1
|
Gorman M, Baxter L, Frampton K, Dabas T, Moss R, McSweeney MB. An investigation into the sensory properties of luffa [Luffa cylindrica (L.)] sap. J Food Sci 2024; 89:5082-5090. [PMID: 38924528 DOI: 10.1111/1750-3841.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The seeds and sap of luffa [Luffa cylindrica (L.)] are usually discarded as waste. As such, this study aimed to identify the sensory properties of luffa sap (aqueous solution) and if it can be incorporated into a food item (orange juice) for added nutritional benefits and as an alternative sweetener. A sensory trial (n = 94) asked participants to evaluate a luffa sap sample and five different orange juice samples with increasing amounts of luffa sap (control [0%], 5%, 7.5%, 10%, 12.5%). The participants evaluated the samples using 9-point hedonic scales, check-all-that-apply, and an open-ended comment question. The luffa sap was described as having a mild flavor as well as woody, earthy, and floral attributes and an aftertaste. The liking scores for the orange juice with the 5% luffa sap did not significantly differ from the control. However, as the amount of luffa sap increased above 5%, the liking scores decreased and were significantly different from the control. The orange juice with luffa sap samples (7.5% and above) was associated with off-flavors, while the orange juice with 5% luffa sap and the control were associated with the attributes (sweet, fruity, orange, tropical, citrus) that increased the participants liking. Future studies should continue to investigate the sensory properties of luffa sap and its incorporation into different food products. PRACTICAL APPLICATION: This is one of the first studies to investigate the sensory properties of luffa sap with participants residing in the Western world. The luffa sap was found to be woody, earthy, bitter, and floral. It was acceptable to add luffa sap to orange juice up to 5% by volume. However, it did not increase the sweetness perception of the orange juice. At a 7.5% luffa sap addition and higher levels, off-flavors were observed in the orange juice.
Collapse
Affiliation(s)
- Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Laura Baxter
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kaitlyn Frampton
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
2
|
Singh S A, Vellapandian C. Sub-chronic oral toxicity study of the alkaloid rich fraction from Luffa cylindrica fruit in Sprague-Dawley rats. Toxicol Rep 2024; 12:307-317. [PMID: 38495473 PMCID: PMC10944161 DOI: 10.1016/j.toxrep.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The loofah/sponge gourd Luffa cylindrica (L.), a member of the Cucurbitaceae family, is one of the neglected medicinal plants. Traditionally, Luffa cylindrica is prescribed for inducing labor. It has a long history of use in China for the treatment of fever, diabetes, dyspnea, and dysentery. This study investigated the toxicity profile of the alkaloid-rich fraction of Luffa cylindrica (ARF-LC) for the first time in Sprague Dawley rats. A total of 80 rats (40 male and 40 female rats) aged 13 weeks old and weighing 200-220 g were selected for this study. In SD rats, sub-chronic oral toxicity was investigated at doses of 100, 200, and 400 mg/kg/d for a total of 90 days, followed by a 30-day recovery period. The results showed no variation in body weight among the three dose groups compared to the control group. Treatment-related adverse events, such as alterations in hematology and serum biochemistry parameters and the histology of the liver were sporadic in the high-dose rats but within the reference range. However, these changes disappeared after the doses were withdrawn during the recovery period. In conclusion, the "no observed adverse effect level" (NOAEL) of oral administration of ARF-LC in SD rats was considered 400 mg/kg/d and can be studied for its potential in further in vivo chronic investigations.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
3
|
Yeo C, Kim H, Jeon WJ, Lee J, Hong JY, Kim H, Lee YJ, Baek SH, Ha IH. Protective effect of Luffa cylindrica Roemer against dexamethasone-induced muscle atrophy in primary rat skeletal muscle cells. J Muscle Res Cell Motil 2024; 45:1-10. [PMID: 37845555 PMCID: PMC10844154 DOI: 10.1007/s10974-023-09661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of chronic inflammatory conditions. However, the administration of high doses and long-term use of GCs can induce muscle atrophy (MA) in patients, leading to a decline in quality of life and increased mortality. MA leads to protein degradation in skeletal muscle, resulting in a reduction of muscle mass. This process is triggered by GCs like dexamethasone (DEX), which induce the expression of E3 ubiquitin ligases, namely Atrogin-1 and muscle RING-finger protein-1 (MuRF1). In this study, we examined the anti-MA potential of Luffa cylindrica Roemer (LCR) on DEX-treated primary skeletal myotubes. Primary skeletal myotubes stimulated with LCR alone resulted in a significant upregulation of myotube development, characterized by an increase in both the number and diameter of myotubes. Contrastingly, combined treatment with LCR and DEX reduced the expression of Atrogin-1, while treatment with DEX alone induced the expression of MuRF1. Furthermore, LCR treatment successfully restored the number and diameter of myotubes that had been diminished by DEX treatment. These findings suggest that LCR holds potential for treating MA, as an accelerating effect on muscle development and anti-MA effects on primary skeletal muscle cells were observed.
Collapse
Affiliation(s)
- Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea.
| |
Collapse
|
4
|
Feng Y, Zhang W, Xu X, Wang W, Xu Y, Wang M, Zhang J, Xu H, Fu F. Protective effect of Luffa cylindrica fermentation liquid on cyclophosphamide-induced premature ovarian failure in female mice by attenuating oxidative stress, inflammation and apoptosis. J Ovarian Res 2024; 17:24. [PMID: 38273341 PMCID: PMC10809788 DOI: 10.1186/s13048-024-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. The purpose of this study was to investigate the protective effects of Luffa cylindrica fermentation liquid (LF) on cyclophosphamide (CTX) -induced POF in mice and to preliminarily investigate the underlying mechanisms. Thirty-two Balb/c mice were divided into four groups randomly. One group served as the control, while the other three received CTX injections to establish POF models. A 14-day gavage of either 5 or 10 μL/g LF was administered to two LF pretreatment groups. To analyze the effects of LF, the ovarian index, follicle number, the levels of serum sex hormones, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), inflammatory factors, and apoptosis of the ovarian cells were measured. The effects of LF pretreatment on the expression of TLR4/NF-κB and apoptosis pathways were also evaluated. We found that LF pretreatment increased the ovarian index and the number of primordial and antral follicles while decreasing those of atretic follicles. LF pretreatment also increased the serum levels of estradiol (E2) and anti-Müllerian hormone (AMH), while decreasing those of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Furthermore, LF pretreatment increased the levels of SOD and GSH in the ovaries, while decreasing those of MDA, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). LF administration reduced the amount of TUNEL+ ovarian cells and the levels of TLR4 and NF-κB P65 protein expression. In conclusion, LF has antioxidant, anti-inflammatory as well as anti-apoptotic effects against CTX-induced POF, and the inhibition of TLR4/NF-κB and apoptosis pathways may be involved in its mechanisms.
Collapse
Affiliation(s)
- Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wei Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Xiaowei Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China.
| |
Collapse
|
5
|
Wang YC, Wang V, Chen BH. Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson's disease in rats. Front Nutr 2023; 10:1229192. [PMID: 37599679 PMCID: PMC10433916 DOI: 10.3389/fnut.2023.1229192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cinnamomum osmophloeum Kanehira (C. osmophloeum), a broad-leaved tree species of Taiwan, contains phenolic acids, flavonoids, and phenylpropanoids such as cinnamaldehyde and cinnamic acid in leaves. Many reports have shown that the cinnamon leaf extract possesses anti-inflammatory, hypoglycemic, hypolipidemic and neuroprotective functions. This study aims to analyze bioactive compounds in C. osmophloeum (cinnamon leaves) by UPLC-MS/MS and prepare hydrosol, cinnamon leaf extract and cinnamon leaf nanoemulsion for comparison in improving Parkinson's disease (PD) in rats. Methods After extraction and determination of total phenolic and total flavonoid contents, cinnamaldehyde and the other bioactive compounds were analyzed in cinnamon leaves and hydrosol by UPLC-MS/MS. Cinnamon leaf nanoemulsion was prepared by mixing a suitable proportion of cinnamon leaf extract, soybean oil, lecithin, Tween 80 and deionized water, followed by characterization of particle size and polydispersity index by dynamic light scattering analyzer, particle size and shape by transmission electron microscope, encapsulation efficiency, as well as storage and heating stability. Fifty-six male Sprague-Dawley rats aged 8 weeks were divided into seven groups with group 1 as control (sunflower oil) and group 2 as induction (2 mg/kg bw rotenone in sunflower oil plus 10 mL/kg bw saline), while the other groups including rotenone injection (2 mg/kg bw) followed by high-dose of 60 mg/kg bw (group 3) or low-dose of 20 mg/kg bw (group 4) for tube feeding of cinnamon leaf extract or cinnamon leaf nanoemulsion at the same doses (groups 5 and 6) every day for 5 weeks as well as group 7 with rotenone plus hydrosol containing 0.5 g cinnamon leaf powder at a dose of 10 mL/kg bw. Biochemical analysis of brain tissue (striatum and midbrain) was done to determine dopamine, α-synuclein, tyrosine hydroxylase, superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde contents by using commercial kits, while catalepsy performed by bar test. Results and discussion An extraction solvent of 80% ethanol was found to be the most optimal with a high yield of 15 bioactive compounds being obtained following UPLC analysis. A triple quadrupole tandem mass spectrometer with electrospray ionization mode was used for identification and quantitation, with cinnamaldehyde present at the highest amount (17985.2 µg/g). The cinnamon leaf nanoemulsion was successfully prepared with the mean particle size, zeta potential, polydispersity index and encapsulation efficiency being 30.1 nm, -43.1 mV, 0.149 and 91.6%, respectively. A high stability of cinnamon leaf nanoemulsion was shown over a 90-day storage period at 4 and heating at 100 for 2 h. Animal experiments revealed that the treatments of cinnamon leaf extract, nanoemulsion and hydrosol increased the dopamine contents from 17.08% to 49.39% and tyrosine hydroxylase levels from 17.07% to 25.59%, while reduced the α-synuclein levels from 17.56% to 15.95% in the striatum of rats. Additionally, in the midbrain of rats, an elevation of activities of superoxide dismutase (6.69-16.82%), catalase (8.56-16.94%), and glutathione peroxidase (2.09-16.94%) was shown, while the malondialdehyde content declined by 15.47-22.47%. Comparatively, the high-dose nanoemulsion exerted the most pronounced effect in improving PD in rats and may be a promising candidate for the development of health food or botanic drug.
Collapse
Affiliation(s)
- Yi Chun Wang
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Vinchi Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bing Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Yu HR, Chen BH. Analysis of Phenolic Acids and Flavonoids in Rabbiteye Blueberry Leaves by UPLC-MS/MS and Preparation of Nanoemulsions and Extracts for Improving Antiaging Effects in Mice. Foods 2023; 12:foods12101942. [PMID: 37238760 DOI: 10.3390/foods12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Rabbiteye blueberry leaves, a waste produced after harvest of blueberry, are rich in polyphenols. This study aims to analyze phenolic acids and flavonoids in blueberry leaves by UPLC-MS/MS and prepare nanoemulsions for determining anti-aging activity in mice. Overall, 30% ethanol was the most suitable extraction solvent for total phenolic acids and total flavonoids. A total of four phenolic acids and four flavonoids were separated within seven minutes for further identification and quantitation by UPLC-MS/MS in selective reaction monitoring (SRM) mode, with 3-O-caffeoylquinic acid being present in the highest amount (6474.2 μg/g), followed by quercetin-3-O-galactoside (1943.9 μg/g), quercetin-3-O-rutinoside (1036.6 μg/g), quercetin-3-O-glucoside (867.2 μg/g), 5-O-caffeoylquinic acid (815.8 μg/g), kaempferol-3-O-glucoside (309.7 μg/g), 3,5-dicaffeoylquinic acid (195.3 μg/g), and 4,5-dicaffeoylquinic acid (60.8 μg/g). The blueberry nanoemulsion was prepared by using an appropriate ratio of soybean oil, Tween 80, glycerol, ethanol, and water at 1.2%, 8%, 2%, 2%, and 86.8%, respectively, and mixing with dried blueberry extract, with the mean particle size and zeta potential being 16 nm and -54 mV, respectively. A high stability was observed during storage of nanoemulsion for 90 days at 4 °C and heated at 100 °C for 2 h. An animal study revealed that this nanoemulsion could elevate dopamine content in mice brain as well as superoxide dismutase, glutathione peroxidase, and catalase activities in mice liver while reducing the contents of malondialdehyde and protein carbonyl in mice brains. Collectively, the high-dose nanoemulsion possessed the highest efficiency in improving mice aging with a promising potential for development into a health food.
Collapse
Affiliation(s)
- Hsin-Rong Yu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Huang YC, Chen BH. A Comparative Study on Improving Streptozotocin-Induced Type 2 Diabetes in Rats by Hydrosol, Extract and Nanoemulsion Prepared from Cinnamon Leaves. Antioxidants (Basel) 2022; 12:29. [PMID: 36670891 PMCID: PMC9855112 DOI: 10.3390/antiox12010029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Cinnamomoum osmophloeum Kanehira (C. osmophloeum) contains various biologically active antioxidant compounds such as flavonoids, phenolic acids and cinnamaldehyde. Type 2 diabetes mellitus is a chronic disease of metabolic abnormality caused by insulin deficiency or resistance. The objectives of this study were to analyze various bioactive compounds in C. osmophloeum leaves by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and compare the effects of hydrosol, extract and nanoemulsion prepared from C. osmophloeum leaves on improving type 2 diabetes in rats. Our results show that a total of 15 bioactive compounds in C. osmophloeum leaves, including quercetin, quercetin-3-O-galactoside, quercetin-3-O-glucoside, rutin, caffeic acid, benzoic acid, 5-O-caffeoylquinic acid, kaempferol 3-β-D-glucopyranoside, trans-cinnamic acid, coumarin, cinnamyl alcohol, p-coumaric acid, eugenol, kaempferol and cinnamaldehyde, were separated within 14 min for subsequent identification and quantitation by UPLC-MS/MS. The nanoemulsion was successfully prepared by mixing C. osmophloeum leaf extract, soybean oil, lecithin, Tween 80 and deionized water in an appropriate proportion with a mean particle size, polydispersity index, zeta potential and encapsulation efficiency of 36.58 nm, 0.222, -42.6 mV and 91.22%, respectively, while a high storage and heating stability was obtained. The animal experiment results reveal that the high-dose nanoemulsion was the most effective in reducing both fasting blood glucose and oral glucose tolerance test value, followed by low-dose nanoemulsion, high-dose extract, low-dose extract and leaf powder in hydrosol. A similar trend was shown in reducing serum insulin and the homeostatic model assessment of insulin resistance index. In addition, the contents of serum biochemical parameters, including total cholesterol, triglyceride, aspartate aminotransferase, alanine aminotransferase, uric acid, urea nitrogen and creatinine, were reduced, with the high-dose nanoemulsion showing the most pronounced effect. Collectively, the high-dose nanoemulsion may possess great potential to be developed into a hypoglycemic health food or botanic drug.
Collapse
Affiliation(s)
- Yu-Chi Huang
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Chaubey T, Sagar V, Singh RK, Chanotiya CS, Pandey S, Singh PM, Karmakar P, Singh J, Singh B, Singh DP, Pandey KK, Behera TK. Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd ( Luffa cylindrica L. Roem). PLANTS (BASEL, SWITZERLAND) 2022; 11:2881. [PMID: 36365333 PMCID: PMC9656515 DOI: 10.3390/plants11212881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As a vegetable crop, sponge gourd is widely consumed worldwide due to its health promoting and nutraceutical value. This study describes genetics of an aromatic genotype VRSG-7-17 and deciphers the genetic control and volatile compound composition of sponge gourd. To study the inheritance of this trait, a cross was made between aromatic light-green-fruited VRSG-7-17 and non-aromatic dark-green-fruited VRSG-194 genotypes. The F1s were found to be non-aromatic and have a green fruit colour. Chi-square (χ2) analysis of backcross and F2 population segregating for aroma suggested that the inheritance of aroma in VRSG-7-17 is governed by a single recessive gene in a simple Mendelian fashion. The SPME-GC/MS analysis of the volatile compounds suggested that the compounds responsible for Basmati rice-like aroma were mainly hexanal, 1-octen-3-ol, 3-octanone and limonene. The aroma persists in the cooked VRSG-7-17 fruits, that did not lose fragrance traits at high temperatures. The inheritance of fruit colour was found to be controlled by a single gene with incomplete dominance. The segregation analysis showed that the aroma and fruit colour were not linked, and they segregated independently. The findings will lead to understanding the inheritance of the aromatic compounds in the sponge gourd and may be utilised in the breeding programmes for developing improved aromatic varieties.
Collapse
Affiliation(s)
- Tribhuvan Chaubey
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Vidya Sagar
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Ramesh Kumar Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | | | - Sudhakar Pandey
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Prabhakar M. Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Pradip Karmakar
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Jagdish Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Bijendra Singh
- Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya 224229, India
| | | | | | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| |
Collapse
|
9
|
Lee J, Jo SE, Lee J, Kim JH. An in vitro evaluation of luffa cylindrica stem sap in preadipocytes and dermal fibroblasts. Biochem Biophys Res Commun 2022; 599:100-105. [PMID: 35180468 DOI: 10.1016/j.bbrc.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Luffa cylindrica stem sap (LuCS) has been ethnopharmacologically used as a cosmetic ingredients to improve the facial condition in Asians, but there is no scientific proof about the advantages of LuCS as a supplement for skin elasticity inducer. PURPOSE Presently, we have validated the beneficial effect of LuCS in human preadipocyte and fibroblast. METHODS In vitro activities of LuCS on expression of cellular elastin and collagen type I were validated using Western blot analysis in human fibroblasts. Effect of LuCS on preadipocyte development was performed using MDI medium containing isobutyl-methylxanthine, dexamethasone, and insulin and then evaluated using oil red O staining. RESULTS Treatment of LuCS stimulated the expression of cellular elastin and type I procollagen in human skin fibroblasts. Exposure to LuCS induced lipid accumulation of preadipocytes via activation of CEBP/α signaling pathway in preadipocytes. Expression of collagen I, elastin, or CEBP/α mRNA was decreased by age. 3-bromo-3-methylisoxazol-5-amine enhanced the synthesis of cellular lipid in preadipocytes. CONCLUSIONS Collectively, these results suggest the rationale of LuCS treatment in enhancing the skin condition.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, Jeju National University, Jeju-do, 63243, Republic of Korea.
| | - Sung-Eun Jo
- [chanchanhee] Inc, Jeju, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
| | - Jae-Hoon Kim
- Department of Applied Life Science, Jeju National University, Jeju-do, 63243, Republic of Korea; Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
10
|
Evaluating the effect of Luffa cylindrica stem sap on dermal fibroblasts; An invitro study. Biochem Biophys Res Commun 2021; 580:41-47. [PMID: 34619551 DOI: 10.1016/j.bbrc.2021.09.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
Luffa cylindrica stem sap (LuCS) has been traditionally used as a facial cosmetic supplement to enhance the skin condition of Asians. However, LuCS has yet to be described and there is no solid scientific evidence regarding the use of LuCS as an anti-wrinkle agent. In the present study, we have evaluated the functional effect of LuCS and its underlying mechanisms based on scientific evidence. Treatment with LuCS stimulated the growth and migration of human skin fibroblasts. LuCS treatment activated EGFR signaling via the enhanced expression of EGFR and down-regulation of PPARγ in human skin fibroblasts. Exposure to LuCS induced the synthesis of cellular type I procollagen and elastin in consort with the down-regulation of various proteinases including MMP-1, -2 and -9 in human skin fibroblasts. LuCS treatment also reversed the skin damage induced by UV-A irradiation in human skin fibroblasts. 3-bromo-3-methylisoxazol-5-amine was identified as the functional component using UPLC-MS-MS analysis and increased production of cellular type I procollagen. Collectively, these results suggest the efficacy of LuCS supplementation in improving the skin condition via anti-wrinkle effect.
Collapse
|
11
|
Chen CY, Tsai TY, Chen BH. Effects of Black Garlic Extract and Nanoemulsion on the Deoxy Corticosterone Acetate-Salt Induced Hypertension and Its Associated Mild Cognitive Impairment in Rats. Antioxidants (Basel) 2021; 10:antiox10101611. [PMID: 34679745 PMCID: PMC8533483 DOI: 10.3390/antiox10101611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organosulfur compounds, phenolic acids and flavonoids in raw and black garlic were determined, and followed by preparation of black garlic nanoemulsion for studying their effects on deoxycorticosterone acetate-salt-induced hypertension and associated mild cognitive impairment in rats. Three organosulfur compounds, including diallyl sulfide (87.8 μg/g), diallyl disulfide (203.9 μg/g) and diallyl trisulfide (282.6 μg/g) were detected in black garlic by GC-MS, while gallic acid (19.19 μg/g), p-coumaric acid (27.03 μg/g) and quercetin (22.77 μg/g) were detected by UPLC-MS/MS. High doses of both black garlic extract and nanoemulsion prepared using Tween-80, glycerol, grapeseed oil and water could decrease systolic blood pressure through the elevation of bradykinin and nitric oxide levels as well as diminish aldosterone and angiotensin II levels in rats. In Morris water maze test, they could significantly decrease escape latency and swimming distance and increase the time spent in the target quadrant, accompanied by a decline of acetylcholinesterase activity and malondialdehyde level in the hippocampus as well as a rise in glutathione level and activities of superoxide dismutase, catalase and glutathione peroxidase. In addition, the levels of tumor necrosis factor, interleukin-6 and interleukin-1β were reduced. Effects of lowering blood pressure and improving learning/memory ability in rats followed the order: lisinopril > black garlic nanoemulsion > black garlic extract.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (T.-Y.T.)
- Department of Nutrition, China Medical University, Taichung 40401, Taiwan
- Correspondence: ; Tel.: +886-2-2905-3626
| |
Collapse
|
12
|
Cao TQ, Kim JA, Woo MH, Min BS. SARS-CoV-2 main protease inhibition by compounds isolated from Luffa cylindrica using molecular docking. Bioorg Med Chem Lett 2021; 40:127972. [PMID: 33753260 PMCID: PMC7977011 DOI: 10.1016/j.bmcl.2021.127972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/03/2022]
Abstract
In this study, chemical investigation of methanol extract of the air-dried fruits of Luffa cylindrica led to the identification of a new δ‐valerolactone (1), along with sixteen known compounds (2–17). Their chemical structures including the absolute configuration were elucidated by extensive spectroscopic analysis and electronic circular dichroism analysis, as well as by comparison with those reported in the literature. For the first time in literature, we have examined the binding potential of the isolated compounds to highly conserved protein, Mpro of SARS-CoV-2 using the molecular docking technique. We found that the isolated saponins (14–17) bind to the substrate‐binding pocket of SARS-CoV-2 Mpro with docking energy scores of –7.13, –7.29, –7.47, and –7.54 kcal.mol−1, respectively, along with binding abilities equivalent to an already claimed N3 protease inhibitor (–7.51 kcal.mol−1).
Collapse
Affiliation(s)
- Thao Quyen Cao
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea; Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| |
Collapse
|
13
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
14
|
Hirose N, Maeda G, Tanahara N, Takara K, Wada K. Suitability of lactic acid bacteria for the production of pickled luffa ( Luffa cylindrica Roem.). FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Naoto Hirose
- Okinawa Prefectural Agricultural Research Center
- Okinawa Industrial Technology Center
| | - Goki Maeda
- Okinawa Prefectural Agricultural Research Center
| | | | | | - Koji Wada
- Faculty of Agriculture, University of the Ryukyus
| |
Collapse
|
15
|
Zhang L, Yue Y, Shi M, Tian M, Ji J, Liao X, Hu X, Chen F. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem 2020; 320:126648. [DOI: 10.1016/j.foodchem.2020.126648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
|
16
|
Han Y, Zhang X, Qi R, Li X, Gao Y, Zou Z, Cai R, Qi Y. Lucyoside B, a triterpenoid saponin from Luffa cylindrica, inhibits the production of inflammatory mediators via both nuclear factor-κB and activator protein-1 pathways in activated macrophages. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Zhang L, Wang P, Shi M, Fang Z, Ji J, Liao X, Hu X, Chen F. The modulation of Luffa cylindrica (L.) Roem supplementation on gene expression and amino acid profiles in liver for alleviating hepatic steatosis via gut microbiota in high-fat diet-fed mice: insight from hepatic transcriptome analysis. J Nutr Biochem 2020; 80:108365. [DOI: 10.1016/j.jnutbio.2020.108365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
|
18
|
Maamoun AA, El-Akkad RH, Farag MA. Mapping metabolome changes in Luffa aegyptiaca Mill fruits at different maturation stages via MS-based metabolomics and chemometrics. J Adv Res 2019; 29:179-189. [PMID: 33842015 PMCID: PMC8020157 DOI: 10.1016/j.jare.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Luffa aegyptiaca Mill, sponge gourd or Egyptian cucumber, is grown worldwide for its edible fruit consumed as a vegetable like cucumber. Unlike young fruit (YF), the fully mature ripened fruit (MF) is strongly fibrous and is used as a cleanser to make scrubbing bath sponges. YF undergoes a complex series of physiological and biochemical changes during fruit ripening. However, the chemical compositional differences between YF and MF in Luffa aegyptiaca have not been distinguished to date. Objectives Comprehensively compare the metabolites profile of YF and MF to give insight on how maturation stage affects chemical composition. Methods Mass-based metabolomics comprising GC/MS and UHPLC/MS were adopted in this study targeting its volatile and non-volatile metabolites coupled with chemometrics to rationalize for the differences. Results A total of 53 volatile metabolites were identified via headspace solid phase microextraction (SPME) comprising 66.2% aldehydes/furans, 51.6% alcohols, 38.2% ketones, 15.1% acids and 10.1% aromatics of which aldehydes/ furans were dominant at both fruit stages. Young fruit was in general more erniched in metabolites as revealed from UHPLC/MS and GC/MS analyses. The YF group encompassed higher levels of short chain alcohols (1-octen-3-ol) and aldehydes ((E)-2-hexenal and cucumber aldehyde) in addition to terpenoids (linalool). In contrast, fatty acids (octanoic acid) predominated MF specimens. UHPLC/MS analysis revealed for several oleanene triterpene glycosides as major secondary bioactive compounds, dihydroxy-oxo-oleanenoic acid glycoside found more abundant in YF versus MF as revealed from multivariate data analyses. Conclusions Our results reveal for the distinct metabolite changes in L. aegyptiaca fruit in its different stages and to rationalize for its different usage.
Collapse
Affiliation(s)
- Amal A Maamoun
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., P.O. 12622 (ID:60014618), Cairo, Egypt
| | - Radwa H El-Akkad
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., P.O. 12622 (ID:60014618), Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
19
|
Shikano A, Kuda T, Shibayama J, Toyama A, Ishida Y, Takahashi H, Kimura B. Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice. Food Res Int 2019; 121:817-824. [DOI: 10.1016/j.foodres.2018.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
|
20
|
Wang Y, Wang X, Xiong Y, Fan J, Zheng Z, Li Y, Dong L, Zhao Z. Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Zhang L, Shi M, Ji J, Hu X, Chen F. Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high-fat diet. FASEB J 2019; 33:10339-10352. [PMID: 31211921 DOI: 10.1096/fj.201900488r] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota, identified as the target for vegetables, can affect the development of obesity and associated metabolic syndromes. As a medicinal and edible plant, Luffa cylindrica (L.) Roem (LC) has abundant nutrients that can effectively reduce obesity risk. However, the interaction between the prevention effects of LC against obesity and the modulating gut microbiota of LC remain obscure. This study demonstrated LC supplementation improved high-fat diet (HFD)-induced gut microbiota dysbiosis and significantly enhanced short-chain fatty acid (SCFA)-producing bacteria (e.g., Blautia) along with SCFA content accumulation in the gut. Meanwhile, LC supplementation substantially restored gut barrier damage in long-term HFD treatment. Moreover, LC supplementation improved HFD-induced overweight, hyperlipidemia, insulin resistance, and chronic inflammation. Gene expression profiles showed that LC displayed an important impact on hepatic lipid transport and lipid synthesis (sterol regulatory element binding transcriptional factor 1c-peroxisome proliferator-activated receptor γ signaling pathway). More importantly, an antibiotic treatment experiment demonstrated that the beneficial effects of LC in reducing obesity risk largely depended on the gut microbiota, especially SCFA-producing bacteria (e.g., Blautia). Therefore, LC supplementation improved gut microbiota dysbiosis via enhancing SCFA-producing bacteria (e.g., Blautia), maintained gut barrier integrity, and alleviated the development of obesity. Overall, LC would provide a potential dietary intervention strategy against obesity and enteral homeostasis dysbiosis through modulating the gut microbiota.-Zhang, L., Shi, M., Ji, J., Hu, X., Chen, F. Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high-fat diet.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health-China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering-National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing, Ministry of Agriculture-Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education-China Agricultural University, Beijing, China
| | - Mengxuan Shi
- College of Food Science and Nutritional Engineering-National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing, Ministry of Agriculture-Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education-China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering-National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing, Ministry of Agriculture-Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education-China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering-National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing, Ministry of Agriculture-Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education-China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering-National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing, Ministry of Agriculture-Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education-China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Chang WJ, Chen BH, Inbaraj BS, Chien JT. Preparation of allyl isothiocyanate nanoparticles, their anti-inflammatory activity towards RAW 264.7 macrophage cells and anti-proliferative effect on HT1376 bladder cancer cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3106-3116. [PMID: 30516283 DOI: 10.1002/jsfa.9524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Allyl isothiocyanate (AITC), a volatile and water-insoluble compound present in several cruciferous vegetables, has been shown to possess several biological qualities such as anti-bacterial, anti-fungal, and anti-cancer activity. In this study, water-soluble allyl isothiocyanate nanoparticles (AITC-NPs) were prepared by oil dispersed in water (O/W) microemulsion and complex coacervation techniques and evaluated for their anti-inflammatory activity towards macrophage cell RAW 264.7 and anti-cancer effect on human bladder cancer cell HT1376. RESULTS The AITC-NPs with a particle size of 9.4 nm were stable during heating up to 110 °C or three freeze-thawing cycles. No significant cytotoxicity was shown on Caco-2 and intestine epithelial IEC-6 cells at AITC-NP doses ranging from 0.25 to 2 g L-1 (8.75-70 mg L-1 AITC). However, at 2 g L-1 dosage, AITC-NPs could inhibit the growth of human bladder cancer cells HT1376 by 90%, while their low dosage at 0.25 g L-1 could inhibit migration ability by 83.7, 71.3, 58.4 and 31.4% after 4, 8, 12, and 24 h of incubation, respectively. Compared to AITC and NPs, AITC-NPs showed a better inhibition on lipopolysaccharide (LPS)-induced TNF-α, IL-6, NO and iNOS production in RAW 264.7 macrophage cells. CONCLUSION The results demonstrate the potential of AITC-NPs as therapeutic agents for the treatment of bladder cancer and the enhancement of immune function. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Jung Chang
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - John-Tung Chien
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
23
|
Shikano A, Kuda T, Takahashi H, Kimura B. Effects of fermented green-loofah and green-papaya on nitric oxide secretion from murine macrophage raw 264.7 cells. Mol Biol Rep 2018; 45:1013-1021. [PMID: 30009342 DOI: 10.1007/s11033-018-4249-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
To clarify the effect of lactic acid bacteria (LAB) fermentation on the immunomodulation capacity of green-loofah and green-papaya, aqueous suspensions prepared from the fresh and dry-powdered vegetables were fermented by Lactococcus lactis subsp. lactis Uruma-SU1 and Lactobacillus plantarum Uruma-SU4. Fermented and non-fermented suspensions were added to murine macrophage RAW264.7 culture with and without Escherichia coli O111 lipopolysaccharide (LPS). In the absence of LPS, nitric oxide (NO) secretion was elevated significantly in LAB fermented suspensions compared to that in non-fermented suspensions. NO production in fermented suspensions was observed even at low sample concentrations, but it was attenuated in the centrifuged supernatant. With LPS treatment, inhibition of NO secretion was shown with the high concentration of the non-fermented and also fermented samples. These results suggest that fermented green-loofah and green-papaya suspensions can play both immunostimulatory and anti-inflammatory roles at low and high doses, respectively.
Collapse
Affiliation(s)
- Ayane Shikano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
24
|
Lee J, Ha SJ, Lee HJ, Kim MJ, Kim JH, Kim YT, Song KM, Kim YJ, Kim HK, Jung SK. Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-κB and MAPK pathways. Food Funct 2018; 7:3263-72. [PMID: 27334265 DOI: 10.1039/c6fo00540c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tremella fuciformis Berk (TFB) has long been used as a traditional medicine in Asia. Although TFB exhibits antioxidant and anti-inflammatory effects, the mechanisms of action responsible have remained unknown. We confirmed the anti-inflammatory effects of Tremella fuciformis Berk extract (TFE) in RAW 264.7 cells and observed significantly suppressed LPS-induced iNOS/NO and COX-2/PGE2 production. TFE also suppressed LPS-induced IKK, IkB, and p65 phosphorylation, as well as LPS-induced translocation of p65 from the cytosol. Additionally, TFE inhibited LPS-induced phosphorylation of MAPKs. In an acute inflammation study, oral administration of TFE significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production and iNOS and COX-2 expression. The major bioactive compounds from TFB extract were identified as gentisic acid, protocatechuic acid, 4-hydroxybenzoic acid, and coumaric acid. Among these compounds, protocatechuic acid showed the strongest inhibitory effects on LPS-induced NO production in RAW 264.7 cells. Overall, these results suggest that TFE is a promising anti-inflammatory agent that suppresses iNOS/NO and COX-2/PGE2 expression, as well as the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jangho Lee
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Su Jeong Ha
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Hye Jin Lee
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Min Jung Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea
| | - Jin Hee Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea
| | - Yun Tai Kim
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea and Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Kyung-Mo Song
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Young-Jun Kim
- Food Safety Center, Ottogi Corp, Gyeonggi-do, 431-070, Republic of Korea
| | - Hyun Ku Kim
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Sung Keun Jung
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea and Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| |
Collapse
|
25
|
Umehara M, Yamamoto T, Ito R, Nonaka S, Yanae K, Sai M. Effects of phenolic constituents of Luffa cylindrica on UVB-damaged mouse skin and on dome formation by MDCK I cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Hlel TB, Belhadj F, Gül F, Altun M, Yağlıoğlu AŞ, Demirtaş I, Marzouki MN. Variations in the Bioactive Compounds Composition and Biological Activities of Loofah (Luffa cylindrica
) Fruits in Relation to Maturation Stages. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Takoua Ben Hlel
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
- Department of Biology; Faculty of Sciences of Tunis; University of Tunis El Manar; 2092 El Manar Tunis Tunisia
| | - Feten Belhadj
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
| | - Fatih Gül
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Muhammed Altun
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Ayşe Şahin Yağlıoğlu
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Ibrahim Demirtaş
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - M. Nejib Marzouki
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
| |
Collapse
|
27
|
Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells. J Food Drug Anal 2017; 26:31-40. [PMID: 29389569 PMCID: PMC9332654 DOI: 10.1016/j.jfda.2016.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022] Open
Abstract
The objectives of this study were to determine the variety and amount of various functional components in Scutellaria barbata D. Don as well as study their anti-inflammatory activity on RAW 264.7 cells. Both ethanol and ethyl acetate extracts were shown to contain the functional components including phenolics, flavonoids, chlorophylls, and carotenoids, with the former mainly composed of phenolics and flavonoids, and the latter of carotenoids and chlorophylls. Both extracts could significantly inhibit (p < 0.05) the production of lipopolysaccharide-induced nitric oxide, prostaglandin E2, interlukin-6, and interlukin-1β, as well as the expressions of phosphor extracellular signal-regulated kinase and phosphor-c-Jun N-terminal kinase (p-JNK), but failed to retard tumor necrosis factor-α expression. Both ethanol and ethyl acetate extracts had a dose-dependent anti-inflammatory activity on RAW 264.7 cells. Furthermore, the anti-inflammatory efficiency can be varied for both ethanol and ethyl acetate extracts, which can be attributed to the presence of different varieties and amounts of functional components, as mentioned above. This finding suggested that S. Barbata extract may be used as an anti-inflammatory agent for possible future biomedical application.
Collapse
|
28
|
Effect of micronization process on the functional component content and anti-inflammatory activity of Luffa cylindrical peel. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Protective effect of 5-hydroxy-3′,4′,7-trimethoxyflavone against inflammation induced by lipopolysaccharide in RAW 264.7 macrophage: in vitro study and in silico validation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1611-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ha H, Lim HS, Lee MY, Shin IS, Jeon WY, Kim JH, Shin HK. Luffa cylindrica suppresses development of Dermatophagoides farinae-induced atopic dermatitis-like skin lesions in Nc/Nga mice. PHARMACEUTICAL BIOLOGY 2015; 53:555-562. [PMID: 25327534 PMCID: PMC4364561 DOI: 10.3109/13880209.2014.932392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/18/2014] [Accepted: 06/03/2014] [Indexed: 06/04/2023]
Abstract
CONTEXT The fruit pulp of Luffa cylindrica Roemer (Cucurbitaceae) (LC) has been used to induce hemostasis, resolve phlegm and clear fever in traditional Korean medicine. However, the efficacy of LC has not been examined in atopic dermatitis (AD). OBJECTIVE A 70% ethanol extract of LC was evaluated to determine anti-inflammation and anti-AD effects in vitro and in vivo. MATERIALS AND METHODS The inhibitory effects of LC on the production of PGE2 and histamine were respectively measured in lipopolysaccharide-treated (1 μg/mL) RAW264.7 macrophages and phorbol-12 myristate 13-acetate (50 nM) and A23187 (1 µM)-stimulated HMC-1 mast cells. The production of AD-related chemokines (RANTES, TARC, and MDC) were evaluated in IFN-γ and TNF-α-stimulated (10 ng/mL, each) HaCaT keratinocytes. LC (10 mg/mouse/d) was topically applied to the dorsal skin and ears of Dermatophagoides farina (Pyroglyphidae)-sensitized Nc/Nga mice for 4 weeks. RESULTS The IC50 values of LC on PGE2 and histamine production were 16.89 and 139.9 μg/mL, individually. The production of TARC and RANTES were inhibited 20% and 12% by LC (50 μg/mL) in HaCaT cells, respectively (p < 0.05). In sensitized-NC/Nga mice, the plasma levels of IgE and histamine were suppressed 36% and 41% by LC, respectively (p < 0.05). LC also reduced hemorrhage, hypertrophy, and hyperkeratosis of the epidermis and infiltration of mast cells in the dorsal skin and ear. DISCUSSION AND CONCLUSION LC can inhibit AD-like skin lesions and reduce the generation of IgE via inhibition of the inflammatory responses. LC has potential as a therapeutic agent to treat allergic diseases, including AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyeun Kyoo Shin
- Correspondence: Hyeunkyoo Shin, Ph.D., Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea. Tel: +82 42 868 9464. Fax: +82 42 864 2120. E-mail:
| |
Collapse
|
31
|
Papanicolaou GC, Psarra E, Anastasiou D. Manufacturing and mechanical response optimization of epoxy resin/Luffa Cylindrica composite. J Appl Polym Sci 2015. [DOI: 10.1002/app.41992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- George C. Papanicolaou
- Composite Materials Group; Department of Mechanical Engineering and Aeronautics; University of Patras; GR-26500 Patras Greece
| | - Erato Psarra
- Composite Materials Group; Department of Mechanical Engineering and Aeronautics; University of Patras; GR-26500 Patras Greece
| | - Dimitris Anastasiou
- Composite Materials Group; Department of Mechanical Engineering and Aeronautics; University of Patras; GR-26500 Patras Greece
| |
Collapse
|
32
|
Huang R, Lu Y, Inbaraj BS, Chen B. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Simultaneous determination of prenylflavonoid and hop bitter acid in beer lee by HPLC-DAD-MS. Food Chem 2013; 141:1218-26. [DOI: 10.1016/j.foodchem.2013.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 11/22/2022]
|