1
|
Ariaee A, Salim M, Boyd BJ, Prestidge C, Joyce P. Montmorillonite restricts free fatty acid liberation and alters self-assembled structures formed during in vitro lipid digestion. J Colloid Interface Sci 2024; 675:660-669. [PMID: 38991280 DOI: 10.1016/j.jcis.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
The global rise in obesity necessitates innovative weight loss strategies. Naturally occurring smectite clays, such as montmorillonite (MMT), offer promise due to their unique properties that interfere with free fatty acid (FFA) liberation, reducing systemic uptake. However, the mechanisms of MMT-FFA interactions and their implications for weight management are undefined. This study investigates these interactions by adding MMT (10 % w/w) to in vitro lipolysis media containing medium chain triglycerides (MCTs), and monitoring FFA liberation using pH-stat titration. Nanoparticle tracking analysis (NTA) and synchrotron-based small-angle X-ray scattering (sSAXS) observed time-dependent structural changes, while electron microscopy examined clay morphology during digestion. A 35 % reduction in FFA liberation occurred after 25 min of digestion with MCT + MMT, with digestion kinetics following a biphasic model driven by calcium soap formation. NTA revealed a 17-fold decrease in vesicular structures with MCT + MMT, and sSAXS highlighted a rapid lamellar phase evolution linked to calcium soap formation. This acceleration is attributed to MMT's adsorption to unionized FFAs via hydrogen bonding, supported by TEM images showing a decrease in d-spacing, indicating FFA intercalation is not the main adsorption mechanism. These findings highlight MMT's potential as a novel intervention for reducing dietary lipid absorption in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Amin Ariaee
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Clive Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
2
|
Palomar M, Soler MD, Benavides-Reyes C, Rodríguez-Navarro AB, García-Bautista JA, Orozco A, Garcés-Narro C. Effects of dietary free fatty acid content and degree of fat saturation on tibia bone properties of laying hens. Poult Sci 2024; 103:104177. [PMID: 39180782 PMCID: PMC11385419 DOI: 10.1016/j.psj.2024.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Acid oils and fatty acid distillates are fat by-products of the refining process of edible oils and are characterized by their high proportion of free fatty acids (FFA). While lipids are essential in poultry diets, their chemical structure may interfere with calcium absorption. Therefore, this study investigated the effects of dietary FFA content and the degree of fat saturation on bone metabolism in commercial layers. For 15-wk, a total of 144 laying hens (19-wk-old) were randomly assigned to 8 treatments (6 replicates with 3 birds each), which were obtained by gradually replacing crude soybean oil (rich in unsaturated fatty acids [UFA]) with soybean acid oil (rich in UFA and FFA), or crude palm oil (rich in saturated fatty acids [SFA]) with palm fatty acid distillate (rich in SFA and FFA). Following a 2 × 4 factorial design, 4 UFA-rich and 4 SFA-rich diets were created with varying FFA content: 10, 20, 30, and 45%. Tibiae (6 birds/treatment) were collected at the end of the trial for the assessment of mineral composition, morphological properties, and mechanical characteristics. The data were analyzed using a 2-way ANOVA with the GLM procedure. Orthogonal polynomial contrasts were employed to determine the linear effect of increasing %FFA, with statistical significance set at P < 0.05. The degree of saturation was found to negatively impact on calcium and phosphorus bone content, with higher levels found in soybean-based diets (P < 0.001). A significant interaction was observed for medullary bone mineral content, showing a linear decrease as the dietary %FFA increased (P < 0.05) in palm diets. In contrast, morphological and mechanical bone traits, total ash content, and cortical bone mineral composition remained unaffected (P > 0.05). These results suggest that the degree of fat saturation exerts a greater impact than FFA content on bone mineral metabolism, supporting the commercial use of fat by-products rich in FFA in laying hen diets, at least during the early stages of the laying cycle.
Collapse
Affiliation(s)
- M Palomar
- AviFeed Science, Department of Animal Production and Health, Facultad de Veterinaria, Universidad CEU Cardenal Herrera - CEU Universities, Alfara de Patriarca, Valencia E-46115, Spain
| | - M D Soler
- AviFeed Science, Department of Animal Production and Health, Facultad de Veterinaria, Universidad CEU Cardenal Herrera - CEU Universities, Alfara de Patriarca, Valencia E-46115, Spain
| | - C Benavides-Reyes
- Department of Mineralogy and Petrology, University of Granada, Granada E-18071, Spain
| | - A B Rodríguez-Navarro
- Department of Mineralogy and Petrology, University of Granada, Granada E-18071, Spain
| | - J A García-Bautista
- AviFeed Science, Department of Animal Production and Health, Facultad de Veterinaria, Universidad CEU Cardenal Herrera - CEU Universities, Alfara de Patriarca, Valencia E-46115, Spain
| | - A Orozco
- AviFeed Science, Department of Animal Production and Health, Facultad de Veterinaria, Universidad CEU Cardenal Herrera - CEU Universities, Alfara de Patriarca, Valencia E-46115, Spain
| | - C Garcés-Narro
- AviFeed Science, Department of Animal Production and Health, Facultad de Veterinaria, Universidad CEU Cardenal Herrera - CEU Universities, Alfara de Patriarca, Valencia E-46115, Spain.
| |
Collapse
|
3
|
Ramezani M, Martín-Belloso O, Salvia-Trujillo L. Influence of oleogel composition on lipid digestibility and β-carotene bioaccessibility during in vitro digestion. Food Chem 2024; 456:139978. [PMID: 38870810 DOI: 10.1016/j.foodchem.2024.139978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
This study explored how co-oleogelator type, concentration, and water addition affect lipid digestion and β-carotene (βC) bioaccessibility in corn oil oleogels. Oleogels containing 0.1% βC, 20% glyceryl stearate (GS), with lecithin (L) or hydrogenated lecithin (HL) (at 0, 0.5, or 2.5%) and their water-filled counterparts (1% water) were examined. In vitro intestinal digestion revealed HL-oleogels experienced higher lipolysis due to their smaller crystal size enhancing surface area for lipase action, whereas L-oleogels presented lower digestibility, attributed to larger oil droplets and a minimized surface area. Water addition didn't significantly change lipid digestibility. βC bioaccessibility was inversely related to co-oleogelator concentration, with L-oleogels demonstrating the largest decrease, likely due to less free fatty acids released for micelle formation. However, water-filled oleogels enhanced βC bioaccessibility. These findings highlight that tailored microstructure in oleogels can control lipid digestion and βC bioaccessibility, paving the way for designing efficient delivery systems for targeted nutrient delivery.
Collapse
Affiliation(s)
- Mohsen Ramezani
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
4
|
Liu J, Zheng Y, Zhang R, Yu Y, Wang F, Deng L, Wu K. A novel synthesis method of medium- and long-chain triglyceride lipids from rubber seed oil catalyzed by enzymatic interesterification and its metabolism mechanism. Food Funct 2024; 15:9903-9915. [PMID: 39257163 DOI: 10.1039/d3fo05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Medium- and long-chain triglyceride (MLCT) is a striking structural lipid for the supply of energy and essential fatty free acids (FFAs) in the food field. This study aimed to prepare MLCT by enzymatic interesterification of rubber seed oil (RSO) and medium-chain triglyceride (MCT). Fortunately, the conversion of synthesized MLCT could reach 75.4% by the catalysis of Novozym 40086 (7 wt% to MCT) at a temperature of 40 °C with the substrate mole ratio of 1 : 0.7 (RSO : MCT). The as-synthesized MLCT contained unsaturated fatty acid (USFA, 50.13%) at the sn-2 position and exhibited superior performance on the acid value, peroxide value and iodine value in contrast to grade III soybean oil. Moreover, it exhibited the simultaneous release of LCFAs and MCFAs, extremely facilitating the reduction of body weight gain and control of the level of lipids in the blood. Finally, the preferred hepatic metabolism process of the obtained MLCT was proven to be the main cause of the reduced body weight and improved lipid levels by the in vivo deposition experiments. Therefore, our study suggested that the outstanding performance of the MLCT synthesized by RSO in foods as functional lipids.
Collapse
Affiliation(s)
- Jiahao Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yinghui Zheng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Renwei Zhang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yue Yu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Fang Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Li Deng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
5
|
Xu Y, Zhang N, Shi K, Zhang P, Xiong S, Xu G, Pan S. Comparative Evaluation of Micellization and Cellular Uptake of β-Carotene Affected by Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19353-19365. [PMID: 39174497 DOI: 10.1021/acs.jafc.4c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Based on in vitro digestion, micellar synthesis, and Caco-2 cell model, this study investigated the effects of typical flavonoids in citrus (naringenin, naringin, hesperetin, hesperidin, quercetin, and rutin) at different doses on the micellization and cellular uptake of β-carotene. In in vitro digestion, low-dose flavonoids enhanced β-carotene bioaccesssibility by regulating the stability and dispersibility of the intestinal medium, particularly quercetin, which significantly increased the bioaccessibility by 44.6% (p < 0.05). Furthermore, naringenin, hesperetin, hesperidin, and quercetin enhanced the micellar incorporation rate of β-carotene; however, naringin and rutin exhibited an opposite effect, particularly naringin, which significantly reduced it by 71.3% (p < 0.05). This phenomenon could be attributed to the high solubility of naringin and rutin in micelles, resulting in a competitive inhibitory effect on β-carotene. Besides, all treatments significantly enhanced β-carotene cellular uptake (p < 0.05) by promoting the expression of scavenger receptor class B type I and Niemann-Pick C1-Like 1.
Collapse
Affiliation(s)
- Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - PeiPei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sihui Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
6
|
Shen S, Liu X, Tang D, Yang H, Cheng J. Digestive characteristics of astaxanthin oil in water emulsion stabilized by a casein-caffeic acid-glucose ternary conjugate. Food Chem 2024; 438:138054. [PMID: 38006699 DOI: 10.1016/j.foodchem.2023.138054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
To overcome the barrier of poor oral bioavailability of astaxanthin, a stable oil-in-water emulsion was constructed using casein-caffeic acid-glucose ternary conjugates (CSC) to deliver astaxanthin, and its gastrointestinal behavior was evaluated in vitro with sodium caseinate (CSN) as a control. Results showed that, CSC-stabilized emulsion shower better resistance to the adverse conditions of the gastric environment than CSN-stabilized emulsion, and exhibited lower average particle size and aggregation (4972.33 nm, -5.93 mv) after simulated gastric digestion. Besides, after simulated intestinal digestion, the reducing capacity and astaxanthin transfer efficiency of CSC emulsion into the micellar phase were 686.74 μmol Trolox/100 mL and 26.2 %, which were 2.6 and 4.05-fold higher than that of CSN emulsion. The above results suggest that CSC can be used for better delivery of astaxanthin, which could be useful in designing foods such as functional beverages, pharmaceuticals and nutritional supplements for delivery of lipophilic bioactives.
Collapse
Affiliation(s)
- Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
7
|
Wang P, Chen P, Zhang X, Szeto IMY, Li F, Tan S, Ba G, Zhang Y, Duan S, Yang Y. Bioaccessibility of docosahexaenoic acid in naturally and artificially enriched milk. Food Chem 2024; 437:137772. [PMID: 37871424 DOI: 10.1016/j.foodchem.2023.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to compare the bioaccessibility of docosahexaenoic acid (DHA) in naturally and artificially enriched milk and investigate the potential mechanisms involved. The results indicated that the DHA in naturally enriched milk (NEM) had a higher bioaccessibility (76.9 %) and a lower digestive loss rate (18.1 %) compared to artificially enriched milk (ArEM). Moreover, NEM contained a higher proportion of DHA-containing glycerophospholipids and sn-2 DHA, with fewer long-chain fatty acids and more saturated fatty acids adjacent to DHA in the same lipid molecule. During simulated intestinal digestion, NEM had a higher free fatty acid release and lipid digestion rate than ArEM. These findings suggested that the bioaccessibility of endogenous DHA in milk was superior to that of externally added DHA due to its more easily digestible and absorbable chemical binding form and lower digestive loss rate. The easy digestibility of milk lipids in NEM also contributed to its high DHA bioaccessibility.
Collapse
Affiliation(s)
- Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Panqiao Chen
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Fang Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Shengjie Tan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Hohhot 010110, China.
| | - Yue Yang
- Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Pan Z, Ye A, Fraser K, Li S, Dave A, Singh H. Comparative lipidomics analysis of in vitro lipid digestion of sheep milk: Influence of homogenization and heat treatment. J Dairy Sci 2024; 107:711-725. [PMID: 37776996 DOI: 10.3168/jds.2023-23446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
This study investigated the changes in sheep milk lipids during in vitro gastrointestinal digestion in response to heat treatment (75°C/15 s and 95°C/5 min) and homogenization (200/50 bar) using lipidomics. Homogenized and pasteurized sheep milk had higher levels of polar lipids in gastric digesta emptied at 20 min than raw sheep milk. Intense heat treatment of homogenized sheep milk resulted in a reduced level of polar lipids compared with homogenized-pasteurized sheep milk. The release rate of free fatty acids during small intestinal digestion for gastric digesta emptied at 20 min followed the order: raw ≤ pasteurized < homogenized-pasteurized ≤ homogenized-heated sheep milk; the rate for gastric digesta emptied at 180 min showed a reverse order. No differences in the lipolysis degree were observed among differently processed sheep milks. These results indicated that processing treatments affect the lipid composition of digesta and the lipolysis rate but not the lipolysis degree during small intestinal digestion.
Collapse
Affiliation(s)
- Zheng Pan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Karl Fraser
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; AgResearch, Palmerston North 4442, New Zealand
| | - Siqi Li
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Lin T, O'Keefe S, Duncan S, Fernández-Fraguas C. Dry beans (Phaseolus vulgaris L.) modulate the kinetics of lipid digestion in vitro: Impact of the bean matrix and processing. Food Res Int 2023; 173:113245. [PMID: 37803558 DOI: 10.1016/j.foodres.2023.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
The lipid-lowering effect of dry beans and their impact on lipid and cholesterol metabolism have been established. This study investigates the underlying mechanisms of this effect and explore how the structural integrity of processed beans influences their ability to modulate lipolysis using the INFOGEST static in vitro digestion model. Dietary fiber (DF) fractions were found to decrease lipolysis by increasing the digesta viscosity, leading to depletion-flocculation and/or coalescence of lipid droplets. Bean flours exhibited a more pronounced reduction in lipolysis compared to DF. Furthermore, different levels of bean structural integrity showed varying effects on modulating lipolysis, with medium-sized bean particles demonstrating a stronger reduction. Hydrothermal treatment compromised the ability of beans to modulate lipid digestion, while hydrostatic-pressure treatment (600 MPa/5min) enhanced the effect. These findings highlight that the lipid-lowering effect of beans is not solely attributed to DF but also to the overall bean matrix, which can be manipulated through processing techniques.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sean O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Susan Duncan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
11
|
The structure of triglycerides impacts the digestibility and bioaccessibility of nutritional lipids during in vitro simulated digestion. Food Chem 2023; 418:135947. [PMID: 36996650 DOI: 10.1016/j.foodchem.2023.135947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
The triglyceride (TAG) structure of lipids may affect their nutritional properties by affecting the process of digestion and absorption. In this paper, a mixture of medium-chain triglycerides and long-chain triglycerides (PM) and medium- and long-chain triglycerides (MLCT) were selected to explore the effects of triglyceride structure on in vitro digestion and bioaccessibility. The results showed that MLCT released more free fatty acids (FFAs) than PM (99.88% vs 92.82%, P < 0.05). The first-order rate constant for FFA release from MLCT was lower than that for PM (0.0395 vs 0.0444 s-1, P < 0.05), which suggests that the rates of PM digestion were faster than those of MLCT. Our results demonstrated that DHA and EPA were more bioaccessible from MLCT than from PM. These results highlighted the important role of TAG structure in regulation of lipid digestibility and bioaccessibility.
Collapse
|
12
|
Liu Z, Suolang Q, Wang J, Li L, Luo Z, Shang P, Chen XD, Wu P. Formation of structured clots, gastric emptying and hydrolysis kinetics of yak milk during in vitro dynamic gastrointestinal digestion: Impact of different heat treatments. Food Res Int 2022; 162:111958. [DOI: 10.1016/j.foodres.2022.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
13
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, M. R. Pilosof A. Solubilization of lipolysis products in mixed micelles is enhanced in presence of bile salts and Tween 80 as revealed by a model study (oleic acid) and emulsified chia-oil. Food Res Int 2022; 161:111804. [DOI: 10.1016/j.foodres.2022.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
|
14
|
Li M, Liu Y, Zhao J, Yu R, Altaf Hussain M, Qayum A, Jiang Z, Qu B. Glycosylated whey protein isolate enhances digestion behaviors and stabilities of conjugated linoleic acid oil in water emulsions. Food Chem 2022; 383:132402. [DOI: 10.1016/j.foodchem.2022.132402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
15
|
Zhang L, Zheng J, Wang Y, Ye X, Chen S, Pan H, Chen J. Fabrication of rhamnogalacturonan-I enriched pectin-based emulsion gels for protection and sustained release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
17
|
Cheng L, Ye A, Hemar Y, Singh H. Modification of the interfacial structure of droplet-stabilised emulsions during in vitro dynamic gastric digestion: Impact on in vitro intestinal lipid digestion. J Colloid Interface Sci 2021; 608:1286-1296. [PMID: 34758419 DOI: 10.1016/j.jcis.2021.10.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
The in-vitro gastrointestinal digestion behaviour of an oil-in-water emulsion with an interface consisting of nano-sized droplets coated with caseinate particles, referred to as a droplet-stabilised emulsion (DSE), was explored using the human gastric simulator and pH-stat models. A caseinate-particle-stabilised emulsion (PSE) was used as a control, with a similar droplet size distribution and the same composition as the DSE. The nanodroplet-stabilised interface of the DSE was preserved during the first 180 min of gastric digestion. During 240 min, the droplet sizes of the DSE and the PSE increased from 22.71 ± 1.14 to 63.34 ± 6.57 μm and from 17.98 ± 1.16 to 85.11 ± 9.35 μm respectively. The small droplet size of the DSE that was released from the gastric phase contributed to slightly higher total free fatty acid (FFA) release (56.18 ± 3.55%) than that from the PSE (49.4 ± 2.67%). The FFA release rate of the DSE (1.21 % min-1) was greater than that of the PSE (1.06 % min-1) during the first 30 min of small intestinal digestion; similar FFA release rates (0.5 µmol s-1 m-2 × 10-4) were obtained for both emulsions beyond 30 min of digestion. This study provides new information on lipid digestion using a novel interfacial layer that was stabilised with nanodroplets.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Yacine Hemar
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
18
|
Ren Q, Wang R, Teng F, Ma Y. Structural Mechanism and Hydrolysis Kinetics of In Vitro Digestion Are Affected by a High-Melting-Temperature Solid Triacylglycerol Fraction in Bovine Milk Fat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10657-10668. [PMID: 34387985 DOI: 10.1021/acs.jafc.1c03807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-melting-temperature solid triacylglycerol (TAG) is the main source of controversy with regard to the nutritional assessment of milk fat. This study investigated the microscopic changes and hydrolysis kinetics of milk fat globules (MFGs) reconstituted with butterfat and its primary fractions (30S, 20S, and 20L) during in vitro digestion. The 30S, 20S, and 20L on behalf of high-, medium- and low-melting-temperature fractions, respectively, had well-distinguished melting temperatures (42.1, 38.9, and 22.0 °C) and long-chain saturated TAG contents (19.3, 3.2, and 1.8%). The results revealed that the gastrointestinal fate of these butterfat fractions varied greatly with their TAG composition, and the gastric phase was a sensitive target in terms of the physiological site. The 20S- and 30S-reconstituted MFG emulsions during gastric digestion compared to that of 20L had higher extensive aggregation, lower hydrolysis extent (29.8, 28.0, and 57.3%, respectively), and slower apparent hydrolysis rate constants k (2.4, 2.1, and 6.1 min-1, respectively).
Collapse
Affiliation(s)
- Qingxi Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, Heilongjiang, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, Heilongjiang, China
| | - Fei Teng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, Heilongjiang, China
| |
Collapse
|
19
|
Mulet-Cabero AI, Wilde PJ. Role of calcium on lipid digestion and serum lipids: a review. Crit Rev Food Sci Nutr 2021; 63:813-826. [PMID: 34281429 DOI: 10.1080/10408398.2021.1954873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium is an essential nutrient for humans that can be taken as supplement or in a food matrix (e.g. dairy products). It is suggested that dietary calcium may have a beneficial effect on cardiovascular risk but the mechanism is not clear. In this review, the main mechanisms of the possible cholesterol-lowering effect of calcium, i.e. interaction with fatty acids and bile acids, are described and clinical evidences are presented. The observations from interventional studies of the possible cholesterol-lowering effect in terms of the main related mechanisms are variable and do not seem to fulfill all the related aspects. It seems that the interplay of calcium in blood lipid metabolism might be due to its complex and multiple roles in the lipid digestion in the small intestine. The interactions between calcium and, fatty acids and bile may lead to impaired mixed micelle formation and solubilization, which is crucial in the lipid absorption and metabolism. In addition, the calcium source and its surrounding matrix will have an influence over the physiological outcome. This research is important for the delivery and formulation of calcium, particularly with the move toward plant-based diets.
Collapse
Affiliation(s)
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
20
|
Zhou H, Dai T, Liu J, Tan Y, Bai L, Rojas OJ, McClements DJ. Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106494] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Ye Z, Xu YJ, Liu Y. Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. J Food Biochem 2021; 45:e13695. [PMID: 33694208 DOI: 10.1111/jfbc.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
In the present study, the influences of five typical dietary oils (i.e., palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; and linseed oil, LN) consumption on the nutrients malabsorption were studied using adult male Sprague Dawley rats. Results suggested that the C16:0 (24.534 ± 2.26% to 54.269 ± 1.28%) and C18:0 (18.433 ± 4.421% to 36.455 ± 3.316%) were the dominant fatty acids in fecal samples in different groups. After 6-week intervention by different dietary oils, the fecal moisture and water soluble protein content in PO group, the reducing sugar content in PO, LO, and RO groups were significantly increased compared with those in the control group (p < .05). Moreover, the Na, K, and Fe contents in LO group were all the highest among the all groups. These effects were probably due to the different fatty acids composition as illustrated in the correlation analysis results. The different effects were probably due to their distinct fatty acids composition as illustrated in the correlation analysis results. Results further indicated that the different dietary oils treatment, especially for the PO (SFAs, 43.17 ± 0.98%) and LO (SFAs, 36.44 ± 0.65%), increased the upstream inflammatory cytokine expression level in the Toll-like receptor signal pathway (i.e., TLR4 and MyD88), enhancing the gut permeability. This resulted in significant increase of serum lipopolysaccharide (LPS) levels (p < .05), which was closely connected with different metabolic diseases. The present study may provide basic understandings about different dietary oil enteral nutrition and their effects on gut health. PRACTICAL APPLICATIONS: The PO, LO, RO, SO, and LN are the five of the most typical dietary lipids in Asia countries, especially in China. They are the natural edible oils which are rich in C16:0, C18:0, C18:1, C18:2ω6, and C18:3ω3, respectively. The present study indicated that the different dietary lipid consumption may result in different dietary nutrients malabsorption, which are related with the dietary lipid fatty acid composition.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,School of Human Nutrition, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
22
|
Zhai H, Gunness P, Gidley MJ. Depletion and bridging flocculation of oil droplets in the presence of β-glucan, arabinoxylan and pectin polymers: Effects on lipolysis. Carbohydr Polym 2021; 255:117491. [PMID: 33436251 DOI: 10.1016/j.carbpol.2020.117491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the influence of food polysaccharides from different sources on microstructural and rheological properties, and in vitro lipolysis of oil-in-water emulsions of canola oil stabilised by whey protein isolate. The polysaccharides used were β-glucan (BG) from oat, arabinoxylan (AX) from wheat, and pectin (PTN) from apple. All polysaccharides added at 1 % w/v increased the viscosity of emulsions and promoted flocculation but with different mechanisms, BG and AX by depletion flocculation and PTN by bridging flocculation. Depletion flocculation was associated with an increase in viscosity of BG or AX-stabilised emulsions compared with BG/AX alone, whereas bridging flocculation with PTN caused a decrease in viscosity. All three polysaccharides reduced lipid digestion rate and extent, but the bridging flocculation induced by PTN had the greatest effect. This study has implications for better understanding the influence of carbohydrate polymers from cereals and fruits on lipid digestibility.
Collapse
Affiliation(s)
- Honglei Zhai
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia; Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Purnima Gunness
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
23
|
In-vitro digestion of flaxseed oil encapsulated in phenolic compound adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Elsamadony M, Mostafa A, Fujii M, Tawfik A, Pant D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. WATER RESEARCH 2021; 190:116732. [PMID: 33316662 DOI: 10.1016/j.watres.2020.116732] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inhibition of the anaerobic digestion (AD) process, caused by long chain fatty acids (LCFAs), has been considered as an important issue in the wastewater treatment sector. Proper understanding of mechanisms behind the inhibition is a must for further improvements of the AD process in the presence of LCFAs. Through analyzing recent literature, this review extensively describes the mechanism of LCFAs degradation, during AD. Further, a particular focus was directed to the key parameters which could affect such process. Besides, this review highlights the recent research efforts in mitigating LCFAs-caused inhibition, through the addition of commonly used additives such as cations and natural adsorbents. Specifically, additives such as bentonite, cation-based adsorbents, as well as zeolite and other natural adsorbents for alleviating the LCFAs-induced inhibition are discussed in detail. Further, panoramic evaluations for characteristics, various mechanisms of reaction, merits, limits, recommended doses, and preferred conditions for each of the different additives are provided. Moreover, the potential for increasing the methane production via pretreatment using those additives are discussed. Finally, we provide future horizons for the alternative materials that can be utilized, more efficiently, for both mitigating LCFAs-based inhibition and boosting methane potential in the subsequent digestion of LCFA-related wastes.
Collapse
Affiliation(s)
- Mohamed Elsamadony
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan; Tanta University, Faculty of Engineering, Public Works Engineering Department, 31521, Tanta City, Egypt.
| | - Alsayed Mostafa
- Department of Smart City Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, South Korea
| | - Manabu Fujii
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Giza, 12622, Egypt
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
25
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
26
|
Ren Q, Fu L, Dudu OE, Zhang R, Liu H, Zheng Z, Ma Y. New insights into the digestion and bioavailability of a high-melting-temperature solid triacylglycerol fraction in bovine milk fat. Food Funct 2021; 12:5274-5286. [PMID: 34008635 DOI: 10.1039/d1fo00259g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clarifying the health risks associated with the consumption of high-melting-temperature solid triacylglycerol (TAG) from milk fat has profound significance for the nutritional evaluation and development of new dairy products. Our previous work effectively separated butterfat into solid/liquid fractions (30S and 30L) at 30 °C and successfully reconstituted milk fat globules (MFGs) with these fractions. The current study examined the postprandial digestive and daily metabolic properties of a high-melting-temperature solid TAG fraction by performing animal experiments (rats) with 30S-reconstituted MFG emulsion gavage for 240 min and 30S-containing diet administration for 4 weeks. Compared to the consumption of whole butterfat, 30S consumption altered apolipoprotein levels and did not lead to dyslipidaemia in the rats. Conversely, 30S administration induced significant body weight loss by enhancing satiety signals (glucagon-like peptide 1, GLP-1; cholecystokinin, CCK; and peptide YY, PYY), increasing faecal losses, and upregulating the level of hepatic lipolysis-associated enzymes (hormone-sensitive lipase, HSL; adipose triglyceride lipase, ATGL; and protein kinase A, PKA). The 30S diet efficiently improved adipocyte hypertrophy and reduced fat accumulation by downregulating the level of acetyl-CoA carboxylase (ACC) in adipose tissue. This study is of relevance to nutrition science and the dairy industry.
Collapse
Affiliation(s)
- Qingxi Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Ling Fu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Olayemi E Dudu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rui Zhang
- The Academy of Quality Inspection in Heilongjiang Province, Harbin 150023, Heilongjiang, China
| | - Haiyan Liu
- Syncho International Health Management Co., Ltd, Chengdu 610044, Sichuan, China and Dairy Nutrition and Function Key Laboratory of Sichuan Province, Chengdu 610000, Sichuan, China
| | - Zhiqiang Zheng
- Institute of Quartermaster Engineering and Technology, Institute of System Engineering, Academy of Military Sciences, Beijing 100010, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
27
|
He X, McClorry S, Hernell O, Lönnerdal B, Slupsky CM. Digestion of human milk fat in healthy infants. Nutr Res 2020; 83:15-29. [PMID: 32987285 DOI: 10.1016/j.nutres.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipid digestion is critical for infant development, and yet, the interconnection between lipid digestion and the microbiota is largely understudied. This review focuses on digestion of the human milk fat globule and summarizes the current understanding of the mechanisms underlying this process in infants. We first discuss the partial hydrolysis of milk fat in the stomach, which leads to rearrangement of lipid droplets, creating a lipid-water interface necessary for duodenal lipolysis. In the first few months of life, secretion of pancreatic triglyceride lipase, phospholipase A2, and bile salts is immature. The dominant lipases aiding fat digestion in the newborn small intestine are therefore pancreatic lipase-related protein 2 and bile salt-stimulated lipase from both the exocrine pancreas and milk. We summarize the interaction between ionic fatty acids and cations to form insoluble fatty acid soaps and how it is influenced by various factors, including cation availability, pH, and bile salt concentration, as well as saturation and chain length of fatty acids. We further argue that the formation of the soap complex does not contribute to lipid bioavailability. Next, the possible roles that the gut microbiota plays in lipid digestion and absorption are discussed. Finally, we provide a perspective on how the manufacturing process of infant formula and dairy products may alter the physical properties and structure of lipid droplets, thereby altering the rate of lipolysis.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Shannon McClorry
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 85 Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Sandoval-Cuellar CE, de Jesus Perea-Flores M, Quintanilla-Carvajal MX. In-vitro digestion of whey protein- and soy lecithin-stabilized High Oleic Palm Oil emulsions. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Chen L, Yokoyama W, Liang R, Zhong F. Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105177] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Tan Y, Li R, Zhou H, Liu J, Muriel Mundo J, Zhang R, McClements DJ. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct 2020; 11:174-186. [DOI: 10.1039/c9fo01669d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioaccessibility of hydrophobic bioactives may be greatly reduced in the presence of calcium.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- 8 Nanchang
- PR China
| | - Hualu Zhou
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Jinning Liu
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | | - Ruojie Zhang
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | |
Collapse
|
31
|
Alshehab M, Budamagunta MS, Voss JC, Nitin N. Real-time measurements of milk fat globule membrane modulation during simulated intestinal digestion using electron paramagnetic resonance spectroscopy. Colloids Surf B Biointerfaces 2019; 184:110511. [PMID: 31600680 DOI: 10.1016/j.colsurfb.2019.110511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022]
Abstract
Milk Fat Globules with their unique interfacial structure and membrane composition are a key nutritional source for mammalian infants, however, there is a limited understanding of the dynamics of fat digestion in these structures. Lipid digestion is an interfacial process involving interactions of enzymes and bile salts with the interface of suspended lipid droplets in an aqueous environment. In this study, we have developed an electron paramagnetic resonance spectroscopy approach to evaluate real time dynamics of milk fat globules interfacial structure during simulated intestinal digestion. To measure these dynamics, natural milk fat globule membrane was labeled with EPR-active probe, partitioning of EPR probes into MFGs membrane was validated using saturation-recovery measurements and calculation of the depth parameter Φ. After validation, the selected spin probe was used to evaluate the membrane's fluidity as a measure of the interface's modulation in the presence of bile salts and pancreatic lipase. Independently, bile salts were found to have a rigidifying effect on the spin probed MFGM, while pancreatic lipase resulted in an increase in membrane fluidity. When combined, the effect of lipase appears to be diminished in the presence of bile salts. These results indicate the efficacy of EPR in providing an insight into small time scale molecular dynamics of phospholipid interfaces in milk fat globules. Understanding interfacial dynamics of naturally occurring complex structures can significantly aid in understanding the role of interfacial composition and structural complexity in delivery of nutrients during digestion.
Collapse
Affiliation(s)
- Maha Alshehab
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States
| | - Madhu S Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, United States
| | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, United States
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States.
| |
Collapse
|
32
|
Verma R, Kaushik D. In vitro Lipolysis as a Tool for the Establishment of IVIVC for Lipid-Based Drug Delivery Systems. Curr Drug Deliv 2019; 16:688-697. [PMID: 31250755 DOI: 10.2174/1567201816666190620115716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
33
|
How do Different Types of Emulsifiers/Stabilizers Affect the In Vitro Intestinal Digestion of O/W Emulsions? FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09582-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Ng N, Chen PX, Ghazani SM, Wright AJ, Marangoni A, Goff HD, Joye IJ, Rogers MA. Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants. Food Funct 2019; 10:8195-8207. [DOI: 10.1039/c9fo02210d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Altering sn-fatty acid position of glycerol mono-oleate (GMO) from sn-1 to sn-2 decreases fatty acid bioaccessibility by 25.9% providing possible strategies to tailor lipemic responses of food emulsions.
Collapse
Affiliation(s)
- Natalie Ng
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | - Peter X. Chen
- Department of Food Science
- University of Guelph
- Guelph
- Canada
- School of Pharmacy
| | | | - Amanda J. Wright
- Human Health & Nutritional Sciences
- University of Guelph
- Guelph
- Canada
| | | | | | - Iris J. Joye
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | | |
Collapse
|
35
|
Sarkar A, Zhang S, Holmes M, Ettelaie R. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv Colloid Interface Sci 2019; 263:195-211. [PMID: 30580767 DOI: 10.1016/j.cis.2018.10.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022]
Abstract
Lipid digestion is a bio-interfacial process that is largely governed by the binding of the lipase-colipase-biosurfactant (bile salts) complex onto the surface of emulsified lipid droplets. Therefore, engineering oil-water interfaces that prevent competitive displacement by bile salts and/or delay the transportation of lipase to the lipidoidal substrate can be an effective strategy to modulate lipolysis in human physiology. In this review, we present the mechanistic role of Pickering emulsions i.e. emulsions stabilised by micron-to-nano sized particles in modulating the important fundamental biological process of lipid digestion by virtue of their distinctive stability against coalescence and resilience to desorption by intestinal biosurfactants. We provide a systematic summary of recent experimental investigations and mathematical models that have blossomed in the last decade in this domain. A strategic examination of the behavior and mechanism of lipid digestion of droplets stabilised by particles in simulated biophysical environments (oral, gastric, intestinal regimes) was conducted. Various particle-laden interfaces were considered, where the particles were derived from synthetic or biological sources. This allowed us to categorize these particles into two classes based on their mechanistic role in modifying lipid digestion. These are 'human enzyme-unresponsive particles' (e.g. silica, cellulose, chitin, flavonoids) i.e. the ones that cannot to be digested by human enzymes, such as amylase, protease and 'human enzyme-responsive particles' (e.g. protein microgels, starch granules), which can be readily digested by humans. We focused on the role of particle shape (spherical, anisotropic) on modifying both interfacial and bulk phases during lipolysis. Also, the techniques currently used to alter the kinetics of lipid digestion using intelligent physical or chemical treatments to control interfacial particle spacing were critically reviewed. A comparison of how various mathematical models reported in literature predict free fatty acid release kinetics during lipid digestion highlighted the importance of the clear statement of the underlying assumptions. We provide details of the initial first order kinetic models to the more recent models, which account for the rate of adsorption of lipase at the droplet surface and include the crucial aspect of interfacial dynamics. We provide a unique decision tree on model selection, which is appropriate to minimize the difference between experimental data of free fatty acid generation and model predictions based on precise assumptions of droplet shrinkage, lipase-binding rate, and nature of lipase transport process to the particle-laden interface. Greater insights into the mechanisms of controlling lipolysis using particle-laden interfaces with appropriate mathematical model fitting permit better understanding of the key lipid digestion processes. Future outlook on interfacial design parameters, such as particle shape, size, polydispersity, charge, fusion, material chemistry, loading and development of new mathematical models that provide closed-loop equations from early to later stages of kinetics are proposed. Such future experiments and models hold promise for the tailoring of particle-laden interfaces for delaying lipid digestion and/or site-dependent controlled release of lipidic active molecules in composite soft matter systems, such as food, personal care, pharmaceutical, healthcare and biotechnological applications.
Collapse
|
36
|
Ye Z, Li R, Cao C, Xu YJ, Cao P, Li Q, Liu Y. Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chem 2018; 280:34-44. [PMID: 30642504 DOI: 10.1016/j.foodchem.2018.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
The objective of the present study was to investigate the influences of dietary lipid composition on the gastrointestinal digestion and postprandial serum lipid profiles, and the connections between them. The in-vitro digestion results showed that maximum free fatty acid (FFA) release level of different lipid samples was PO (Palm oil) > RO (Rapeseed oil) > LINO (Linseed oil) > SO (Sunflower oil) > LO (Lard oil), and the first-order kinetics apparent rate constant was PO > SO ≈ RO > LO ≈ LINO, this may probably be ascribed to their specific lipid fatty acid composition and TAG structure. The individual FFA released during 240 min in-vitro digestion time was measured, and it showed that the release rate of short-chain saturated fatty acids (e.g. C16:0 in PO) were higher than the long-chain poly-unsaturated fatty acids (e.g. C18:3n-3 in LINO). Besides, the position of fatty acids within TAG molecules could also impose influences on the lipid hydrolysis process upon pancreas lipase in gastrointestinal tract using in-vitro digestion model. The postprandial serum fatty acid composition of the adult SD male rats were examined within 240 min after oral gavage administration, and the Pearson correlations between lipid fatty acid composition and the serum fatty acid profiles were analyzed. Certain correlations were summarized between lipid compositions (i.e. fatty acid composition and TAG structure), lipid digestion fates and serum fatty acid content in postprandial. The present work may provide some basic understandings of the connections among lipid compositions, lipid gastrointestinal digestion differences and the postprandial serum lipid profiles, and provide useful information about their nutritional and functional evaluation.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Ruizhi Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chen Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Peirang Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qiu Li
- Shandong LuHua Group Co., LTD, Laiyang 265200, Shandong, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof AMR. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf B Biointerfaces 2018; 174:493-500. [PMID: 30497011 DOI: 10.1016/j.colsurfb.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
During the last decade a special interest has been focused on studying the relationship between the composition and structure of emulsions and the extent of lipolysis, driven by the necessity of modulate lipid digestion to decrease or delay fats absorption or increase healthy fat nutrients bioavailability. Because bile salts (BS) play a crucial role in lipids metabolism, understanding how typical food emulsifiers affect the structures of BS under duodenal conditions, can aid to further understand how to control lipids digestion. In the present work the BS-binding capacity of three emulsifiers (Lecithin, Tween 80 and β-lactoglobulin) was studied under duodenal conditions. The combination of several techniques (DLS, TEM, ζ-potential and conductivity) allowed the characterization of molecular assemblies resulting from the interactions, as modulated by the relative amounts of BS and emulsifiers in solution.
Collapse
Affiliation(s)
- Julieta N Naso
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
| | - Fernando A Bellesi
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Víctor M Pizones Ruiz-Henestrosa
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana M R Pilosof
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
38
|
Ye Z, Cao C, Liu Y, Cao P, Li Q. Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Res Int 2018; 111:281-290. [DOI: 10.1016/j.foodres.2018.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/15/2023]
|
39
|
Torcello-Gómez A, Boudard C, Mackie AR. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7536-7544. [PMID: 29870262 DOI: 10.1021/acs.langmuir.8b00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Calcium plays an important dual role in lipid digestion: promoting removal of long-chain fatty acids from the oil-water interface by forming insoluble calcium soaps while also limiting their bioaccessibility. This becomes more significant in food containing high calcium concentration, such as dairy products. Nevertheless, scarce attention has been paid to the effect of calcium on the interfacial properties during lipid digestion, despite this being largely an interfacial reaction. This study focused on the dynamics of the formation of calcium soaps at the oil-water interface during lipolysis by pancreatic lipase in the absence and presence of the two primary human bile salts (sodium glycocholate or sodium glycochenodeoxycholate). The competitive adsorption of lipase, bile salts, and lipolysis products, as well as the formation of calcium soaps in the presence of increasing concentrations of calcium were mainly characterized by recording the interfacial tension and dilatational modulus in situ. In the absence of bile salts, calcium complexes with fatty acids at the oil-water interface forming a relatively strong viscoelastic network of calcium soaps over time. The dilatational modulus of the calcium soap network is directly related to the interfacial concentration of lipolysis products and the calcium bulk concentration. Calcium soaps are also visualized forming a continuous rough layer on the surface of oil droplets immersed in simulated intestinal aqueous phase. Despite bile salts having different surface activity, they play a similar role on the interfacial competition with lipase and lipolysis products although altering their kinetics. The presence of bile salts disrupts the network of calcium soaps, as suggested by the decrease in the dilatational modulus and the formation of calcium soap islands on the surface of the oil droplets. The accelerant effect of calcium on lipolysis is probably because of fatty acid complexation and subsequent removal from the interface rather than reduced electrostatic repulsion between lipase and bile salt molecules and promoted lipase adsorption. The work shown here has implications for the delivery of oil-soluble bioactives in the presence of calcium.
Collapse
Affiliation(s)
| | - Chloé Boudard
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
- Lycée Agro-Viticole de Bordeaux-Blanquefort , 33290 Blanquefort , France
| | - Alan R Mackie
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
40
|
McClements DJ. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 2018; 9:22-41. [PMID: 29119979 DOI: 10.1039/c7fo01515a] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many researchers are currently developing emulsion-based delivery systems to increase the bioavailability of lipophilic bioactive agents, such as oil-soluble vitamins, nutraceuticals, and lipids. Oil-in-water emulsions can be specifically designed to improve the bioavailability of these bioactives by altering their composition and structural organization. This article reviews recent progress in understanding the impact of emulsion properties on the bioaccessibility of lipophilic bioactive agents, including oil phase composition, aqueous phase composition, droplet size, emulsifier type, lipid physical state, and droplet aggregation state. This knowledge can be used to design emulsions that can enhance the bioavailability and efficacy of encapsulated hydrophobic bioactives.
Collapse
|
41
|
Lin Q, Liang R, Zhong F, Ye A, Singh H. Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Lin Q, Liang R, Ye A, Singh H, Zhong F. Effects of calcium on lipid digestion in nanoemulsions stabilized by modified starch: Implications for bioaccessibility of β -carotene. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Pizones Ruiz-Henestrosa VM, Bellesi FA, Camino NA, Pilosof AM. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
|
46
|
Lim WT, Nyam KL. Characteristics and controlled release behaviour of microencapsulated kenaf seed oil during in-vitro digestion. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Dynamic modeling of in vitro lipid digestion: Individual fatty acid release and bioaccessibility kinetics. Food Chem 2016; 194:1180-8. [DOI: 10.1016/j.foodchem.2015.08.125] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/11/2023]
|
48
|
Arranz E, Corredig M, Guri A. Designing food delivery systems: challenges related to the in vitro methods employed to determine the fate of bioactives in the gut. Food Funct 2016; 7:3319-36. [DOI: 10.1039/c6fo00230g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review discussesin vitroavailable approaches to study delivery and uptake of bioactive compounds and the associated challenges.
Collapse
Affiliation(s)
- Elena Arranz
- Food Science Department
- University of Guelph
- Guelph
- Canada
| | | | - Anilda Guri
- Food Science Department
- University of Guelph
- Guelph
- Canada
| |
Collapse
|
49
|
Bellesi FA, Martinez MJ, Pizones Ruiz-Henestrosa VM, Pilosof AM. Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Application of ITC in foods: A powerful tool for understanding the gastrointestinal fate of lipophilic compounds. Biochim Biophys Acta Gen Subj 2015; 1860:1026-1035. [PMID: 26456046 DOI: 10.1016/j.bbagen.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Isothermal titration calorimetry (ITC) is a biophysical technique widely used to study molecular interactions in biological and non-biological systems. It can provide important information about molecular interactions (such as binding constant, number of binding sites, free energy, enthalpy, and entropy) simply by measuring the heat absorbed or released during an interaction between two liquid solutions. SCOPE OF THE REVIEW In this review, we present an overview of ITC applications in food science, with particular focus on understanding the fate of lipids within the human gastrointestinal tract. In this area, ITC can be used to study micellization of bile salts, inclusion complex formation, the interaction of surface-active molecules with proteins, carbohydrates and lipids, and the interactions of lipid droplets. MAJOR CONCLUSIONS ITC is an extremely powerful tool for measuring molecular interactions in food systems, and can provide valuable information about many types of interactions involving food components such as proteins, carbohydrates, lipids, surfactants, and minerals. For systems at equilibrium, ITC can provide fundamental thermodynamic parameters that can be used to establish the physiochemical origin of molecular interactions. GENERAL SIGNIFICANCE It is expected that ITC will continue to be utilized as a means of providing fundamental information about complex materials such as those found in foods. This knowledge may be used to create functional foods designed to behave in the gastrointestinal tract in a manner that will improve human health and well-being.
Collapse
|