1
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Cao RZ, Gai QY, Jiao J, Wang Y, Fu YJ, Nie SM, Lu Y. Surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes for the highly selective purification of resveratrol from crude extracts of Vitis vinifera, Arachis hypogaea, and Polygonum cuspidatum. J Sep Sci 2024; 47:e2300811. [PMID: 38403440 DOI: 10.1002/jssc.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
In this work, surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes were prepared for the specific recognition and adsorption of resveratrol. The functionalization of magnetic multi-walled carbon nanotubes and the synthesis process of surface molecularly imprinted polymers were optimized. Characterizations were performed to demonstrate the successful synthesis of the imprinted materials. The imprinted materials showed satisfactory adsorption capacity of resveratrol (45.73 ± 1.72 mg/g) and excellent selectivity (imprinting factor 2.89 ± 0.15). In addition, the imprinted materials were used as adsorbents in molecularly imprinted solid-phase extraction for the purification of resveratrol from crude extracts of some food and medicinal resources, achieving recoveries of 93.69%-95.53% with high purities of 88.37%-92.33%. Moreover, the purified products exhibited extremely strong free radical scavenging activity compared with crude extracts. Overall, this work provided a promising approach for the highly selective purification of resveratrol from natural resources, which would contribute to the application of this valuable compound in the food/nutraceutical fields.
Collapse
Affiliation(s)
- Run-Ze Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, P. R. China
| | - Si-Ming Nie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yao Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| |
Collapse
|
3
|
Cheng Y, Liu H, Kuang L, Yan Z, Li H, Xu G. Preparation and evaluation of molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and determination of quercetin in red wine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Shi MZ, Yu YL, Zhu SC, Yang J, Cao J. Latest Development of Matrix Solid Phase Dispersion Extraction and Microextraction for Natural Products from 2015-2021. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2094274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Juan Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Donato L, Nasser II, Majdoub M, Drioli E. Green Chemistry and Molecularly Imprinted Membranes. MEMBRANES 2022; 12:472. [PMID: 35629798 PMCID: PMC9144692 DOI: 10.3390/membranes12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Technological progress has made chemistry assume a role of primary importance in our daily life. However, the worsening of the level of environmental pollution is increasingly leading to the realization of more eco-friendly chemical processes due to the advent of green chemistry. The challenge of green chemistry is to produce more and better while consuming and rejecting less. It represents a profitable approach to address environmental problems and the new demands of industrial competitiveness. The concept of green chemistry finds application in several material syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the different goals pursued in the field of materials science is the application of GC for producing sustainable green polymers and membranes. In this context, extremely relevant is the application of green chemistry in the production of imprinted materials by means of its combination with molecular imprinting technology. Referring to this issue, in the present review, the application of the concept of green chemistry in the production of polymeric materials is discussed. In addition, the principles of green molecular imprinting as well as their application in developing greenificated, imprinted polymers and membranes are presented. In particular, green actions (e.g., the use of harmless chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.) characterizing the imprinting and the post-imprinting process for producing green molecularly imprinted membranes are highlighted.
Collapse
Affiliation(s)
- Laura Donato
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
| | - Imen Iben Nasser
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Mustapha Majdoub
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Enrico Drioli
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
- Department of Engineering and of the Environment, University of Calabria, 87030 Rende, CS, Italy
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Mohammadi Torkashvand A, Ahmadi A, Gómez PA, Maghoumi M. Using artificial neural network in determining postharvest LIFE of kiwifruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5918-5925. [PMID: 31206684 DOI: 10.1002/jsfa.9866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Artificial intelligence systems have been employed for the development of predictive models that estimate many agricultural processes. RESULTS In present study, the predictive capabilities of artificial neural networks (ANNs) were evaluated with respect to assessing fruit firmness as a postharvest life index, with determinations made at four stages of storage: 1, 60, 120 and 180 days after harvesting. Single concentrations of nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg) on fruit (D1 ), all of these nutrient concentrations (D2 ), the ratios of the nutrient concentrations alone (D3 ), and a combination of nutrient concentrations and their ratios (D4 ), were considered. CONCLUSION The results obtained showed that fruit firmness at 1 and 60 days after harvesting was not influenced by nutrients. However, the ANN model estimated fruit firmness of 120 and 180 days, respectively, for D1 and D3 more accurately than for the D2 and D4 datasets. Application of D3 (nitrogen/calcium ratio) as the input dataset improved predictions of fruit firmness, with a correlation coefficient of 0.85 between the measured and estimated data. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Mohammadi Torkashvand
- Department of Horticultural Corps and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ahmadi
- Department of Soil Science, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Cartagena, Murcia, Spain
| | - Mahshad Maghoumi
- Department of Horticultural Corps and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
ALOthman ZA, Wabaidur SM. Application of carbon nanotubes in extraction and chromatographic analysis: A review. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Yuan Y, Yang C, Lv T, Qiao F, Zhou Y, Yan H. Green synthesis of hydrophilic protein-imprinted resin with specific recognition of bovine serum albumin in aqueous matrix. Anal Chim Acta 2018; 1033:213-220. [DOI: 10.1016/j.aca.2018.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/04/2023]
|
10
|
Madikizela LM, Ncube S, Chimuka L. Recent Developments in Selective Materials for Solid Phase Extraction. Chromatographia 2018. [DOI: 10.1007/s10337-018-3644-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
12
|
Insights into high-efficiency molecularly imprinted nanocomposite membranes by channel modification for selective enrichment and separation of norfloxacin. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Hashemi M, Nazari Z. Preparation of molecularly imprinted polymer based on the magnetic multiwalled carbon nanotubes for selective separation and spectrophotometric determination of melamine in milk samples. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Dummy-surface molecularly imprinted polymers as a sorbent of micro-solid-phase extraction combined with dispersive liquid–liquid microextraction for determination of five 2-phenylpropionic acid NSAIDs in aquatic environmental samples. Anal Bioanal Chem 2017; 410:373-389. [DOI: 10.1007/s00216-017-0727-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
|
15
|
Liu H, Gong C, Liao Z, Chen T, Li Y. Isolation and Purification of Three Analogues from Clematis akebioides by Molecularly Imprinted Solid-Phase Extraction and HSCCC. Chromatographia 2017. [DOI: 10.1007/s10337-017-3406-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Cheng W, Fan F, Zhang Y, Pei Z, Wang W, Pei Y. A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin. Polymers (Basel) 2017; 9:E135. [PMID: 30970815 PMCID: PMC6431851 DOI: 10.3390/polym9040135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022] Open
Abstract
By taking advantage of the self-polymerization of dopamine on the surface of magnetic nanospheres in weak alkaline Tris-HCl buffer solution, a facile approach was established to fabricate core-shell magnetic molecularly imprinted nanospheres towards hypericin (Fe₃O₄@PDA/Hyp NSs), via a surface molecular imprinting technique. The Fe₃O₄@PDA/Hyp NSs were characterized by FTIR, TEM, DLS, and BET methods, respectively. The reaction conditions for adsorption capacity and selectivity towards hypericin were optimized, and the Fe₃O₄@PDA/Hyp NSs synthesized under the optimized conditions showed a high adsorption capacity (Q = 18.28 mg/g) towards hypericin. The selectivity factors of Fe₃O₄@PDA/Hyp NSs were about 1.92 and 3.55 towards protohypericin and emodin, respectively. In addition, the approach established in this work showed good reproducibility for fabrication of Fe₃O₄@PDA/Hyp.
Collapse
Affiliation(s)
- Wenxia Cheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Fengfeng Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Ying Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenji Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Xu X, Guo P, Luo Z, Ge Y, Zhou Y, Chang R, Du W, Chang C, Fu Q. Preparation and characterization of surface molecularly imprinted films coated on multiwall carbon nanotubes for recognition and separation of lysozyme with high binding capacity and selectivity. RSC Adv 2017. [DOI: 10.1039/c6ra28063c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Kubo T, Otsuka K. Recent progress for the selective pharmaceutical analyses using molecularly imprinted adsorbents and their related techniques: A review. J Pharm Biomed Anal 2016; 130:68-80. [DOI: 10.1016/j.jpba.2016.05.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
19
|
A novel chitosan base molecularly imprinted membrane for selective separation of chlorogenic acid. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Tang Z, Liu C, Wang J, Li H, Ji Y, Wang G, Lu C. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid. J Sep Sci 2016; 39:1592-602. [DOI: 10.1002/jssc.201501313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/13/2016] [Accepted: 02/14/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Zonggui Tang
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
- Key Laboratories of Sheep Breeding and Reproduce; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R. China
| | - Jing Wang
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| | - Hongmin Li
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| | - Yong Ji
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| | - Guohong Wang
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| | - Chunxia Lu
- Analysis and Testing Center; Xinjiang Academy of Agriculture and Reclamation Science; Shihezi P. R.China
| |
Collapse
|
21
|
Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem 2016; 194:1040-7. [DOI: 10.1016/j.foodchem.2015.08.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
22
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
23
|
Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Miniaturized solid-phase extraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.026] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Abstract
The term composite refers to a class of synthetic materials made from different constituents which exhibit final properties which are different from those of the individual components. Composites have been extensively used in the sample treatment context as sorbents since the resulting solid presents better extraction efficiency. In this realm, polymeric nanocomposites are raised as a powerful alternative. They can be tailored-synthesized for selectivity enhancement or include a magnetic core to simplify the extraction/elution process. This review article points out the relevance of such nanomaterials in bioanalysis. Several synergic combinations of nanoparticles (magnetic, carbon-based) as well as polymeric coatings (conventional, conductive or molecularly imprinted) are commented on. Finally, the potential of biopolymers in the microextraction field is briefly highlighted.
Collapse
|
26
|
Xu L, Qi X, Li X, Bai Y, Liu H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2015; 146:714-26. [PMID: 26695321 DOI: 10.1016/j.talanta.2015.06.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
Abstract
Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Synthesis, recognition characteristics and properties of l-3-n-butylphthalide molecularly imprinted polymers as sorbent for solid-phase extraction through precipitation polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:166-74. [PMID: 26042704 DOI: 10.1016/j.msec.2015.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
Abstract
L-3-n-butylphthalide molecularly imprinted polymers (MIPs) were synthesized using l-3-n-butylphthalide as template molecule, acrylamide as functional monomer, ethylene glycol dimethacrylate as cross-linking agent, and acetone as the porogenic solvent through precipitation polymerization. The non-imprinted polymers (NIPs) were prepared with the same procedure, but with the absence of template molecule. The optimum preparation conditions of the MIPs such as the functional monomer, the porogenic solvent, the molar ratio of the template to the functional monomer and the molar ratio of the template to the cross-linker were investigated in detail. Prior to the polymerization, the molecular simulation with the computer-aided design was used to help choose a suitable polymerization porogen for the molecularly imprinted pre-assembled system and study the interactions between l-NBP and the functional monomers. The synthesized polymers were characterized with FTIR and SEM to observe their structures as well as the morphologies, and their adsorption properties were respectively evaluated by static and dynamic adsorption as well as selectivity experiments. Scatchard analyses revealed that there were high and low affinity sites formed in the MIPs, which elucidated good affinity to l-NBP in the ethanol system. The adsorption capacity of the MIPs for l-NBP was 3.561 mg g(-1), with an imprinting factor (α) of 2.321 when compared with that of the NIPs. Scatchard analysis illustrated that the binding sites with affinity for l-3-n-butylphthalide molecules were formed in the prepared MIPs.
Collapse
|
28
|
Li S, Yang K, Liu J, Jiang B, Zhang L, Zhang Y. Surface-Imprinted Nanoparticles Prepared with a His-Tag-Anchored Epitope as the Template. Anal Chem 2015; 87:4617-20. [DOI: 10.1021/ac5047246] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Senwu Li
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kaiguang Yang
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jianxi Liu
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Bo Jiang
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Lihua Zhang
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yukui Zhang
- National Chromatographic R&A Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
29
|
Exfoliation and dispersion of LDH modified with N-tetrabromophthaloyl-glutamic in poly(vinyl alcohol): Morphological and thermal studies. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0804-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Xiao D, Wang C, Dai H, Peng J, He J, Zhang K, Kong S, Qiu P, He H. Applications of magnetic surface imprinted materials for solid phase extraction of levofloxacin in serum samples. J Mol Recognit 2015; 28:277-84. [DOI: 10.1002/jmr.2436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Cuixia Wang
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Hao Dai
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Jun Peng
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Jia He
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Kai Zhang
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Sumei Kong
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Panzi Qiu
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
| | - Hua He
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing 210009 China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
31
|
Wei L, Guohua H. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose. Bioengineered 2015; 6:53-61. [PMID: 25551334 DOI: 10.1080/21655979.2014.996430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis.
Collapse
Affiliation(s)
- Liu Wei
- a Zhejiang Gongshang University ; Hangzhou , China
| | | |
Collapse
|
32
|
Zhang Z, Chen X, Rao W, Long F, Yan L, Yin Y. Preparation of novel curcumin-imprinted polymers based on magnetic multi-walled carbon nanotubes for the rapid extraction of curcumin from ginger powder and kiwi fruit root. J Sep Sci 2015; 38:108-14. [PMID: 25358961 DOI: 10.1002/jssc.201400814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022]
Abstract
A novel molecularly imprinted polymer based on magnetic phenyl-modified multi-walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high-performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl-modified multi-walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.
Collapse
Affiliation(s)
- Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | | | | | | | | | | |
Collapse
|
33
|
Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water. Talanta 2015; 131:99-107. [DOI: 10.1016/j.talanta.2014.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
|
34
|
Mehdinia A, Dadkhah S, Baradaran Kayyal T, Jabbari A. Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles. J Chromatogr A 2014; 1364:12-9. [DOI: 10.1016/j.chroma.2014.08.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
35
|
Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 2014; 1357:110-46. [DOI: 10.1016/j.chroma.2014.05.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
|
36
|
Liang X, Liu S, Wang S, Guo Y, Jiang S. Carbon-based sorbents: Carbon nanotubes. J Chromatogr A 2014; 1357:53-67. [DOI: 10.1016/j.chroma.2014.04.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
37
|
Azodi-Deilami S, Abdouss M, Asadi E, Hassani Najafabadi A, Sadeghi S, Farzaneh S, Asadi S. Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid-phase extraction of carvedilol in serum samples. J Appl Polym Sci 2014. [DOI: 10.1002/app.41209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | - Ebadullah Asadi
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | | | - Sadegh Sadeghi
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | - Sina Farzaneh
- Department of Polymer Engineering, South Tehran Branch; Islamic Azad University; Tehran Iran
| | - Somayeh Asadi
- Student Research Committee; Kermanshah University of Medical Sciences; Kermanshah Iran
| |
Collapse
|
38
|
Chen T, Gu J, Wang H, Yuan G, Chen L, Xu X, Xiao W. Semi-Preparative Scale Separation of Emodin from Plant Extract by Using Molecularly Imprinted Polymer as Stationary Phase. Chromatographia 2014. [DOI: 10.1007/s10337-014-2691-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1230-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|