1
|
Yang P, Wang W, Hu Y, Wang Y, Xu Z, Liao X. Exploring high hydrostatic pressure effects on anthocyanin binding to serum albumin and food-derived transferrins. Food Chem 2024; 452:139544. [PMID: 38723571 DOI: 10.1016/j.foodchem.2024.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 μM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.
Collapse
Affiliation(s)
- Peiqing Yang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenxin Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yongtao Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
3
|
Zhuo Z, Yin C, Zhang Z, Han Y, Teng H, Xu Q, Li C. Nano-Reactors Based on Ovotransferrin Organic Skeleton through a Ferroptosis-like Strategy Efficiently Enhance Antibacterial Activity. J Funct Biomater 2024; 15:205. [PMID: 39194643 DOI: 10.3390/jfb15080205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The issue of bacterial resistance is an escalating problem due to the misuse of antibiotics worldwide. This study introduces a new antibacterial mechanism, the ferroptosis-like death (FLD) of bacteria, and an approach to creating green antibacterial nano-reactors. This innovative method leverages natural iron-containing ovotransferrin (OVT) assembled into an organic skeleton to encapsulate low-concentration adriamycin (ADM) for synthesizing eco-friendly nano-reactors. FLD utilizes the Fenton reaction of reactive oxygen species and ferrous ions to continuously produce ·OH, which can attack the bacterial cell membrane and destroy the cell structure to achieve bacteriostasis. The OVT@ADM nano-reactors are nearly spherical, with an average diameter of 247.23 nm and uniform particle sizing. Vitro simulations showed that Fe3+ in OVT@ADM was reduced to Fe2+ by glutathione in the bacterial periplasmic space, which made the structure of OVT loose, leading to a sustained slow release of ADM from OVT@ADM. The H2O2 continuously produced by ADM oxidized Fe2+ through the Fenton reaction to produce ·OH and Fe3+. The results of the antibacterial assay showed that OVT@ADM had a satisfactory antibacterial effect against S. aureus, and the inhibition rate was as high as 99.3%. The cytotoxicity results showed that the mitigation strategy significantly reduced the cytotoxicity caused by ADM. Based on the FLD mechanism, OVT@ADM nano-reactors were evaluated and applied to bacteriostasis. Therefore, the novel antibacterial mechanism and OVT@ADM by the green synthesis method have good application prospects.
Collapse
Affiliation(s)
- Zihan Zhuo
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Chunfang Yin
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Zhenqing Zhang
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Haoye Teng
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Changming Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
7
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Ngamlerst C, Prangthip P, Leelawat B, Supawong S, Vatthanakul S. A Vital Role of High-Pressure Processing in the Gel Forming on New Healthy Egg Pudding through Texture, Microstructure, and Molecular Impacts. Foods 2022; 11:2555. [PMID: 36076740 PMCID: PMC9454986 DOI: 10.3390/foods11172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
High-pressure processing (HPP) can induce gelation of egg-white protein and improve physical and physicochemical properties of egg-white pudding. Interestingly, one step, including production and pasteurisation, is accomplished to produce a ready-to-eat snack. An ideal healthy snack in the elderly population consists of low-sugar and fat, high fibre and vitamin levels, is tasty, creamy-soft, and refreshing. Our strawberry-flavoured egg-white pudding contains high protein and fibre from inulin, zero fat, and a soft texture produced for various groups, from healthy to older people. After HPP at different high-pressure levels (450, 475, and 500 MPa) and different times (5, 10 and 15 min), this study investigated the physical quality and physicochemical properties of strawberry-flavoured egg-white pudding, such as texture, colour, syneresis, microstructure, secondary structure of protein, and microorganism growth. The results indicate increasing high-pressure levels, and/or holding time treatment caused significantly (p < 0.05) higher hardness values and lower syneresis, as well as surface hydrophobicity. Moreover, many micropores and thicker wall structures were clearly observed for increasing high-pressure levels. Furthermore, HPP altered the β-sheet and β-turns structure of strawberry-flavoured egg-white pudding. In conclusion, increasing high-pressure levels and/or holding time treatment at 450, 475, and 500 MPa for 5, 10, and 15 min affected the physical, physicochemical, and biochemical properties of strawberry-flavoured egg-white pudding.
Collapse
Affiliation(s)
- Chattraya Ngamlerst
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Bootsrapa Leelawat
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Supattra Supawong
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Suteera Vatthanakul
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
- Thammasat University Center of Excellence in Food Science and Innovation, Klong Luang, Pathumthani 12121, Thailand
| |
Collapse
|
9
|
Gao J, Shi Q, Ye Y, Wu Y, Chen H, Tong P. Effects of guar gum or xanthan gum addition in conjunction with pasteurization on liquid egg white. Food Chem 2022; 383:132378. [PMID: 35183963 DOI: 10.1016/j.foodchem.2022.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/13/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
In this study, effects of varying levels of xanthan or guar gum (XG/GG, 0.05%, 0.1%, 0.2%, 0.4% and 0.8%, w/v) on the spatial structure and functional properties of egg white (EW) proteins under different pasteurization conditions of the liquid egg was evaluated. Results showed that XG could bury the aromatic ring residues and reduce the hydrophobicity of protein in EW, whereas GG could only increase the hydrophobicity. With 0.8% GG addition and pasteurization under 60℃/3.5 min, the emulsifying stability of EW was improved by nearly 100%, while with 0.8% XG addition the gel structure of EWwould become porousandloosen under each pasteurization condition. The hardness of EW gels was decreased by 90% when the concentration of XG was 0.4% or 0.8%. According to the results, the concentration of gums and the pasteurization parameters should be considered together when adding gums into the liquid egg products for pasteurization simultaneously.
Collapse
Affiliation(s)
- Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Qiang Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yong Wu
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
10
|
Boukil A, Marciniak A, Mezdour S, Pouliot Y, Doyen A. Effect of High Hydrostatic Pressure Intensity on Structural Modifications in Mealworm (Tenebrio molitor) Proteins. Foods 2022; 11:foods11070956. [PMID: 35407046 PMCID: PMC8997566 DOI: 10.3390/foods11070956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Processing edible insects into protein extracts may improve consumer acceptability. However, a better understanding of the effects of food processing on the proteins is needed to facilitate their incorporation into food matrices. In this study, soluble proteins from Tenebrio molitor (10% w/v) were pressurized using high hydrostatic pressure (HHP) at 70–600 MPa for 5 min and compared to a non-pressurized control (0.1 MPa). Protein structural modifications were evaluated using turbidity measurement, particle-size distribution, intrinsic fluorescence, surface hydrophobicity, gel electrophoresis coupled with mass spectrometry, and transmission electron microscopy (TEM). The observed decrease in fluorescence intensity, shift in the maximum emission wavelength, and increase in surface hydrophobicity reflected the unfolding of mealworm proteins. The formation of large protein aggregates consisting mainly of hexamerin 2 and ⍺-amylase were confirmed by protein profiles on gel electrophoresis, dynamic light scattering, and TEM analysis. The typical aggregate shape and network observed by TEM after pressurization indicated the potential involvement of myosin and actin in aggregate formation, and these were detected by mass spectrometry. For the first time, the identification of mealworm proteins involved in protein aggregation phenomena under HHP was documented. This work is the first step in understanding the mealworm protein–protein interactions necessary for the development of innovative insect-based ingredients in food formulations.
Collapse
Affiliation(s)
- Abir Boukil
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Samir Mezdour
- AgroParisTech, UMR782 Paris Saclay Food and Bioproduct Engineering, 1 Rue des Olympiades, 91077 Massy, France;
| | - Yves Pouliot
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alain Doyen
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
11
|
Su J, Wang L, Dong W, Wei J, Liu X, Yan J, Ren F, Yuan F, Wang P. Fabrication and Characterization of Ultra-High-Pressure (UHP)-Induced Whey Protein Isolate/κ-Carrageenan Composite Emulsion Gels for the Delivery of Curcumin. Front Nutr 2022; 9:839761. [PMID: 35284445 PMCID: PMC8916044 DOI: 10.3389/fnut.2022.839761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The emulsion gels have attracted extensive interests due to their unique physical characters, remarkable stability, and control release properties of flavor and functional components compared to emulsions in liquid. In the current work, whey protein isolate (WPI)/κ-carrageenan (κ-CG) composite emulsion gels were fabricated based on the ultra-high-pressure (UHP) technology, in replacement of the traditional thermal, acid, or enzyme processing. Uniform composite emulsion gels could be fabricated by UHP above 400 MPa with minimum WPI and κ-CG concentrations of 8.0 and 1.0 wt%, respectively. The formation of UHP-induced emulsion gels is mostly attributed to the hydrophobic interaction and hydrogen bonding. The emulsion gels with different textures, rheology properties, and microstructures could be fabricated through adjusting the formulations (WPI concentration, κ-CG concentration, and oil phase fraction) as well as processing under different conditions (pressure and time). Afterward, curcumin-loaded emulsion gels were fabricated and subjected to an in vitro simulated gastrointestinal digestion in order to investigate the gastrointestinal fate of curcumin. In vitro simulated digestion results demonstrated that the UHP treatment significantly retarded the release of curcumin but had little impact on the bioaccessibility of curcumin. The results in this work provide useful information for the construction of emulsion gels through a non-thermal process, which showed great potential for the delivery of heat-sensitive bioactive components.
Collapse
Affiliation(s)
- Jiaqi Su
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Wang
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenxia Dong
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiao Wei
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xi Liu
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxin Yan
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Fazheng Ren
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang Yuan
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Fang Yuan
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Pengjie Wang
| |
Collapse
|
12
|
Effect of high-pressure treatment on the heat-induced emulsion gelation of rabbit myosin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Wang X, Wei Z, Xue C. The past and future of ovotransferrin: Physicochemical properties, assembly and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Rathnapala ECN, Ahn DU, Abeyrathne S. Functional properties of ovotransferrin from chicken egg white and its derived peptides: a review. Food Sci Biotechnol 2021; 30:619-630. [PMID: 33814941 PMCID: PMC8006106 DOI: 10.1007/s10068-021-00901-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
With emerging trends in the food and pharmaceutical industries, potential applications of egg-derived bioactive compounds were recognized. Ovotransferrin is a major egg white functional protein responsible for multiple bioactivities. The objectives of this review are to provide scientific evidence of the functional properties of chicken ovotransferrin and its derived peptides and to identify future research approaches and applications. Various easy, economical, and non-toxic methods have been reported to produce ovotransferrin with high yield and purity, and chemical and enzymatic approaches have been employed to release bioactive peptides. The native ovotransferrin is known to have antimicrobial, antioxidant, anticancer, and immunomodulatory activities. The peptides produced from ovotransferrin also are reported to have antioxidant, antimicrobial, antihypertensive, and anticancer properties. However, little or no application of these compounds in the food and pharmaceutical areas is available yet. Therefore, the practical application of OTF in nutraceutical and pharmaceutical areas are among the emerging areas of research.
Collapse
|
15
|
Lv Y, Feng X, Yang R, Qian S, Liu Y, Xu X, Zhou G, Ullah N, Zhu B, Chen L. Dual role (promotion and inhibition) of transglutaminase in mediating myofibrillar protein gelation under malondialdehyde-induced oxidative stress. Food Chem 2021; 353:129453. [PMID: 33765599 DOI: 10.1016/j.foodchem.2021.129453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of transglutaminase (TGase) on the properties of myofibrillar protein (MP) and its heat-induced gels under malondialdehyde (MDA)-induced oxidation. The physicochemical characteristics, protein aggregation and rheological properties of MP were assessed. The gelling behaviours of MP were analysed with measurements of gel strength, cooking loss, microstructure and secondary structure. Under varying degrees of MDA oxidation, the addition of TGase always led to changes in the tertiary structure, loss of free amine and thiol groups, crosslinking of the myosin heavy chain, and decreasing solubility. However, the effect of TGase on MP gel quality differed. At 6 mmol/L MDA, the addition of TGase reduced the quality of MP gels by increasing cooking loss. However, at 12 mmol/L MDA, TGase reduced both the cooking loss and gel strength.
Collapse
Affiliation(s)
- Yuanqi Lv
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rong Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shan Qian
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Sun Y, Ma L, Fu Y, Dai H, Zhang Y. The improvement of gel and physicochemical properties of porcine myosin under low salt concentrations by pulsed ultrasound treatment and its mechanism. Food Res Int 2021; 141:110056. [PMID: 33641958 DOI: 10.1016/j.foodres.2020.110056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 11/15/2022]
Abstract
The effects of pulsed ultrasound treatment (250 W, 0-12 min) on gel and physicochemical properties of porcine myosin at low-salt group (0.3 mol/L) and control groups (0.6 and 0.9 mol/L) were investigated. The texture and water holding capacity (WHC) of low-salt group gel were remarkably lower than in medium-salt (0.6 mol/L) and high-salt group (0.9 mol/L). However, 6-min ultrasound treatment could obviously improve the texture and WHC of low-salt group gel. After ultrasound treatment, the protein solubility was increased, as the degree of protein aggregation was reduced. Simultaneously, ultrasound treatment led to unfolding of protein structure and increasing surface hydrophobicity. The three-dimensional network of myosin gel gradually became uniform by 6-min ultrasound treatment. Under 12-min ultrasound treatment, the protein aggregated excessively during the gelation, which led to the deterioration of gel quality. These results suggested that moderate ultrasound treatment is promising to be used to enhance the quality of salt-reduced meat products.
Collapse
Affiliation(s)
- Yi Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Hu L, Wu L, Lai C, Li M, Yang W. The influence of pH and concentration on the zeta potential, hydrophobicity of OVT and the relationship between its structure and interfacial behaviors. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Linfang Hu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chanjuan Lai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Mingliang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Li X, Ma Y, Sun P, Liu H, Cai L, Li J. Effect of ultrasonic thawing on protein properties and muscle quality of Bonito. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiu‐xia Li
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| | - Yingying Ma
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| | - Pan Sun
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| | - Hongying Liu
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| | - Luyun Cai
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| | - Jian‐rong Li
- College of Food Science and Technology Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
- Food Safety Key Lab of Liaoning Province The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou China
| |
Collapse
|
19
|
Liu X, Wang J, Huang Q, Cheng L, Gan R, Liu L, Wu D, Li H, Peng L, Geng F. Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: Gel properties, structure and quantitative proteome analysis. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105873] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Ma X, Liang R, Xing Q, Lozano‐Ojalvo D. Can food processing produce hypoallergenic egg? J Food Sci 2020; 85:2635-2644. [DOI: 10.1111/1750-3841.15360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaojuan Ma
- School of Public Health Zunyi Medical University Zunyi 563000 China
| | - Rui Liang
- School of Public Health Zunyi Medical University Zunyi 563000 China
| | - Qianlu Xing
- Department of Pediatrics The Second Affiliated Hospital of Zunyi Medical University Zunyi 563000 China
| | - Daniel Lozano‐Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CSIC‐UAM) Madrid 28049 Spain
| |
Collapse
|
21
|
Jia N, Zhang F, Liu Q, Wang L, Lin S, Liu D. The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation. Food Chem 2019; 301:125206. [DOI: 10.1016/j.foodchem.2019.125206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023]
|
22
|
Wang J, Li Z, Zheng B, Zhang Y, Guo Z. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Wei Z, Zhu P, Huang Q. Investigation of ovotransferrin conformation and its complexation with sugar beet pectin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Chang C, Lahti T, Tanaka T, Nickerson MT. Egg proteins: fractionation, bioactive peptides and allergenicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5547-5558. [PMID: 29797412 DOI: 10.1002/jsfa.9150] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/01/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Eggs are an important source of macro and micronutrients within the diet, comprised of proteins, lipids, vitamins, and minerals. They are constituted by a shell, the white (containing 110 g kg-1 proteins: ovalbumin, ovotransferrin, ovomucoid, lysozyme and ovomucin), and the yolk (containing 150-170 g kg-1 proteins: lipovitellins, phosvitin, livetins, and low-density lipoproteins). Owing to their nutritional value and biological characteristics, both the egg white and yolk proteins are extensively fractionated using different techniques (e.g., liquid chromatography, ultrafiltration, electrophoresis, and chemical precipitation), in which liquid chromatography is the most commonly used technique to obtain individual proteins with high protein recovery and purity to develop novel food products. However, concerns over allergenic responses induced by certain egg proteins (e.g., ovomucoid, ovalbumin, ovotransferrin, lysozyme, α-livetin, and lipoprotein YGP42) limit their widespread use. As such, processing technologies (e.g., thermal processing, enzymatic hydrolysis, and high-pressure treatment) are investigated to reduce the allergenicity by conformational changes. In addition, biological activities (e.g., antioxidant, antimicrobial, antihypertensive, and anticancer activities) associated with egg peptides have received more attention, in which enzyme hydrolysis is demonstrated as a promising way to break polypeptides sequences and produce bioactive peptides to provide nutritional and therapeutic benefits for human health. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Chang
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Takuji Tanaka
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Modeling water partition in composite gels of BSA with gelatin following high pressure treatment. Food Chem 2018; 265:32-38. [DOI: 10.1016/j.foodchem.2018.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022]
|
26
|
|
27
|
Parniakov O, Bals O, Barba FJ, Mykhailyk V, Lebovka N, Vorobiev E. Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Crit Rev Food Sci Nutr 2018; 58:362-385. [PMID: 27245977 DOI: 10.1080/10408398.2016.1180502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the past years, both food researchers and food industry have shown an increased interest in finding techniques that can estimate modifications in quality, nutritional, and thermophysical properties of food products during processing and/or storage. For instance, differential scanning calorimetry (DSC) has attracted the interest of scientific community because only a small amount of sample is needed for analysis. Moreover, it does not require any specific sample preparation, and is a repeatable and reliable method. In addition, DSC methodology needs a short time for experiments compared with other techniques used for the same purpose. At this stage of investigation, there is a need to evaluate the commonly accepted and new emerging DSC applications to establish the optimum conditions of emerging processing. This paper reviews the current and new insights of DSC technique for the estimation of quality, nutritional, and thermophysical properties of food products during conventional and emerging processing and/or subsequent storage. The estimation of different properties in several food matrices after processing and/or storage is also discussed.
Collapse
Affiliation(s)
- Oleksii Parniakov
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Olivier Bals
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Francisco J Barba
- b Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C , Denmark
| | - Viacheslav Mykhailyk
- c Institute of Engineering Thermal Physics, National Academy of Sciences of Ukraine , 2a, str. Zheljabova, Kyiv , Ukraine
| | - Nikolai Lebovka
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France.,d Institute of Biocolloidal Chemistry, named after F.D. Ovcharenko, NAS of Ukraine , 42, Blvr. Vernadskogo, Kyiv , Ukraine
| | - Eugene Vorobiev
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| |
Collapse
|
28
|
Zhang Y, Wang W, Zhou R, Yang J, Sheng W, Guo J, Wang S. Effects of heating, autoclaving and ultra-high pressure on the solubility, immunoreactivity and structure of major allergens in egg. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1387520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Wei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Rourou Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Jian Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Jun Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| |
Collapse
|
29
|
Wang JY, Yang YL, Tang XZ, Ni WX, Zhou L. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633822 DOI: 10.1016/j.ultsonch.2017.03.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The effects of pulsed ultrasound (PUS) (power: 240w) with varying time (0, 3, 6, 9, 12 and 15min) on rheological and structural properties of chicken myofibrillar protein (CMP) were examined. PUS treatment significantly caused a decrease in the viscosity coefficients (k) but an increase in the flow index (n) value of CMP solutions within short time (0-6min), while had no significant effect for longer time (9-15min). Besides, at 6min, the solubility and microstructure of CMP samples were optimum. The primary structure of CMP was not altered by PUS treatment. However, Raman spectroscopy revealed a decrease in the α-helix and β-sheets proportion and an increase in the β-turn of CMP following PUS treatment. Random coil reached a maximum at 6min. The changes in tertiary and quaternary structure of CMP by PUS treatment also occurred. As PUS time extended, S0-ANS for CMP increased measured by ANS fluorescence probe method. However, the normalized intensity of 760cm-1 increased from 0min to 6min, and then decreased to 15min by Raman test. Moreover, the reactive sulphur (SH) contents and disulfide bonds (S-S) of samples increased while the total SH contents decreased within 0-6min. At 9min and above, the contents of reactive SH groups were almost equal to the contents of total SH groups. Differential scanning calorimetry (DSC) of CMP showed that peak temperature (Td2) for myosin and peak temperature (Td3) for actin were both reduced in the first 6min, while Td3 was not observed from 9min following PUS treatment. Therefore, 6min was the optimum PUS time to obtain better CMP rheological and structural properties.
Collapse
Affiliation(s)
- Jing-Yu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yu-Ling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiao-Zhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wen-Xi Ni
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Lei Zhou
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
30
|
Chaipayang S, Songsiriritthigul C, Chen CJ, Palacios PM, Pierce BS, Jangpromma N, Klaynongsruang S. Purification, characterization, cloning and structural analysis of Crocodylus siamensis ovotransferrin for insight into functions of iron binding and autocleavage. Comp Biochem Physiol B Biochem Mol Biol 2017. [PMID: 28648632 DOI: 10.1016/j.cbpb.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ovotransferrin (OTf), the major protein constituent of egg white, is of great interest due to its pivotal role in biological iron transport and storage processes and its spontaneous autocleavage into peptidic fragments with alternative biological properties, such as antibacterial and antioxidant activities. However, despite being well-investigated in avian, a detailed elucidation of the structure-function relationship of ovotransferrins in the closely related order of Crocodilia has not been reported to date. In this study, electron paramagnetic resonance (EPR) confirmed the presence of two spectroscopically distinct ferric iron binding sites in Crocodylus siamensis OTf (cOTf), but implied a five-fold lower quantity of bound iron than in hen OTf (hOTf). In addition, quantitative estimation of free sulfhydryl groups revealed slight differences to hOTf. To gain a better structural understanding of cOTf, we found a cOTf gene consisting of an open reading frame of 2040bp and encoding a protein of 679 amino acids. In silico prediction of the three-dimensional structure of cOTf and comparison with hOTf revealed four evolutionarily conserved iron-binding sites in both N- and C-lobes, as well as the presence of only 13 of the 15 disulfide bonds in hOTf. This evolutionary loss of disulfide linkages in conjunction with the lack of hydrogen bonding from a dilysine trigger in the C-lobe are presumed to affect the iron binding and autocleavage character of cOTf. As a result, cOTf may be capable of exerting a more diverse array of functions compared to its avian counterparts; for instance, ion buffering, antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Sukanya Chaipayang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research center, Hsinchu 30076, Taiwan
| | - Philip M Palacios
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, USA
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, USA
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Office of the Dean, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
31
|
Leite Júnior BRDC, Tribst AAL, Grant NJ, Yada RY, Cristianini M. Biophysical evaluation of milk-clotting enzymes processed by high pressure. Food Res Int 2017; 97:116-122. [PMID: 28578031 DOI: 10.1016/j.foodres.2017.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
High pressure processing (HPP) is able to promote changes in enzymes structure. This study evaluated the effect of HP on the structural changes in milk-clotting enzymes processed under activation conditions for recombinant camel chymosin (212MPa/5min/10°C), calf rennet (280MPa/20min/25°C), bovine rennet (222MPa/5min/23°C), and porcine pepsin (50MPa/5min/20°C) and under inactivation conditions for all enzymes (600MPa/10min/25°C) including the protease from Rhizomucor miehei. In general, it was found that the HPP at activation conditions was able to increase the intrinsic fluorescence of samples with high pepsin concentration (porcine pepsin and bovine rennet), increase significantly the surface hydrophobicity and induce changes in secondary structure of all enzymes. Under inactivation conditions, increases in surface hydrophobicity and a reduction of intrinsic fluorescence were observed, suggesting a higher exposure of hydrophobic sites followed by water quenching of Trp residues. Moreover, changes in secondary structure were observed (with minor changes seen in Rhizomucor miehei protease). In conclusion, HPP was able to unfold milk-clotting enzymes even under activation conditions, and the porcine pepsin and bovine rennet were more sensitive to HPP.
Collapse
Affiliation(s)
- Bruno Ricardo de Castro Leite Júnior
- Department of Food Technology (DTA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato, 80. PO Box 6121, 13083-862 Campinas, SP, Brazil
| | - Alline Artigiani Lima Tribst
- Center of Studies and Researches in Food (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, 13083-852 Campinas, SP, Brazil
| | - Nicholas J Grant
- Faculty of Land and Food Systems, The University of British Columbia (UBC), MacMillan Building 248, 2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, The University of British Columbia (UBC), MacMillan Building 248, 2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Marcelo Cristianini
- Department of Food Technology (DTA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato, 80. PO Box 6121, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
32
|
Jia N, Wang L, Shao J, Liu D, Kong B. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification. Meat Sci 2017; 127:45-50. [DOI: 10.1016/j.meatsci.2017.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 01/05/2017] [Accepted: 01/14/2017] [Indexed: 12/21/2022]
|
33
|
Zhang Z, Yang Y, Zhou P, Zhang X, Wang J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem 2017; 217:678-686. [DOI: 10.1016/j.foodchem.2016.09.040] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
34
|
Zhang Y, Zhang Y, Liu X, Huang L, Chen Z, Cheng J. Influence of hydrolysis behaviour and microfluidisation on the functionality and structural properties of collagen hydrolysates. Food Chem 2017; 227:211-218. [PMID: 28274424 DOI: 10.1016/j.foodchem.2017.01.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The functionality and structural properties of pig skin hydrolysates with different degrees of hydrolysis (DH, 10% and 20%) and microfluidisation (120MPa), prepared by pepsin and Alcalase® have been investigated in this study. Extensive hydrolysis can significantly improve the absolute value of the zeta potential and surface hydrophobicity. The particle distribution of hydrolysates decreased with increasing DH. The numbers of free sulfhydryl (SH) and disulfide bonds (SS) were significantly increased with increasing DH (p<0.05). Hydrolysates with a lower DH showed a better emulsifying property than those with a higher DH. Microfluidisation led to the transformation of structural and interfacial properties of the hydrolysates and increased the value of the zeta potential, S0, and gel strength. Microfluidisation results in limited breakage of chemical bonds, the number of SS and SH bonds unchanged in the treatment. These results reflect the functionality and structural properties of collagen-rich pig skin hydrolysates.
Collapse
Affiliation(s)
- Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yousheng Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xueming Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihua Huang
- Department of Food, Guangzhou City Polytechnic, Guangzhou 510405, China.
| | - Zhiyi Chen
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jingrong Cheng
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
35
|
Wang CY, Huang HW, Hsu CP, Yang BB. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Crit Rev Food Sci Nutr 2016; 56:527-40. [PMID: 25629307 DOI: 10.1080/10408398.2012.745479] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.
Collapse
Affiliation(s)
- Chung-Yi Wang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Hsiao-Wen Huang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Chiao-Ping Hsu
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Binghuei Barry Yang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| |
Collapse
|
36
|
He X, Mao L, Gao Y, Yuan F. Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Uygun-Sarıbay M, Ergun E, Kalaycı Y, Köseoğlu T. The secondary structure of proteins in liquid, frozen, and dried egg-white samples: Effect of gamma irradiation treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1241263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mine Uygun-Sarıbay
- TAEA, Sarayköy Nuclear Research and Training Center, Kazan, Ankara, Turkey
| | - Ece Ergun
- TAEA, Sarayköy Nuclear Research and Training Center, Kazan, Ankara, Turkey
| | - Yakup Kalaycı
- TAEA, Sarayköy Nuclear Research and Training Center, Kazan, Ankara, Turkey
| | - Turhan Köseoğlu
- TAEA, Sarayköy Nuclear Research and Training Center, Kazan, Ankara, Turkey
| |
Collapse
|
38
|
Ergometric studies of proteins: New insights into protein functionality in food systems. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Ulrichs T, Drotleff AM, Ternes W. Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chem 2015; 172:909-20. [DOI: 10.1016/j.foodchem.2014.09.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/15/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
40
|
Ma XJ, Gao JY, Chen HB. Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3209-3215. [PMID: 23553593 DOI: 10.1002/jsfa.6157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ovalbumin (OVA) is a major allergen in hen egg. During thermal processing, reducing sugars contained in the hen egg white might easily undergo glycation with OVA, but few studies have been conducted on its corresponding immunoreactivity changes. The aim of the present study was to assess changes of the antigenicity, potential allergenicity and conformation of OVA after glycation in a wet-thermal processing system under different concentrations of sodium carbonate-bicarbonate buffer. RESULTS IgE binding of the glycated OVA was increased after glycation, and the higher the sodium carbonate-bicarbonate buffer concentration, the higher the IgE binding capacity. The increase in IgE binding of OVA corresponded well with the disruption of the disulfide bond, which exposed the epitopes initially buried. Antigenicity of the glycated OVA was increased, and the amount of the increase varied among samples treated under different buffer concentrations. CONCLUSION Glycation increased the allergenic potential for OVA, with the amount of increase varying with different sodium carbonate-bicarbonate buffer concentrations.
Collapse
Affiliation(s)
- Xiao-juan Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | | | | |
Collapse
|