral range. The FTNIR spectroscopy gave the highest overall classification rate of wheat bran samples, with no false compliant samples and 18% false noncompliant samples when the PC-LDA classification model was applied. The combination of the two spectral ranges did not provide a substantial improvement in classification results in comparison with FTNIR. CONCLUSIONS Fourier transform near-infrared spectroscopy in combination with classification models was an efficient tool to screen many DON-contaminated wheat bran samples and assess their compliance with EU regulations. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Marina Cortese
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | | | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Francesco Longobardi
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | | | - Leonardo Ciaccheri
- Institute of Applied Physics 'Nello Carrara' (IFAC), CNR-National Research Council of Italy, Sesto Fiorentino, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| |
Collapse
|
21
|
Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycotoxins are a group of secondary metabolites produced by different species of filamentous fungi and pose serious threats to food safety due to their serious human and animal health impacts such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection of mycotoxins include gas chromatography and high-performance liquid chromatography coupled with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively enforce regulations and ensure the safety of food and feed. In this sense, several studies have been done with the aim of developing strategies to detect mycotoxins using sensing devices that have high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently emerged as a good candidate technique to meet such requirements. This review summarizes the application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.
Collapse
|
22
|
Sensitivity enhancement for mycotoxin determination by optical waveguide lightmode spectroscopy using gold nanoparticles of different size and origin. Food Chem 2018; 267:10-14. [DOI: 10.1016/j.foodchem.2018.04.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
|
23
|
Ostarcevic ER, Jacangelo J, Gray SR, Cran MJ. Current and Emerging Techniques for High-Pressure Membrane Integrity Testing. MEMBRANES 2018; 8:E60. [PMID: 30096937 PMCID: PMC6161006 DOI: 10.3390/membranes8030060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/28/2023]
Abstract
Ideally, pressure driven membrane processes used in wastewater treatment such as reverse osmosis and nanofiltration should provide a complete physical barrier to the passage of pathogens such as enteric viruses. In reality, manufacturing imperfections combined with membrane ageing and damage can result in breaches as small as 20 to 30 nm in diameter, sufficient to allow enteric viruses to contaminate the treated water and compromise public health. In addition to continuous monitoring, frequent demonstration of the integrity of membranes is required to provide assurance that the barrier to the passage of such contaminants is intact. Existing membrane integrity monitoring systems, however, are limited and health regulators typically credit high-pressure membrane systems with only 2 log10 virus rejection, well below their capability. A reliable real-time method that can recognize the true rejection potential of membrane systems greater than 4 log10 has not yet been established. This review provides a critical evaluation of the current methods of integrity monitoring and identifies novel approaches that have the potential to provide accurate, representative virus removal efficiency estimates.
Collapse
Affiliation(s)
- Eddy R Ostarcevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee 3030, Australia.
| | | | - Stephen R Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee 3030, Australia.
| | - Marlene J Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee 3030, Australia.
| |
Collapse
|
24
|
Zhang X, Wang Z, Xie H, Sun R, Cao T, Paudyal N, Fang W, Song H. Development of a Magnetic Nanoparticles-Based Screen-Printed Electrodes (MNPs-SPEs) Biosensor for the Quantification of Ochratoxin A in Cereal and Feed Samples. Toxins (Basel) 2018; 10:toxins10080317. [PMID: 30082606 PMCID: PMC6115714 DOI: 10.3390/toxins10080317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
A rapid and sensitive electrochemical biosensor based on magnetic nanoparticles and screen-printed electrodes (MNPs-SPEs sensor) was developed for the detection of ochratoxin A (OTA) in cereal and feed samples. Different types of magnetic nanoparticles-based ELISA (MNPs-ELISA) were optimized, and the signal detection, as well as sensitivity, was enhanced by the combined use of screen-printed electrodes (SPEs). Under the optimized conditions, the calibration curve of the MNPs-SPEs sensor was y = 0.3372x + 0.8324 (R2 = 0.9805). The linear range of detection and the detection limit were 0.01–0.82 ng/mL and 0.007 ng/mL, respectively. In addition, 50% inhibition (IC50) was detectable at 0.10 ng/mL. The limit of detection (LOD) of this MNPs-SPEs sensor in cereal and feed samples was 0.28 μg/kg. The recovery rates in spiked samples were between 78.7% and 113.5%, and the relative standard deviations (RSDs) were 3.6–9.8%, with the coefficient of variation lower than 15%. Parallel analysis of commercial samples (corn, wheat, and feedstuff) showed a good correlation between MNPs-SPEs sensor and liquid chromatography tandem mass spectrometry (LC/MS-MS). This new method provides a rapid, highly sensitive, and less time-consuming method to determine levels of ochratoxin A in cereal and feedstuff samples.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Hui Xie
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Renjie Sun
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
25
|
Wu W, Zhu Z, Li B, Liu Z, Jia L, Zuo L, Chen L, Zhu Z, Shan G, Luo SZ. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 2018; 146:24-30. [DOI: 10.1016/j.toxicon.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
|
26
|
Man Y, Liang G, Li A, Pan L. Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip. Toxins (Basel) 2017; 9:E324. [PMID: 29036884 PMCID: PMC5666371 DOI: 10.3390/toxins9100324] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), or enzyme-linked immunosorbent assay (ELISA). However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection) to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Risk Assessment Lab for Agro-products, Ministry of Agriculture of the People's Republic of China, Beijing 100125, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
27
|
Matabaro E, Ishimwe N, Uwimbabazi E, Lee BH. Current Immunoassay Methods for the Rapid Detection of Aflatoxin in Milk and Dairy Products. Compr Rev Food Sci Food Saf 2017; 16:808-820. [DOI: 10.1111/1541-4337.12287] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Nestor Ishimwe
- Hefei Natl. Laboratory for Physical Sciences at Microscale and School of Life Sciences; Univ. of Science and Technology of China; Hefei Anhui 230027 China
- the Dept. of Chemistry, College of Science and Technology; Univ. of Rwanda; Rwanda
| | - Eric Uwimbabazi
- School of Food Science; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Byong H. Lee
- Dept. of Microbiology and Immunology; McGill Univ.; Montreal QC H3A 2B4 Canada
- Dept. of Food Science and Biotechnology; Kangwon Natl. Univ.; Chuncheon 200701 South Korea
| |
Collapse
|
28
|
Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL. Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annu Rev Food Sci Technol 2017; 8:467-492. [PMID: 28125343 DOI: 10.1146/annurev-food-041715-033338] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanotechnology is an emerging and rapidly developing toolbox that has novel and unique applications to food science and agriculture. Fast and impressive developments in nanotechnology for food and agriculture have led to new experimental prototype technologies and products. Developing various types of nanodelivery systems, detection tools, nanoscale modifications of bulk or surface properties, fabrication of wide-range bionanosensors, and biodegradable nanoplatforms can potentially improve consumer health and safety, product shelf life and stability, bioavailability, environmental sustainability, efficiency of processing and packaging, and real-time monitoring. Some recently developed nanotechnology techniques and potential product applications of nanotechnology are summarized in this review. Exposure to nanomaterials may be harmful to the consumer and the environment and might increase the potential of risk. For this reason, evaluation of the potential risks resulting from the interaction of nanomaterials with biological systems, humans, and the environment is also reviewed.
Collapse
Affiliation(s)
- Rohollah Sadeghi
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Randol J Rodriguez
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Jozef L Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| |
Collapse
|
29
|
Wu Q, Sun Y, Zhang D, Li S, Wang X, Song D. Magnetic field-assisted SPR biosensor based on carboxyl-functionalized graphene oxide sensing film and Fe3O4-hollow gold nanohybrids probe. Biosens Bioelectron 2016; 86:95-101. [DOI: 10.1016/j.bios.2016.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022]
|
30
|
Abstract
The problems associated with different groups or ‘families’ of mycotoxins have been known for some time, and for many years certain groups of mycotoxins have been known to co-occur in commodities and foods. Until fairly recently commodities and foods were analysed for individual toxins or groups of related toxins and attempts to measure multiple groups of toxins required significant investments in terms of time, effort, and expense. Analytical technologies using both the instrument-intensive techniques, such as mass spectrometry, and screening techniques, such as immunoassays, have progressed significantly in recent years. This has led to the proliferation of techniques capable of detecting multiple groups of mycotoxins using a variety of approaches. Despite considerable progress, the challenges for routine monitoring of multiple toxins continue. Certain of these challenges, such as the need for co-extraction of multiple analytes with widely different polarities and the potential for carry-over of matrix components that can influence the results, are independent of the analytical technique (MS or immunoassay) used. Because of the wide variety of analytical platforms used for multi-toxin analysis, there are also specific challenges that arise amongst the analytical platforms. We showed that chromatographic methods with optical detection for aflatoxins maintain stable response factors over rather long periods. This offers the potential to reduce the analytical burden, provided the use of a single signal receives general acceptance once shown in practise as working approach. This must however be verified by a larger community of laboratories. For immunosensors the arising challenges include the reusability of sensors and, for chromatography-based assays they include the selection of appropriate calibration systems. In this article we seek to further describe the challenges associated with multi-toxin analysis and articulate how such challenges have recently been addressed.
Collapse
Affiliation(s)
- J. Stroka
- Joint Research Centre, European Commission, Retieseweg 111, 2440 Geel, Belgium
| | - C.M. Maragos
- Agricultural Research Service, National Center for Agricultural Utilization Research, United States Department of Agriculture, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
31
|
Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples. Food Chem 2016; 211:972-7. [DOI: 10.1016/j.foodchem.2016.05.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/29/2022]
|
32
|
Sikarwar B, Singh VV, Sharma PK, Kumar A, Thavaselvam D, Boopathi M, Singh B, Jaiswal YK. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens Bioelectron 2016; 87:964-969. [PMID: 27665519 DOI: 10.1016/j.bios.2016.09.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold (4-MBA/Au) SPR chip was developed first time for the detection of Brucella melitensis (B. melitensis) based on the screening of its complementary DNA target by using two different newly designed DNA probes of IS711 gene. Herein, interaction between DNA probes and target molecule are also investigated and result revealed that the interaction is spontaneous. The kinetics and thermodynamic results derived from the experimental data showed that the interaction between complementary DNA targets and probe 1 is more effective than that of probe 2. Equilibrium dissociation constant (KD) and maximum binding capacity of analyte (Bmax) values for the interaction of complementary DNA target with the immobilized DNA probes were calculated by using kinetic evaluation software, and found to be 15.3 pM (KD) and 81.02m° (Bmax) with probe 1 and 54.9pM and 55.29m° (Bmax), respectively. Moreover, real serum samples analysis were also carried out using immobilized probe 1 and probe 2 with SPR which showed the applicability of this methodology and provides an alternative way for the detection of B. melitensis in less than 10min. This remarkable sensing response of present methodology offer a real time and label free detection of biological warfare agent and provide an opportunity to make miniaturized sensor, indicating considerable promise for diverse environmental, bio-defence, clinical diagnostics, food safety, water and security applications.
Collapse
Affiliation(s)
- Bhavna Sikarwar
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Virendra V Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Pushpendra K Sharma
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Ashu Kumar
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | | | - Mannan Boopathi
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India.
| | - Beer Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Yogesh K Jaiswal
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
33
|
Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins (Basel) 2016; 8:239. [PMID: 27529281 PMCID: PMC4999855 DOI: 10.3390/toxins8080239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for oilseeds Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
34
|
Joshi S, Segarra-Fas A, Peters J, Zuilhof H, van Beek TA, Nielen MWF. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016; 141:1307-18. [DOI: 10.1039/c5an02512e] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 6-plex mycotoxin assay was developed on a portable nanostructured iSPR and compared with a benchmark double 3-plex SPR assay.
Collapse
Affiliation(s)
- Sweccha Joshi
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
- TI-COAST
| | - Anna Segarra-Fas
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Jeroen Peters
- RIKILT Wageningen UR
- 6700 AE Wageningen
- The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
- Department of Chemical and Materials Engineering
| | - Teris A. van Beek
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Michel W. F. Nielen
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
- RIKILT Wageningen UR
| |
Collapse
|
35
|
Lee KM, Herrman TJ. Determination and Prediction of Fumonisin Contamination in Maize by Surface–Enhanced Raman Spectroscopy (SERS). FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1654-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Stepurska K, Soldatkin O, Arkhypova V, Soldatkin A, Lagarde F, Jaffrezic-Renault N, Dzyadevych S. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta 2015; 144:1079-84. [DOI: 10.1016/j.talanta.2015.07.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023]
|
37
|
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci Rep 2015; 5:12864. [PMID: 26255778 PMCID: PMC4542615 DOI: 10.1038/srep12864] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Collapse
|
38
|
Rai M, Jogee PS, Ingle AP. Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 2015; 66:363-70. [DOI: 10.3109/09637486.2015.1034251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. Toxins (Basel) 2014; 6:3129-43. [PMID: 25384107 PMCID: PMC4247249 DOI: 10.3390/toxins6113129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022] Open
Abstract
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.
Collapse
|
40
|
Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling. Biosens Bioelectron 2014; 62:163-9. [PMID: 24998314 DOI: 10.1016/j.bios.2014.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
The objective of the study has been the development of a new sensing platform, called Real-time Electrochemical Profiling (REP) that relies on real-time electrochemical immunoassay detection. The proposed REP platform consists of new electrode arrays that are easy to fabricate, has a small imprint allowing microfluidic system integration, enables multiplexed amperometric measurements and performs well in terms of electrochemical immunoassay detection as shown through the deoxynivalenol detection assays. The deoxynivalenol detection has been conducted according to an optimised REP assay protocol using deoxynivalenol standards at varying concentrations and a standard curve was obtained (y=-20.33ln(x)+124.06; R(2)=0.97) with a limit of detection of 6.25 ng/ml. As both ELISA and REP detection methods use horse radish peroxidase as the label and 3.3',5.5'-Tetramethylbenzidine as the substrate, the performance of the REP platform as an ELISA reader has also been investigated and a perfect correlation between the deoxynivalenol concentration and the current response was obtained (y=-14.56ln(x)+101.02; R(2)=0.99). The calibration curves of both assays have been compared to conventional ELISA tests for confirmation. After assay optimisation using toxin spiked buffer, the deoxynivalenol detection assay has also been performed to detect toxins in wheat grain.
Collapse
Affiliation(s)
- Zehra Olcer
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey; Department of Chemistry, Gebze Institute of Technology, 41400 Gebze/Kocaeli, Turkey
| | - Elif Esen
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Turghun Muhammad
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey; College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, Urumqi, People's Republic of China
| | - Aylin Ersoy
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Sinan Budak
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Yıldız Uludag
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey.
| |
Collapse
|
41
|
Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 2014; 406:2303-23. [PMID: 24566759 PMCID: PMC7080119 DOI: 10.1007/s00216-014-7647-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
In the last 20 years, surface plasmon resonance (SPR) and its advancement with imaging (SPRi) emerged as a suitable and reliable platform in clinical analysis for label-free, sensitive, and real-time monitoring of biomolecular interactions. Thus, we report in this review the state of the art of clinical target detection with SPR-based biosensors in complex matrices (e.g., serum, saliva, blood, and urine) as well as in standard solution when innovative approaches or advanced instrumentations were employed for improved detection. The principles of SPR-based biosensors are summarized first, focusing on the physical properties of the transducer, on the assays design, on the immobilization chemistry, and on new trends for implementing system analytical performances (e.g., coupling with nanoparticles (NPs). Then we critically review the detection of analytes of interest in molecular diagnostics, such as hormones (relevant also for anti-doping control) and biomarkers of interest in inflammatory, cancer, and heart failure diseases. Antibody detection is reported in relation to immune disorder diagnostics. Subsequently, nucleic acid targets are considered for revealing genetic diseases (e.g., point mutation and single nucleotides polymorphism, SNPs) as well as new emerging clinical markers (microRNA) and for pathogen detection. Finally, examples of pathogen detection by immunosensing were also analyzed. A parallel comparison with the reference methods was duly made, indicating the progress brought about by SPR technologies in clinical routine analysis.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
| | - Maria Minunni
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 50019 Sesto Fiorentino, FI Italy
| |
Collapse
|
42
|
Berthiller F, Burdaspal P, Crews C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2012-2013. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.
Collapse
Affiliation(s)
- F. Berthiller
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera de Majadahonda a Pozuelo km 5, 228220 Majadahonda, Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Instituto Adolfo Lutz, Laboratrio I de Ribeiro Preto, Av Dr Arnaldo 355, CEP 14085-410, Ribeiro Preto SP, Brazil
| | - R. Krska
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - J. Stroka
- Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
43
|
Meneely J, Elliott C. Rapid surface plasmon resonance immunoassays for the determination of mycotoxins in cereals and cereal-based food products. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent times surface plasmon resonance has demonstrated its applicability to the detection of a wide range of contaminants in food and feed including mycotoxins in cereals and cereal-based food products. Commercially available, laboratory-based systems have exploited high affinity polyclonal, monoclonal and recombinant antibodies and robust sensing surfaces to provide rapid, accurate and sensitive means of determining these toxins. In addition many custom-built, prototype devices have shown a great deal of potential for this particular application and have included the combination of surface plasmon resonance with enzyme-derivatised sensors, molecularly imprinted polymers, fluorescence spectroscopy and the use of gold nanoparticles for signal enhancement. Of note is the lack of available devices that allow the detection of multiple mycotoxins simultaneously and portable devices that could be used in the field, therefore future research and development should focus on these areas to deliver cost-effective miniaturised devices with multiplexing capabilities.
Collapse
Affiliation(s)
- J.P. Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
44
|
A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin. SENSORS 2013; 13:12794-803. [PMID: 24072024 PMCID: PMC3859037 DOI: 10.3390/s131012794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/15/2023]
Abstract
In this study a novel sensitive nanogold particle sensor enhancement based on mixed self-assembled monolayers was explored and used to construct a Surface Plasmon Resonance (SPR) immunosensor to detect Ischemia Modified Albumin (IMA). Compared with a direct binding SPR assay at a limit of detection (LOD) of 100 ng/L, gold nanoparticles (AuNPs) of 10 nm dramatically improved the LOD of IMA to 10 ng/L. Meanwhile, no interfering substance that may lead to false positive results was identified. These results suggested that the SPR biosensor presented superior properties, and provided a simple label-free strategy to increase assay sensitivity for further acute coronary syndrome (ACS) diagnosis.
Collapse
|
45
|
Schaub A, Slepička P, Kašpárková I, Malinský P, Macková A, Švorčík V. Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique. NANOSCALE RESEARCH LETTERS 2013; 8:249. [PMID: 23692709 PMCID: PMC3663755 DOI: 10.1186/1556-276x-8-249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/13/2013] [Indexed: 05/14/2023]
Abstract
The paper is focused on the preparation and surface characterization of gold coatings and nanostructures deposited on glass substrate. Different approaches for the layer preparation were applied. The gold was deposited on the glass with (i) room temperature, (ii) glass heated to 300°C, and (iii) the room temperature-deposited glass which was consequently annealed to 300°C. The sheet resistance and concentration of free carriers were determined by the van der Pauw method. Surface morphology was characterized using an atomic force microscopy. The optical properties of gold nanostructures were measured by UV-vis spectroscopy. The evaporation technique combined with simultaneous heating of the glass leads to change of the sheet resistance, surface roughness, and optical properties of gold nanostructures. The electrically continuous layers are formed for significantly higher thickness (18 nm), if the substrate is heated during evaporation process. The annealing process influences both the structure and optical properties of gold nanostructures. The elevated temperature of glass during evaporation amplifies the peak of plasmon resonance in the structures, the surface morphology being significantly altered.
Collapse
Affiliation(s)
- Anna Schaub
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 166 28, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 166 28, Czech Republic
| | - Irena Kašpárková
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 166 28, Czech Republic
| | - Petr Malinský
- Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic
- Faculty of Science, J.E. Purkyně University, Ústí nad Labem, Czech Republic
| | - Anna Macková
- Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic
- Faculty of Science, J.E. Purkyně University, Ústí nad Labem, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 166 28, Czech Republic
| |
Collapse
|
46
|
Oswald S, Karsunke XYZ, Dietrich R, Märtlbauer E, Niessner R, Knopp D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 2013; 405:6405-15. [PMID: 23620369 DOI: 10.1007/s00216-013-6920-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20, v/v), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55-80 and 58-79%, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127-132 and 82-120% higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography-mass spectrometry and found to be in good agreement.
Collapse
Affiliation(s)
- S Oswald
- Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus. Int J Food Microbiol 2013; 162:152-8. [DOI: 10.1016/j.ijfoodmicro.2013.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/18/2012] [Accepted: 01/16/2013] [Indexed: 11/18/2022]
|
48
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
49
|
Couture M, Zhao SS, Masson JF. Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 2013; 15:11190-216. [DOI: 10.1039/c3cp50281c] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Niu Y, Matos AI, Abrantes LM, Viana AS, Jin G. Antibody oriented immobilization on gold using the reaction between carbon disulfide and amine groups and its application in immunosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17718-17725. [PMID: 23210719 DOI: 10.1021/la303032f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon disulfide (CS(2)) can spontaneously react with amine groups to form dithiocarbamates on gold surface, providing the possibility to immobilize some compounds with primary or secondary amine groups in one step. Using this principle, an immunosensor interface prepared for immunoglobulin G (IgG) sensing surface toward anti-IgG has been fabricated for the first time by simply immersing gold slides into a mixed aqueous solution of CS(2) and protein A, followed by incubation in immunoglobulin G solution. The reaction between CS(2) and protein A has been followed by UV-vis spectroscopy, whereas cyclic voltammetry has been employed in the characterization of the modified gold surface with CS(2) and protein A, both methods indicating that protein A immobilization is implemented by CS(2). Conventional ellipsometry, atomic force microscopy (AFM), as well as surface plasmon resonance (SPR) have been used to evaluate the specific binding of protein A with IgG and IgG with anti-IgG, revealing that IgG is specifically captured to form the biosensing interface, maintaining its bioactivity. Compared to direct adsorption of IgG on the gold surface, the IgG sensing surface constructed of CS(2) and protein A is far more sensitive to capture anti-IgG as its target molecule. In addition, the modified surface is proven to have good capability to inhibit nonspecific adsorption, as supported by control experiments using lysozyme and BSA. To conclude, antibody immobilization using this one-step method has potential as a simple and convenient surface modification approach for immunosensor development.
Collapse
Affiliation(s)
- Yu Niu
- NML, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | | | | | | | | |
Collapse
|