1
|
Guliya H, Yadav M, Nohwal B, Lata S, Chaudhary R. Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds. Biochim Biophys Acta Gen Subj 2024; 1868:130691. [PMID: 39117046 DOI: 10.1016/j.bbagen.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.
Collapse
Affiliation(s)
- Himani Guliya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Meena Yadav
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Bhawna Nohwal
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| | - Reeti Chaudhary
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| |
Collapse
|
2
|
Jakabová S, Árvay J, Šnirc M, Lakatošová J, Ondejčíková A, Golian J. HPLC-DAD method for simultaneous determination of gallic acid, catechins, and methylxanthines and its application in quantitative analysis and origin identification of green tea. Heliyon 2024; 10:e35819. [PMID: 39220986 PMCID: PMC11365376 DOI: 10.1016/j.heliyon.2024.e35819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was optimized for the simultaneous determination of 11 compounds, belonging to polyphenols (gallic acid and seven catechins) and methylxanthines (caffeine, theobromine, and theophylline). The results obtained for all the validation parameters of the HPLC-DAD method showed that the method is sensitive enough for routine analysis with basic chromatographic equipment, thus it has a significant potential to be highly applicable in common laboratory practice. The method was used in the analysis of 60 green tea infusions originating from four tea-producing countries. The dataset contributes to enhancing current data on green tea. The analysis of green tea extracts revealed significant differences depending on the origin of the samples. Linear Discriminant Analysis (LDA) was applied to test the accuracy of identification of the origin of the tea samples, based on the chemical composition of tea with a focus on polyphenolic compounds and methylxanthines analysed in this study. Based on cross-validation results, the model showed 93.75 % accuracy in the classification of green tea originating from Japan, China (Mainland), China (Taiwan) and South Korea.
Collapse
Affiliation(s)
- Silvia Jakabová
- Institute of Food Sciences, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Marek Šnirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Jana Lakatošová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr.A. Hlinku 2, 94976, Nitra, Slovakia
| | | | - Jozef Golian
- Institute of Food Sciences, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| |
Collapse
|
3
|
Peiró-Vila P, Pérez-Gracia C, Baeza-Baeza JJ, García-Alvarez-Coque MC, Torres-Lapasió JR. Analysis and classification of tea varieties using high-performance liquid chromatography and global retention models. J Chromatogr A 2024; 1730:465128. [PMID: 38964161 DOI: 10.1016/j.chroma.2024.465128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As a result of their metabolic processes, medicinal plants produce bioactive molecules with significant implications for human health, used directly for treatment or for pharmaceutical development. Chromatographic fingerprints with solvent gradients authenticate and categorise medicinal plants by capturing chemical diversity. This work focuses on optimising tea sample analysis in HPLC, using a model-based approach without requiring standards. Predicting the gradient profile effects on full signals was the basis to identify optimal separation conditions. Global models characterised retention and bandwidth for 14 peaks in the chromatograms across varied elution conditions, facilitating resolution optimisation of 63 peaks, covering 99.95 % of total peak area. The identified optimal gradient was applied to classify 40 samples representing six tea varieties. Matrices of baseline-corrected signals, elution bands, and band ratios, were evaluated to select the best dataset. Principal Component Analysis (PCA), k-means clustering, and Partial Least Squares-Discriminant Analysis (PLS-DA) assessed classification feasibility. Classification limitations were found reasonable due to tea processing complexities, involving drying and fermentation influenced by environmental conditions.
Collapse
Affiliation(s)
- P Peiró-Vila
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, Burjassot 46100, Spain
| | - C Pérez-Gracia
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, Burjassot 46100, Spain
| | - J J Baeza-Baeza
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, Burjassot 46100, Spain
| | - M C García-Alvarez-Coque
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, Burjassot 46100, Spain
| | - J R Torres-Lapasió
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, Burjassot 46100, Spain.
| |
Collapse
|
4
|
Liu Y, Pan K, Liu Z, Dai Y, Duan X, Wang M, Shen Q. Simultaneous Determination of Four Catechins in Black Tea via NIR Spectroscopy and Feature Wavelength Selection: A Novel Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:3362. [PMID: 38894153 PMCID: PMC11174505 DOI: 10.3390/s24113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
As a non-destructive, fast, and cost-effective technique, near-infrared (NIR) spectroscopy has been widely used to determine the content of bioactive components in tea. However, due to the similar chemical structures of various catechins in black tea, the NIR spectra of black tea severely overlap in certain bands, causing nonlinear relationships and reducing analytical accuracy. In addition, the number of NIR spectral wavelengths is much larger than that of the modeled samples, and the small-sample learning problem is rather typical. These issues make the use of NIRS to simultaneously determine black tea catechins challenging. To address the above problems, this study innovatively proposed a wavelength selection algorithm based on feature interval combination sensitivity segmentation (FIC-SS). This algorithm extracts wavelengths at both coarse-grained and fine-grained levels, achieving higher accuracy and stability in feature wavelength extraction. On this basis, the study built four simultaneous prediction models for catechins based on extreme learning machines (ELMs), utilizing their powerful nonlinear learning ability and simple model structure to achieve simultaneous and accurate prediction of catechins. The experimental results showed that for the full spectrum, the ELM model has better prediction performance than the partial least squares model for epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). For the feature wavelengths, our proposed FIC-SS-ELM model enjoys higher prediction performance than ELM models based on other wavelength selection algorithms; it can simultaneously and accurately predict the content of EC (Rp2 = 0.91, RMSEP = 0.019), ECG (Rp2 = 0.96, RMSEP = 0.11), EGC (Rp2 = 0.97, RMSEP = 0.15), and EGCG (Rp2 = 0.97, RMSEP = 0.35) in black tea. The results of this study provide a new method for the quantitative determination of the bioactive components of black tea.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Shen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Y.L.); (K.P.); (Z.L.); (Y.D.); (X.D.); (M.W.)
| |
Collapse
|
5
|
Kalisz O, Jaworska A, Studzińska S, Bocian S. Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example. Foods 2024; 13:1189. [PMID: 38672862 PMCID: PMC11048749 DOI: 10.3390/foods13081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study presents an innovative method for caffeine determination in tea, employing ethanol as the sole organic solvent for both SPE sample preparation and chromatographic analysis. This approach aligns with green chemistry principles, as confirmed by a comparative study highlighting ethanol's safety and eco-friendliness compared to traditional solvents. The experiments validate ethanol's efficacy in caffeine extraction and chromatographic analysis, minimizing environmental impact and eliminating toxicity risks. Utilizing a reduced chromatography column enhances the method's efficiency and sustainability, resulting in a low limit of quantitation (0.125 μg/mL) and good reproducibility (RSD < 2.5%). Based on tea from the Polish market, the findings reveal the caffeine content (19.29-37.69 mg/g) and endorse ethanol's role in enhancing sustainable chemical analysis in food science.
Collapse
Affiliation(s)
| | | | | | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St., 87-100 Toruń, Poland; (O.K.); (A.J.); (S.S.)
| |
Collapse
|
6
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
7
|
Shi S, Wei Y, Lin X, Liang H, Zhang S, Chen Y, Dong L, Ji C. Microbial metabolic transformation and antioxidant activity evaluation of polyphenols in kombucha. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
10
|
Rana A, Rana S, Kapoor S, Joshi R, Thakur A, Padwad Y, Kumar S. Unravelling the comparative metabolite fingerprints and therapeutic effects of diverse teas. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nagy MM, Wang S, Farag MA. Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
McDonald K, Langenbahn HJ, Miller JD, McMullin DR. Phytosterol oxidation products from coffee silverskin. J Food Sci 2022; 87:728-737. [DOI: 10.1111/1750-3841.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - J. David Miller
- Department of Chemistry Carleton University Ottawa Ontario Canada
| | | |
Collapse
|
13
|
Han H, Ke L, Wang H, Gao G, zhang Y, Rao P, Zhou J, Tirosh O, Schwartz B. Incidental Nanoparticles in Black Tea Infusion: Carriers of Bioactives Fortifying Protection on Intestinal Mucosal Cells Against Oxidative Stresses. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Cao Y, Mei S, Huang C, Chen P. Estimates of Catechins Content in Green Tea: A Review Based on Meta-analysis. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yanyan Cao
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sifan Mei
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangsheng Huang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Isolation of N-Ethyl-2-pyrrolidinone-Substituted Flavanols from White Tea Using Centrifugal Countercurrent Chromatography Off-Line ESI-MS Profiling and Semi-Preparative Liquid Chromatography. Molecules 2021; 26:molecules26237284. [PMID: 34885862 PMCID: PMC8658928 DOI: 10.3390/molecules26237284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5'''R- and 5'''S-epigallocatechin gallate-8-C N-ethyl-2-pyrrolidinone (R-EGCG-cThea and S-EGCG-cThea), were isolated from white tea using centrifugal partition chromatography (CPC). Two different biphasic solvent systems composed of 1. N-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v) and 2. N-hexane-ethyl acetate-acetonitrile-water (0.7:3.0:1.3:5.0, v/v/v/v) were used for independent pre-fractionation experiments; 500 mg in each separation of white tea ethyl acetate partition were fractionated. The suitability of the two solvent systems was pre-evaluated by electrospray mass-spectrometry (ESI-MS/MS) analysis for metabolite distribution and compared to the results of the CPC experimental data using specific metabolite partition ratio KD values, selectivity factors α, and resolution factors RS. After size-exclusion and semi-preparative reversed-phase liquid chromatography, 6.4 mg of R-EGCG-cThea and 2.9 mg of S-EGCG-cThea were recovered with purities over 95%. Further bioactivity evaluation showed that R- and S-EGCG-cThea possessed in vitro inhibition effects on α-glucosidase with IC50 of 70.3 and 161.7 μM, respectively.
Collapse
|
16
|
Production stages, microbiological risk and benefits on health of herbal teas. HERBA POLONICA 2021. [DOI: 10.2478/hepo-2020-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Plants have been used to prepare herbal infusions for centuries. Production of herbal tea consists of several steps, beginning with harvesting, cleaning form residues, drying, storage of herb in a suitable material, grinding, and blending. Te plants grow in different regions and climatic conditions, varying by their physical properties. They are consumed for different purposes and due to their chemical constituents. Many of them have therapeutic effects. Besides their various benefits and even antimicrobial effects, they also carry some microorganisms. Thus, the botanical characteristics and effects on the health of frequently consumed herbal teas and recommendations on their consumption with considered microbial risks are reviewed in this article.
Collapse
|
17
|
Hung YC, Hsiao YH, Hsieh JF. Catechin content and free radical scavenging activity of Camellia sinensis twig extracts. INTERNATIONAL FOOD RESEARCH JOURNAL 2021. [DOI: 10.47836/ifrj.28.2.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The catechin content and antioxidant properties of various Camellia sinensis twig extracts, including a water extract (WE), 10% ethanol extract (10% EE), 50% ethanol extract (50% EE), and 95% ethanol extract (95% EE) were investigated. The 50% EE had the highest total phenolic content (161.3 ± 8.5 mg gallic acid equivalents/L) and total flavonoid content (278.9 ± 12.2 mg quercetin equivalents/L). High-performance liquid chromatography analysis suggested that epigallocatechin gallate and epigallocatechin were the predominant catechins in the twig extracts. The relative concentrations of six catechins isolated from the extracts were: 50% EE > 10% EE > WE > 95% EE. The 50% EE showed free radical-scavenging activity. The concentration of dry matter of 50% EE required to scavenge 50% of ABTS radicals was 102.8 ± 4.2 μg/mL. These results suggest that 50% EE can potentially be used as a source of catechins.
Collapse
|
18
|
Effect-Directed Profiling of Powdered Tea Extracts for Catechins, Theaflavins, Flavonols and Caffeine. Antioxidants (Basel) 2021; 10:antiox10010117. [PMID: 33467615 PMCID: PMC7830616 DOI: 10.3390/antiox10010117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The antioxidative activity of Camelia sinensis tea and especially powdered tea extracts on the market, among others used as added value in functional foods, can considerably vary due to not only natural variance, but also adulteration and falsification. Thus, an effect-directed profiling was developed to prove the functional effects or health-promoting claims. It took 3-12 min per sample, depending on the assay incubation time, for 21 separations in parallel. Used as a fast product quality control, it can detect known and unknown bioactive compounds. Twenty tea extracts and a reference mixture of 11-bioactive compounds were investigated in parallel under the same chromatographic conditions by a newly developed reversed phase high-performance thin-layer chromatographic method. In eight planar on-surface assays, effect-directed tea profiles were revealed. Catechins and theaflavins turned out to be not only highly active, but also multi-potent compounds, able to act in a broad range of metabolic pathways. The flavan-3-ols acted as radical scavengers (DPPH∙ assay), antibacterials against Gram-positive Bacillus subtilis bacteria, and inhibitors of tyrosinase, α-glucosidase, β-glucosidase, and acetylcholinesterase. Further effects against Gram-negative Aliivibrio fischeri bacteria and β-glucuronidase were assigned to other components in the powdered tea extracts. According to their specifications, the activity responses of the powdered tea extracts were higher than in mere leaf extracts of green, white and black tea. The multi-imaging and effect-directed profiling was not only able to identify known functional food ingredients, but also to detect unknown bioactive compounds (including bioactive contaminants, residues or adulterations).
Collapse
|
19
|
Hamza A, Bahaffi S, Abduljabbar T, El-Shahawi M. Trace determination and speciation of elements in green tea. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2020.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Gorai T, Sakthivel S, Maitra U. An Inexpensive Paper-Based Photoluminescent Sensor for Gallate Derived Green Tea Polyphenols. Chem Asian J 2020; 15:4023-4027. [PMID: 33078577 DOI: 10.1002/asia.202001054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Indexed: 11/10/2022]
Abstract
This work describes a terbium luminescence-based protocol to selectively detect gallate-derived green tea polyphenols on a supramolecular gel immobilised paper platform for the first time. This user-friendly, inexpensive (€ 0.0015) approach requires very low sample volumes for the analysis. The developed strategy enables simultaneous detection of gallate polyphenols in multiple tea samples with the potential for practical applications.
Collapse
Affiliation(s)
- Tumpa Gorai
- Current address: School of Chemistry Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Shruthi Sakthivel
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
21
|
Sanaeifar A, Huang X, Chen M, Zhao Z, Ji Y, Li X, He Y, Zhu Y, Chen X, Yu X. Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy. Food Sci Nutr 2020; 8:5860-5874. [PMID: 33282238 PMCID: PMC7684591 DOI: 10.1002/fsn3.1861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
Increasing consumption of green tea is attributed to the beneficial effects of its constituents, especially polyphenols, on human health, which can be varied during leaf processing. Processing technology has the most important effect on green tea quality. This study investigated the system dynamics of eight catechins, gallic acid, and caffeine in the processing of two varieties of tea, from fresh leaves to finished tea. It was found that complex biochemical changes can occur through hydrolysis under different humidity and heating conditions during the tea processing. This process had a significant effect on catechin composition in the finished tea. The potential application of visible and near-infrared (Vis-NIR) spectroscopy for fast monitoring polyphenol and caffeine contents in tea leaves during the processing procedure has been investigated. It was found that a combination of PCA (principal component analysis) and Vis-NIR spectroscopy can successfully classify the two varieties of tea samples and the five tea processing procedures, while quantitative determination of the constituents was realized by combined regression analysis and Vis-NIR spectra. Furthermore, successive projections algorithm (SPA) was proposed to extract and optimize spectral variables that reflected the molecular characteristics of the constituents for the development of determination models. Modeling results showed that the models had good predictability and robustness based on the extracted spectral characteristics. The coefficients of determination for all calibration sets and prediction sets were higher than 0.862 and 0.834, respectively, which indicated high capability of Vis-NIR spectroscopy for the determination of the constituents during the leaf processing. Meanwhile, this analytical method could quickly monitor quality characteristics and provide feedback for real-time controlling of tea processing machines. Furthermore, the study on complex biochemical changes that occurred during the tea processing would provide a theoretical basis for improving the content of quality components and effective controlling processes.
Collapse
Affiliation(s)
- Alireza Sanaeifar
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Xinyao Huang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Mengyuan Chen
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Zhangfeng Zhao
- College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina
| | - Yifan Ji
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Xiaoli Li
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Yong He
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Yi Zhu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Xi Chen
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Xinxin Yu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
22
|
Rapid identification and quantification of bioactive metabolites in processed Camellia sinensis samples by UHPLC-ESI-MS/MS and evaluation of their antioxidant activity. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Wang YJ, Li TH, Li LQ, Ning JM, Zhang ZZ. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118403. [PMID: 32361319 DOI: 10.1016/j.saa.2020.118403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 05/25/2023]
Abstract
Near-infrared (NIR) spectroscopy is an effective tool for analyzing components relevant to tea quality, especially catechins and caffeine. In this study, we predicted catechins and caffeine content in green and black tea, the main consumed tea types worldwide, by using a micro-NIR spectrometer connected to a smartphone. Local models were established separately for green and black tea samples, and these samples were combined to create global models. Different spectral preprocessing methods were combined with linear partial-least squares regression and nonlinear support vector machine regression (SVR) to obtain accurate models. Standard normal variate (SNV)-based SNV-SVR models exhibited accurate predictive performance for both catechins and caffeine. For the prediction of quality components of tea, the global models obtained results comparable to those of the local models. The optimal global models for catechins and caffeine were SNV-SVR and particle swarm optimization (PSO)-simplified SNV-PSO-SVR, which achieved the best predictive performance with correlation coefficients in prediction (Rp) of 0.98 and 0.93, root mean square errors in prediction of 9.83 and 2.71, and residual predictive deviations of 4.44 and 2.60, respectively. Therefore, the proposed low-price, compact, and portable micro-NIR spectrometer connected to smartphones is an effective tool for analyzing tea quality.
Collapse
Affiliation(s)
- Yu-Jie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tie-Han Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lu-Qing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jing-Ming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Du C, Ma C, Gu J, Li L, Chen G. Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. SENSORS 2020; 20:s20030819. [PMID: 32028737 PMCID: PMC7038766 DOI: 10.3390/s20030819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
A rapid, selective and sensitive method for the detection of caffeine in tea infusion and tea beverages are proposed by using 3,5-diaminobenzoic acid as a fluorescent probe. The 3,5-diaminobenzoic acid emits strong fluorescence around 410 nm under the excitation of light at 280 nm. Both the molecular electrostatic potential analysis and fluorescent lifetime measurement proved that the existence of caffeine can quench the fluorescence of 3,5-diaminobenzoic acid. Under the optimal experimental parameters, the 3,5-diaminobenzoic acid was used as a fluorescent probe to detect the caffeine aqueous solution. There exists a good linear relationship between the fluorescence quenching of the fluorescent probe and the concentration of caffeine in the range of 0.1–100 μM, with recovery within 96.0 to 106.2%, while the limit of detection of caffeine is 0.03 μM. This method shows a high selectivity for caffeine. The caffeine content in different tea infusions and tea beverages has been determined and compared with the results from HPLC measurement.
Collapse
Affiliation(s)
- Chenxu Du
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-139-0617-6695
| |
Collapse
|
25
|
Rapid and Sensitive Determination of Methylxanthines in Commercial Brands of Tea Using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry. Int J Anal Chem 2019; 2019:2926580. [PMID: 31781222 PMCID: PMC6875304 DOI: 10.1155/2019/2926580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022] Open
Abstract
Recently, chromatographic techniques have the potential to be greener in order to reduce the environmental impact. In this work, a new simple, sensitive, efficient, and green analytical method based on UHPLC-MS has been developed for a quick determination of methylxanthines including caffeine, theobromine, and theophylline in tea. Under the optimum conditions, a baseline separation has been achieved within 30 seconds, using isocratic elution consisting of 90% water and only 10% acetonitrile at 0.5 mL/min flow rate (3 mL acetonitrile per hour). The mass spectrometer was operated with the SIR mode in ESI+. The developed method was found to be linear in the range of 0.03–5 μg/mL, with correlation coefficients greater than 0.9995 for the three compounds. The respective values of LOD were found to be 0.025, 0.015, and 0.01 μg/mL for caffeine, theobromine, and theophylline, respectively. The proposed assay was applied to 30 commercial tea samples of different brands. Both caffeine and theobromine were found in all tea samples with maximum concentration in sample no. 15, corresponding to 32.6 and 2.72 mg/g of caffeine and theobromine, respectively. On the contrary, theophylline was not detected at all in most samples. When compared with all previous studies that dealt with the same compounds in different matrices, the developed method was found to be the fastest, allowing high-throughput analyses with more than 100 samples/h. The results prove that the method is suitable for routine analysis of methylxanthines and to distinguish the quality of tea samples of various brands.
Collapse
|
26
|
Ahmad R, Ahmad N, AlOthman F, Mohammad H, AlZahrani F. Extraction of methyl xanthines and their UHPLC-DAD determination in consumable beverages used in Eastern province of Saudi Arabia. Biomed Chromatogr 2019; 34:e4712. [PMID: 31633799 DOI: 10.1002/bmc.4712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022]
Abstract
Coffee and tea are the most widely consumed beverages worldwide. However, the consumer may be unaware of the exact amount of methyl xanthine (MX, i.e. caffeine [C], theobromine [TB] and theophylline [TH]) consumed, as most of the products do not list the proper amounts. This may lead to serious risks including cardiovascular, kidney and stimulant effects. The aim of the study was to determine the MX amount in ready-to-use beverages (coffee and tea) collected from various outlets in the city of Al-Khobar, Saudi Arabia. Forty different samples of espresso, black coffee and red tea were collected. A fast, reliable and efficient UHPLC-DAD method was developed and validated for MX determination. Total lipids were extracted and fractionated in order to determine glycolipids, phospholipids and neutral lipids. The r2 value for the method was 0.980-0.988 in a linearity range of 0.5-200 ppm. The range for MX (C [0.02-2.39 mg/ml], TB [0.00-0.10 mg/ml] and TH [0.00-0.004 mg/ml]) and total lipids was 1-5 g. The amount of glycolipids (3.1 g) was higher among the lipid fractions followed by phospholipids (1.8 g) and neutral lipids (0.25 g). In general, espresso beverages (20-30 ml) contained high amounts of MX whereas black coffee beverages contained high amount of lipids. Most of the beverages expressed C, TB, TH, lipids or their fractions; however, the product with high amounts of MX and lipids at the same time was espresso (brands Chemistry and Wogard). Although the MX and lipid levels in these beverages well below the allowed limits, care must still be taken, especially when using the beverages with high serving volumes (200-250 ml) or coffee prepared via the filter method i.e. black coffee, using a high temperature for a longer time.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Fatimah AlOthman
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Haya Mohammad
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatimah AlZahrani
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
27
|
Wang Q, Chen D, Zhang Q, Qin D, Jiang X, Li H, Fang K, Cao J, Wu H. Volatile components and nutritional qualities of Viscum articulatum Burm.f. parasitic on ancient tea trees. Food Sci Nutr 2019; 7:3017-3029. [PMID: 31572595 PMCID: PMC6766576 DOI: 10.1002/fsn3.1159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 11/11/2022] Open
Abstract
Volatile flavor compounds (VFCs) and nutrients in Viscum articulatum Burm.f. parasitic on ancient tea trees (named TM) were studied in this research by headspace solid-phase microextraction (HS-SPME)/gas chromatography-mass spectrometry (GC-MS) and conventional methods. Sixty-six volatile compounds belonging to different classes were identified by GC-MS. The ketones, alcohols, and aldehydes were the principal aroma groups in TM according to principle component analysis (PCA). The most abundant aroma components in TM included benzaldehyde (9.64%), geranylacetone (7.92%), epoxy-β-ionone (7.71%), β-linalool (7.35%), methyl salicylate (6.96%), and hotrienol (6.14%), significantly higher than CKs (p < .05). The positive PC1 and PC2 in TM were correlated with benzaldehyde, hotrienol, methyl salicylate, and geranylacetone. The mistletoes could be differentiated from CKs due to the difference in aroma compounds. Clean and fresh, woody and nutty odor with minor floral scent was the characteristics of TM. Analysis of the nutritional components showed that contents of polyphenols and catechins in TM were at trace levels, significantly lower than CKs (p < .05). The total contents of polyphenols, amino acids, carbohydrates, and caffeine in TM were significantly lower from the total soluble solids (p < .05), indicating that there were still lots of compounds undetected in TM. The sensory test showed that the taste and aroma in TM can be accepted, which indicates TM could be developed into alternative tea drinks in the future.
Collapse
Affiliation(s)
- Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Dong Chen
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Qianwen Zhang
- Department of Plant and Soil SciencesMississippi State UniversityStarkvilleMSUSA
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Xiaohui Jiang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| |
Collapse
|
28
|
Xie K, He X, Chen K, Chen J, Sakao K, Hou DX. Antioxidant Properties of a Traditional Vine Tea, Ampelopsis grossedentata. Antioxidants (Basel) 2019; 8:antiox8080295. [PMID: 31395833 PMCID: PMC6719964 DOI: 10.3390/antiox8080295] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Ampelopsis grossedentata, also called vine tea, has been used as a traditional beverage in China for centuries. Vine tea contains rich polyphenols and shows benefit to human health, but the chemical and antioxidant properties of vine tea polyphenols from different locations remain unclear. This study aims to investigate the chemical and antioxidant properties of vine tea from three major production areas in China including Guizhou, Hunan, and Guangxi Provinces. The highest amount of polyphenol from vine tea was extracted by 70% ethanol at 70 °C for 40 min with ultrasonic treatment. The major compound in vine tea polyphenols (VTP) was determined as dihydromyricetin (DMY) by high-performance liquid chromatography (HPLC) and the content was estimated as 21.42%, 20.17%, and 16.47% of dry weight basis from Hunan, Guizhou, and Guangxi products, respectively. The antioxidant activities were investigated in vitro and in culture hepatic cells. VTP and DMY showed strong 1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH) scavenging ability and high oxygen radical absorption capacity (ORAC) value in vitro. VTP and DMY also increased the level of nicotinamide adenine dinucleotide phosphate (NADPH):quinone oxidoreductase (NQO1) in HepG2 cells. Moreover, VTP and DMY enhanced the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and reduced the level of Kelch-like ECH-associated protein 1 (Keap1). Taken together, our data demonstrated that the extraction of vine tea by 70% ethanol with ultrasonic treatment is a novel method to efficiently obtain components possessing stronger antioxidant activity. Furthermore, the results from the culture cells suggest that the bioactive component of vine tea might exert the antioxidant activity by activating the cellular Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Kun Xie
- Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Keyu Chen
- Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, China
| | - Kozue Sakao
- Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
29
|
Liu R, Zhao Z, Dai S, Che X, Liu W. Identification and Quantification of Bioactive Compounds in Diaphragma juglandis Fructus by UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3811-3825. [PMID: 30830781 DOI: 10.1021/acs.jafc.8b06890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diaphragma juglandis fructus is the dry wooden diaphragm inside walnuts and a byproduct in food processing of walnut kernels. The purpose of our research is to enrich the information on compounds in Diaphragma juglandis fructus to further discover and exploit its potential nutritional value. In this study, new quali-quantitative analytical approaches were developed to identify and determine bioactive compounds in Diaphragma juglandis fructus. Two-hundred compounds, including hydrolyzable tannins, flavonoids, phenolic acids, and quinones, were identified by UHPLC-Q-Orbitrap HRMS, more than 150 of which were first discovered in Diaphragma juglandis fructus. Among them, 21 major dietary polyphenols with health-promoting effects were successfully quantified using UHPLC-MS/MS, with total contents of 2.88-6.18 mg/g. This successful characterization and quantification of bioactive compounds in Diaphragma juglandis fructus gives a better understanding of its potential nutritional value and supports efficiently developing and reusing it instead of discarding it as agrofood waste.
Collapse
Affiliation(s)
- Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Ziyan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Shengjun Dai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Xin Che
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| |
Collapse
|
30
|
Jiang H, Yu F, Qin L, Zhang N, Cao Q, Schwab W, Li D, Song C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Athmouni K, Belhaj D, Gammoudi S, El Feki A, Ayadi H. Nano-encapsulation using macrocyclic carbohydrate polymers (β-cyclodextrins) of Periploca angustifolia extract: Physical stability and protective effect against cadmium-induced alterations in HepG2 cells. Int J Biol Macromol 2019; 125:711-720. [DOI: 10.1016/j.ijbiomac.2018.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/16/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022]
|
32
|
Jeszka-Skowron M, Zgoła-Grześkowiak A, Frankowski R. Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids—A comparison with Camellia sinensis, Rooibos and Hoan Ngoc herbal tea. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Effect of brewing conditions on caffeine content in tea infusions simulating home-made cup of tea. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2204-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Actual solubility (S |real.|), level of hydrophilic-lipophilic balance (HLB Requ., HLB D, HLB G) and partition coefficient (log P) of phytochemicals contained in Ext. Camellia sinensis L. aqu. siccum in the light of general Hildebrand-Scatchard-Fedors theory of solubility. HERBA POLONICA 2018. [DOI: 10.2478/hepo-2018-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Summary
Introduction: Using the general Hildebrand-Scatchard-Fedors theory of solubility, the mole fraction (x2) of solubility of phytochemicals contained in the dry green tea leaves was calculated which determines the profile of pharmacological activity.
Objective: The applicative purpose of the study was to estimate the actual solubility of phytochemicals – S|real.| [mol/dm3] in water and in water-ethanol solutions of diversified polarity (εM) for their selective extraction and optimal formulation of oral solid dosage form.
Methods: The basic physico-chemical and structural quantities of phytochemicals and corresponding mathematical equations of general Hildebrand-Scatchard-Fedors theory of solubility were used to calculate the actual solubility – S|real.| and the level of hydrophilic-lipophilic balance (HLB).
Results: The calculated actual solubility values – S|real.| [mol/dm3] collated with correlation equations enabled the assessment of phytochemical capability for the process of mass exchange on phase boundary. Correlation equations for the dependence log P = f (– log S|real.|) point to the structural preferences of phytochemicals in the kinetics of the mass exchange (diffusion) through the natural phase boundary.
Conclusions: Calculations and correlations between the values characterizing the actual solubility – S|real.|, media polarity (water, ethanol and their solutions) and the partition coefficient (log P) including the level of hydrophilic-lipophilic balance (HLB) show that basing on thermodynamic components of the general Hildebrand-Scatchard-Fedors theory of solubility, the diffusion profile of phytochemicals contained in the green tea extract (Ext. Camellia sinensis L. aqu. siccum) through the biological phase boundary as well as optimal choice of the extraction medium for selective extraction of the class of phytochemicals can be estimated.
Collapse
|
35
|
Selected physicochemical and solubilization properties of pharmacopeal solutions of dry green tea leaf extract ( Ext. Camellia sinensis L. folium aqu. siccum). HERBA POLONICA 2018. [DOI: 10.2478/hepo-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Green tea offers not only pleasant, delicate flavor, but also provides health benefits. The extract contains, among others, polyphenols responsible for antioxidant and anti-inflammatory properties. They reduce the risk of cancer and their presence exerts preventive activity against cardiovascular diseases.
Objective: Analysis of selected physicochemical and solubilizing properties of pharmacopoeial-true solutions of dry green tea extract.
Methods: The caffeine content was determined in the extract and in dry residue after solubilization by high performance liquid chromatography. The process of micellar solubilization of cholesterol granules and ketoprofen was carried out in model solutions of green tea extract.
Results: The obtained results indicate that the prepared ‘ex tempore’ leaf green tea infusion subjected to short thermal exposure will be characterized by significant solubilization abilities.
Conclusions: The outcomes of the research pointed to the possibility of developing a solid oral dosage form with titrated dry green tea extract of expected pharmacotherapeutic profile.
Collapse
|
36
|
Wang Y, Yin C, Wang D, Huang J, Ho CT, Zhou Y, Wan X. Supplemental summer-autumn tea leaf (Camellia sinensis) improve the immune status of broilers. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1493386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Chengnan Yin
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
| | - Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, People’s Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, People’s Republic of China
| |
Collapse
|
37
|
Mawson DH, Jeffrey KL, Teale P, Grace PB. Development and validation of a high-throughput assay for the quantification of multiple green tea-derived catechins in human plasma. Biomed Chromatogr 2018; 32:e4319. [PMID: 29920704 DOI: 10.1002/bmc.4319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022]
Abstract
A rapid, accurate and robust method for the determination of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin gallate (Cg), epicatechin gallate (ECg), gallocatechin gallate (GCg) and epigallocatechin gallate (EGCg) concentrations in human plasma has been developed. The method utilizes protein precipitation following enzyme hydrolysis, with chromatographic separation and detection using reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). Traditional issues such as lengthy chromatographic runtimes, sample and extract stability, and lack of suitable internal standards have been addressed. The method has been evaluated using a comprehensive validation procedure, confirming linearity over appropriate concentration ranges, and inter/intra-batch precision and accuracies within suitable thresholds (precisions within 13.8% and accuracies within 12.4%). Recoveries of analytes were found to be consistent between different matrix samples, compensated for using suitable internal markers and within the performance of the instrumentation used. Similarly, chromatographic interferences have been corrected using the internal markers selected. Stability of all analytes in matrix is demonstrated over 32 days and throughout extraction conditions. This method is suitable for high-throughput sample analysis studies.
Collapse
|
38
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16:e05239. [PMID: 32625874 PMCID: PMC7009618 DOI: 10.2903/j.efsa.2018.5239] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The EFSA ANS Panel was asked to provide a scientific opinion on the safety of green tea catechins from dietary sources including preparations such as food supplements and infusions. Green tea is produced from the leaves of Camellia sinensis (L.) Kuntze, without fermentation, which prevents the oxidation of polyphenolic components. Most of the polyphenols in green tea are catechins. The Panel considered the possible association between the consumption of (-)-epigallocatechin-3-gallate (EGCG), the most relevant catechin in green tea, and hepatotoxicity. This scientific opinion is based on published scientific literature, including interventional studies, monographs and reports by national and international authorities and data received following a public 'Call for data'. The mean daily intake of EGCG resulting from the consumption of green tea infusions ranges from 90 to 300 mg/day while exposure by high-level consumers is estimated to be up to 866 mg EGCG/day, in the adult population in the EU. Food supplements containing green tea catechins provide a daily dose of EGCG in the range of 5-1,000 mg/day, for adult population. The Panel concluded that catechins from green tea infusion, prepared in a traditional way, and reconstituted drinks with an equivalent composition to traditional green tea infusions, are in general considered to be safe according to the presumption of safety approach provided the intake corresponds to reported intakes in European Member States. However, rare cases of liver injury have been reported after consumption of green tea infusions, most probably due to an idiosyncratic reaction. Based on the available data on the potential adverse effects of green tea catechins on the liver, the Panel concluded that there is evidence from interventional clinical trials that intake of doses equal or above 800 mg EGCG/day taken as a food supplement has been shown to induce a statistically significant increase of serum transaminases in treated subjects compared to control.
Collapse
|
39
|
Zhang C, Suen CLC, Yang C, Quek SY. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food Chem 2017; 244:109-119. [PMID: 29120758 DOI: 10.1016/j.foodchem.2017.09.126] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 11/19/2022]
Abstract
Tea polyphenols have been a topic of discussion due to their health benefits. Nevertheless, detailed studies on the antioxidant capacity and polyphenol contents of teas in relation to factors including geographical locations, plantation elevations and leaf grades have been limited. In this study, 53 tea samples were analysed to determine the individual and total catechin and theaflavin contents by HPLC and the total antioxidant capacity by Oxygen Radical Absorbance Capacity (ORAC) methods. Results show that the polyphenol (catechins and theaflavins) contents were significantly influenced by plantation location. Black tea from low plantation elevation contained 22-28% more polyphenols than those from high elevation. Small tea leaves had up to 15% more polyphenols than larger leaves from similar elevation. The results were further confirmed by Principal Composition Analysis (PCA), which grouped the black and green tea samples into 3 different clusters, respectively.
Collapse
Affiliation(s)
- Chuang Zhang
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Claire Li-Chieh Suen
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Chao Yang
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
40
|
Raso RA, Paim RRB, Pinheiro SVB, Tavares WC, Vasconcellos LDS, Alberti LR. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography. Acta Cir Bras 2017; 32:342-349. [PMID: 28591363 DOI: 10.1590/s0102-865020170050000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose: To evaluate the effects of chronic consumption of green tea on body weight and distribution of visceral fat by Computed tomography in female Wistar rats. Methods: Wistar rats were divided into control group (n = 5), which received water and feed ad libitum, and green tea group (n = 8), in which water has been replaced by green tea. The animals were weighed weekly and Computed Tomography was used at the beginning (1st week) and end (18th week) of the experiment for evaluating the distribution of visceral fat. The animals were followed for 18 weeks. Results: There was no significant difference in body weight between the groups. However, there was significant difference in visceral fat area. The green tea group had less visceral fat area at the end of the experiment, 3.67 ± 1.2 cm2, while the control group showed an area of 6.25 ± 2.2 cm (p = 0.00). Conclusions: Chronic consumption of green tea leads to decreased visceral adipose tissue area.
Collapse
Affiliation(s)
- Renata Attademo Raso
- Master in Biomedicine, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte-MG, Brazil. Technical procedures; acquisition, analysis and interpretation of data; statistical analysis
| | - Rebecca Rodrigues Bergamaschini Paim
- Graduate student, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo HorizonteMG, Brazil. FAPEMIG scholarship. Acquisition; analysis and interpretation of data; manuscript preparation
| | - Sérgio Veloso Brant Pinheiro
- PhD, Biological Sciences, Instituto de Ciências Biológicas. Associate Professor, Department of Pediatrics, UFMG, Belo Horizonte-MG, Brazil. Scientific and intellectual content of the study
| | - Wilson Campos Tavares
- Physician, Assistant of Radiology, Hospital das Clínicas, UFMG, Belo Horizonte-MG, Brazil. Technical procedures; analysis, interpretation and acquisition of data
| | - Leonardo de Souza Vasconcellos
- PhD, Associate Professor, Department of Propedeutics, Faculty of Medicine, UFMG, Belo Horizonte-MG, Brazil. Conception and design of the study, critical revision
| | - Luiz Ronaldo Alberti
- PhD, Associate Professor, Department of Surgery, Faculty of Medicine, UFMG, and Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte-MG, Brazil. Analysis and interpretation of data, critical revision, final approval
| |
Collapse
|
41
|
Padilha CVDS, Miskinis GA, de Souza MEAO, Pereira GE, de Oliveira D, Bordignon-Luiz MT, Lima MDS. Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem 2017; 228:106-115. [DOI: 10.1016/j.foodchem.2017.01.137] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
|
42
|
Bhushani JA, Kurrey NK, Anandharamakrishnan C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.12.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Liu Y, Zhu L, Hu Y, Peng X, Du J. A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate. Food Chem 2017; 221:1128-1134. [DOI: 10.1016/j.foodchem.2016.11.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/10/2023]
|
44
|
Zokti JA, Sham Baharin B, Mohammed AS, Abas F. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study. Molecules 2016; 21:molecules21080940. [PMID: 27472310 PMCID: PMC6274239 DOI: 10.3390/molecules21080940] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022] Open
Abstract
Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%–88.04%, 19.32–24.90 (g GAE/100 g), and 29.52%–38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%–5.11%, 0.28–0.36, 3.22%–4.71%, 0.22–0.28 g/cm3 and 40.43–225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%–188.63% and 207.55%–231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35–60, 34–65 and 231–288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
Collapse
Affiliation(s)
- James A Zokti
- Department of Food Technology, Faculty of Food Science and Technology, University Putra, Malaysia UPM, Serdang 43400, Selangor, Malaysia.
| | - Badlishah Sham Baharin
- Department of Food Technology, Faculty of Food Science and Technology, University Putra, Malaysia UPM, Serdang 43400, Selangor, Malaysia.
| | - Abdulkarim Sabo Mohammed
- Department of Food Science, Faculty of Food Science and Technology, University Putra, Malaysia UPM, Serdang 43400, Selangor, Malaysia.
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra, Malaysia UPM, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
45
|
DEMİR E, SERDAR G, SÖKMEN M. Comparison of Some Extraction Methods for Isolation of Catechins and Caffeine from Turkish Green Tea. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2016. [DOI: 10.21448/ijsm.240702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Bhushani JA, Karthik P, Anandharamakrishnan C. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.12.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Timofeeva I, Medinskaia K, Nikolaeva L, Kirsanov D, Bulatov A. Stepwise injection potentiometric determination of caffeine in saliva using single-drop microextraction combined with solvent exchange. Talanta 2016; 150:655-60. [DOI: 10.1016/j.talanta.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 01/02/2016] [Indexed: 11/29/2022]
|
48
|
Pasquini B, Orlandini S, Goodarzi M, Caprini C, Gotti R, Furlanetto S. Chiral cyclodextrin-modified micellar electrokinetic chromatography and chemometric techniques for green tea samples origin discrimination. Talanta 2016; 150:7-13. [DOI: 10.1016/j.talanta.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 02/05/2023]
|
49
|
Bardpho C, Rattanarat P, Siangproh W, Chailapakul O. Ultra-high performance liquid chromatographic determination of antioxidants in teas using inkjet-printed graphene–polyaniline electrode. Talanta 2016; 148:673-9. [DOI: 10.1016/j.talanta.2015.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023]
|
50
|
Xu H, Wang Y, Chen Y, Zhang P, Zhao Y, Huang Y, Wang X, Sheng J. Subcellular Localization of Galloylated Catechins in Tea Plants [Camellia sinensis (L.) O. Kuntze] Assessed via Immunohistochemistry. FRONTIERS IN PLANT SCIENCE 2016; 7:728. [PMID: 27303422 PMCID: PMC4881381 DOI: 10.3389/fpls.2016.00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 05/20/2023]
Abstract
Galloylated catechins, as the main secondary metabolites in the tea plant, including (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, comprise approximately three-quarters of all the tea plant catechins and have stronger effects than non-galloylated catechins, both on the product quality in tea processing and the pharmacological efficacy to human beings. The subcellular localization of galloylated catechins has been the primary focus of studies that assess biosynthesis and physiological functions. Classical histochemical localization staining reagents can not specifically detect galloylated catechins; thus, their subcellular localization remains controversial. In the present study, we generated a monoclonal antibody (mAb) against galloylated catechins, which can be used for the subcellular localization of galloylated catechins in the tea plant by immunohistochemistry. Direct ELISA and ForteBio Octet Red 96 System assay indicated the mAb could recognize the galloylated catechins with high specificities and affinities. In addition, tea bud was ascertained as the optimal tissue for freezing microtomic sections for immunohistochemistry. What's more, the high quality mAbs which exhibited excellent binding capability to galloylated catechins were utilized for the visualization of them via immunohistochemistry. Our findings demonstrated that vacuoles were the primary sites of localization of galloylated catechins at the subcellular level.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
- College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
- College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Yana Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
| | - Pan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
| | - Yi Zhao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
- College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
- *Correspondence: Jun Sheng, ; Xuanjun Wang, ; Yewei Huang,
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
- College of Pu-er Tea, Yunnan Agricultural UniversityKunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanKunming, China
- *Correspondence: Jun Sheng, ; Xuanjun Wang, ; Yewei Huang,
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China
- Tea Research Center of YunnanKunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanKunming, China
- *Correspondence: Jun Sheng, ; Xuanjun Wang, ; Yewei Huang,
| |
Collapse
|