1
|
Meng W, Zhang J, Hou H, Yu L, Dong P. Exploring the structures and molecular mechanisms of bioactive compounds from marine foods for hyperuricemia prevention: a systematic review. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40020721 DOI: 10.1080/10408398.2025.2464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Hyperuricemia, characterized by an elevation in serum uric acid (UA) levels, stands as a significant metabolic ailment threatening human well-being. Presently, dietary adjustments have become a crucial strategy in managing serum UA levels among individuals grappling with hyperuricemia and gout. Given its unique ecosystem, the ocean hosts a plethora of organisms boasting distinct structures and active components. The marine bioactive substances, such as bioactive peptides, polysaccharides, lipids, and small molecules, have garnered attention in the research and development of modern functional foods and biomedicine due to their profound efficacy and distinctive compositions. Notably, the functional components of marine foods have been studied for their potential in preventing hyperuricemia. However, the precise molecular mechanism underlying their actions remain incompletely elucidated. This review article highlights the diversity of marine active compounds and the latest progress in understanding urate-lowering mechanism. Principal mechanisms primarily encompass the regulation of UA metabolism, maintenance of intestinal homeostasis, mitigation of inflammatory responses, and alleviation of oxidative stress. Furthermore, we scrutinized the constraints of prior studies and provided recommendations. In sum, this article furnished a valuable resource concerning the intervention of bioactive compounds sourced from marine foods in the context of hyperuricemia.
Collapse
Affiliation(s)
- Wenya Meng
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ping Dong
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Shen J, Zheng L, Chen G, Khamleng A, Xue C, Chang Y. A novel endo-1,3-fucanase in glycoside hydrolase family 187 provided a biotechnological tool for preparing sulfated fucan oligosaccharides. Int J Biol Macromol 2025; 305:141171. [PMID: 39965693 DOI: 10.1016/j.ijbiomac.2025.141171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Sulfated fucan, an important marine polysaccharide frequently presented in echinoderms and brown algae, has gained growing attention owing to its various biological activities. Fucanases are essential tools for degrading sulfated fucan to produce corresponding oligosaccharides. In this context, an endo-1,3-fucanase (Fun187Al) belonging to the GH187 family was successfully expressed in Escherichia coli. Fun187Al showed the highest activity at 30-40 °C and pH 7.5. It hydrolyzed sulfated fucan in a random endo-acting pattern, and displayed a substrate specificity different from the endo-1,3-fucanases of other glycoside hydrolase family. Analyses of ultra-performance liquid chromatography coupled with high-resolution mass spectrometry revealed that tetrasaccharide with two sulfate groups (Fuc4S2), Fuc4S3, and Fuc4S4 were respectively the major components in the end products of Fun187Al against sulfated fucans from Acaudina molpadioides, Thelonota ananas, and Holothuria tubulosa. The capability of Fun187Al to produce oligosaccharides with different degrees of polymerization and sulfation patterns demonstrated that it could be regarded as a favorable tool for establishing the structure-activity relationships of sulfated fucan and its oligosaccharides.
Collapse
Affiliation(s)
- Jingjing Shen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Long Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Achiraya Khamleng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Department of Fishery Product, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd. Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
3
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
4
|
Chen G, Yu L, Shi F, Shen J, Zhang Y, Liu G, Mei X, Li X, Xu X, Xue C, Chang Y. A comprehensive review of sulfated fucan from sea cucumber: Antecedent and prospect. Carbohydr Polym 2024; 341:122345. [PMID: 38876715 DOI: 10.1016/j.carbpol.2024.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xinyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
5
|
Zhang Y, Zheng L, Liu G, Shen J, Chen G, Mei X, Chang Y, Xue C. The α-linkage in funoran and agarose could be hydrolyzed by a GH96 family enzyme: Discovery of the α-funoranase. Carbohydr Polym 2024; 338:122201. [PMID: 38763726 DOI: 10.1016/j.carbpol.2024.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting β-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and β-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and β-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Long Zheng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
6
|
Chen G, Dong S, Zhang Y, Shen J, Liu G, Chen F, Li X, Xue C, Cui Q, Feng Y, Chang Y. Structural investigation of Fun168A unraveling the recognition mechanism of endo-1,3-fucanase towards sulfated fucan. Int J Biol Macromol 2024; 271:132622. [PMID: 38795894 DOI: 10.1016/j.ijbiomac.2024.132622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Sulfated fucan has gained interest due to its various physiological activities. Endo-1,3-fucanases are valuable tools for investigating the structure and establishing structure-activity relationships of sulfated fucan. However, the substrate recognition mechanism of endo-1,3-fucanases towards sulfated fucan remains unclear, limiting the application of endo-1,3-fucanases in sulfated fucan research. SCOPE AND APPROACH This study presented the first crystal structure of endo-1,3-fucanase (Fun168A) and its complex with the tetrasaccharide product, utilizing X-ray diffraction techniques. The novel subsite specificity of Fun168A was identified through glycomics and nuclear magnetic resonance (NMR). KEY FINDINGS AND CONCLUSIONS The structure of Fun168A was determined at 1.92 Å. Residues D206 and E264 acted as the nucleophile and general acid/base, respectively. Notably, Fun168A strategically positioned a series of polar residues at the subsites ranging from -2 to +3, enabling interactions with the sulfate groups of sulfated fucan through salt bridges or hydrogen bonds. Based on the structure of Fun168A and its substrate recognition mechanisms, the novel subsite specificities at the -2 and +2 subsites of Fun168A were identified. Overall, this study provided insight into the structure and substrate recognition mechanism of endo-1,3-fucanase for the first time and offered a valuable tool for further research and development of sulfated fucan.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Fangyi Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xinyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| |
Collapse
|
7
|
Ma Y, Zuo Z, Zheng W, Yin R, Wu X, Ma Y, Ji M, Ma W, Li X, Xiao W, Gao N, Zhao J. Structural characterization of a distinct fucan sulfate from Pattalus mollis through an oligosaccharide mapping approach. Carbohydr Res 2024; 536:109052. [PMID: 38325067 DOI: 10.1016/j.carres.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The elucidation of the precise structure of fucan sulfate is essential for understanding the structure-activity relationship and promoting potential biomedical applications. In this work, the structure of a distinct fucan sulfate fraction V (PmFS in Ref 15 and FSV in Ref 16 → PFV) from Pattalus mollis was investigated using an oligosaccharide mapping approach. Six size-homogeneous fractions were purified from the mild acid hydrolyzed PFV and identified as fucitols, disaccharides and trisaccharides by 1D/2D NMR and MS analysis. Significantly, the sulfation pattern, glycosidic linkages, and sequences of all the oligosaccharides were unambiguously identified. The common 2-desulfation of the reducing end residue of the oligosaccharides was observed. Overall, the backbone of PFV was composed of L-Fuc2S (major) and L-Fuc3S (minor) linked by α1,4 glycosidic bonds. Importantly, the branches contain both monosaccharide and disaccharide linked to the backbone by α1,3 glycosidic linkages. Thus, the tentative structure of natural PFV was shown to be {-(R-α1,3)-L-Fuc2S-α1,4-(L-Fuc2S/3S-α1,4)x-}n, where R is L-Fuc(2S)4S-α1,3/4-L-Fuc4S(0S)- or L-Fuc(2S)4S-. Our results provide insight into the heterogeneous structure of the fucan sulfate found in sea cucumbers. Additionally, PFV and its fractions showed strong anticoagulant and anti-iXase activities, which may be related to the distinct structure of PFV.
Collapse
Affiliation(s)
- Yan Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xuewen Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yujun Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Mengchen Ji
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenwen Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xian Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
8
|
Atanassova MR, Kolden Midtbo L, Mildenberger J, Friðjónsson ÓH. Novel biomaterials and biotechnological applications derived from North Atlantic sea cucumbers: A systematic review. THE WORLD OF SEA CUCUMBERS 2024:585-609. [DOI: 10.1016/b978-0-323-95377-1.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
10
|
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar Drugs 2023; 21:632. [PMID: 38132953 PMCID: PMC10744359 DOI: 10.3390/md21120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| |
Collapse
|
11
|
Zhang Y, Chen G, Shen J, Mei X, Liu G, Chang Y, Dong S, Feng Y, Wang Y, Xue C. The characteristic structure of funoran could be hydrolyzed by a GH86 family enzyme (Aga86A_Wa): Discovery of the funoran hydrolase. Carbohydr Polym 2023; 318:121117. [PMID: 37479453 DOI: 10.1016/j.carbpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 β-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the β-1,4 glycosidic bond between β-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "β-funoranase" and suggested to assign it an EC number.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| |
Collapse
|
12
|
Chen G, Shen J, Zhang Y, Shi F, Mei X, Xue C, Chang Y. Sulfated fucan could serve as a species marker of sea cucumber with endo-1,3-fucanase as the essential tool. Carbohydr Polym 2023; 312:120817. [PMID: 37059545 DOI: 10.1016/j.carbpol.2023.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
In the past few decades, sulfated fucan from sea cucumber had attracted considerable interest owing to its abundant physiological activities. Nevertheless, its potential for species discrimination had not been investigated. Herein, particular attention was given to sea cucumber Apostichopus japonicus, Acaudina molpadioides, Holothuria hilla, Holothuria tubulosa, Isostichopus badionotus and Thelenota ananas to examine the feasibility of sulfated fucan as a species marker of sea cucumber. The enzymatic fingerprint suggested that sulfated fucan exhibited significant interspecific discrepancy and intraspecific stability, which revealed that sulfated fucan could serve as the species marker of sea cucumber, by utilizing the overexpressed endo-1,3-fucanase Fun168A and the ultra-performance liquid chromatography-high resolution mass spectrum. Moreover, oligosaccharide profile of sulfated fucan was determined. The oligosaccharide profile combined with hierarchical clustering analysis and principal components analysis further confirmed that sulfated fucan could serve as a marker with a satisfying performance. Besides, load factor analysis showed that the minor structure of sulfated fucan also contributed to the sea cucumber discrimination, besides the major structure. The overexpressed fucanase played an indispensable role in the discrimination, due to its specificity and high activity. The study would lead to a new strategy for species discrimination of sea cucumber based on sulfated fucan.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Feifei Shi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
13
|
Shi F, Chang Y, Shen J, Chen G, Xue C. A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Sasidharan A, Sabu S, Venugopal V. Marine polymers and their antioxidative perspective. MARINE ANTIOXIDANTS 2023:379-393. [DOI: 10.1016/b978-0-323-95086-2.00031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Mazlan NB, Abd Rahman NNB, Shukhairi SSB, Nazahuddin MNAB. Sea Cucumbers: Source of Nutritional, Medicinal, and Cosmeceutical Products. MARINE BIOTECHNOLOGY: APPLICATIONS IN FOOD, DRUGS AND ENERGY 2023:171-188. [DOI: 10.1007/978-981-99-0624-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
17
|
Li X, Sun H, Ning Z, Yang W, Cai Y, Yin R, Zhao J. Mild acid hydrolysis on Fucan sulfate from Stichopus herrmanni: Structures, depolymerization mechanism and anticoagulant activity. Food Chem 2022; 395:133559. [DOI: 10.1016/j.foodchem.2022.133559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
|
18
|
Lin P, Shen N, Yin F, Guo SD. Sea cucumber-derived compounds for treatment of dyslipidemia: A review. Front Pharmacol 2022; 13:1000315. [PMID: 36188620 PMCID: PMC9515789 DOI: 10.3389/fphar.2022.1000315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Dyslipidemias are disorders of plasma levels of lipids, such as elevated levels of total cholesterol and triglyceride, that are associated with various human diseases including cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line drugs for treatment of dyslipidemia. However, a substantial proportion of patients cannot reach the recommended LDL-c level even with the highest tolerated doses of statins, and there is no available drug specifically for NAFLD therapy. Sea cucumbers are one of the widely distributed invertebrates, and are an important resource of food and medicine. Sea cucumbers have many valuable nutrients including saponins, fatty acids, phospholipids, cerebrosides, sulfated polysaccharides, as well as proteins and peptides. In recent years, these natural products derived from sea cucumbers have attracted attentions for treatment of CVD and NAFLD because of their lipid-lowering effect and low toxicity. However, the hypolipidemic mechanisms of action and the structure-activity relationship of these bioactive components have not been well-documented in literature. This review article summarizes the signaling pathways and the potential structure-activity relationship of sea cucumber-derived bioactive compounds including saponins, lipids, carbohydrates as well as peptides and proteins. This article will provide information useful for the development of sea cucumber-derived lipid-lowering compounds as well as for investigation of hypolipidemic compounds that are derived from other natural resources.
Collapse
|
19
|
Hossain A, Dave D, Shahidi F. Antioxidant Potential of Sea Cucumbers and Their Beneficial Effects on Human Health. Mar Drugs 2022; 20:521. [PMID: 36005524 PMCID: PMC9410154 DOI: 10.3390/md20080521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Sea cucumbers are considered a luxury food item and used locally in traditional medication due to their impressive nutritional profile and curative effects. Sea cucumbers contain a wide range of bioactive compounds, namely phenolics, polysaccharides, proteins (collagen and peptides), carotenoids, and saponins, demonstrating strong antioxidant and other activities. In particular, phenolic compounds, mainly phenolic acids and flavonoids, are abundant in this marine invertebrate and exhibit antioxidant activity. Protein hydrolysates and peptides obtained from sea cucumbers exhibit antioxidant potential, mainly dependent on the amino acid compositions and sequences as well as molecular weight, displayed for those of ≤20 kDa. Moreover, the antioxidant activity of sea cucumber polysaccharides, including fucosylated chondroitin sulfate and fucan, is a combination of numerous factors and is mostly associated with molecular weight, degree of sulfation, and type of major sugars. However, the activity of these bioactive compounds typically depends on the sea cucumber species, harvesting location, food habit, body part, and processing methods employed. This review summarizes the antioxidant activity of bioactive compounds obtained from sea cucumbers and their by-products for the first time. The mechanism of actions, chemical structures, and factors affecting the antioxidant activity are also discussed, along with the associated health benefits.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
20
|
Silchenko AS, Rubtsov N, Zueva A, Kusaykin M, Rasin A, Ermakova S. Fucoidan-active α-L-fucosidases of the GH29 and GH95 families from a fucoidan degrading cluster of the marine bacterium Wenyingzhuangia fucanilytica. Arch Biochem Biophys 2022; 728:109373. [DOI: 10.1016/j.abb.2022.109373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022]
|
21
|
Fucose-Rich Sulfated Polysaccharides from Two Vietnamese Sea Cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera: Structures and Anticoagulant Activity. Mar Drugs 2022; 20:md20060380. [PMID: 35736183 PMCID: PMC9228488 DOI: 10.3390/md20060380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Fucosylated chondroitin sulfates (FCSs) FCS-BA and FCS-HS, as well as fucan sulfates (FSs) FS-BA-AT and FS-HS-AT were isolated from the sea cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera, respectively. Purification of the polysaccharides was carried out by anion-exchange chromatography on DEAE-Sephacel column. Structural characterization of polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of non-destructive NMR spectroscopic methods. Both FCSs were shown to contain a chondroitin core [→3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→]n bearing sulfated fucosyl branches at O-3 of every GlcA residue in the chain. These fucosyl residues were different in pattern of sulfation: FCS-BA contained Fuc2S4S, Fuc3S4S and Fuc4S at a ratio of 1:8:2, while FCS-HS contained these residues at a ratio of 2:2:1. Polysaccharides differed also in content of GalNAc4S6S and GalNAc4S units, the ratios being 14:1 for FCS-BA and 4:1 for FCS-HS. Both FCSs demonstrated significant anticoagulant activity in clotting time assay and potentiated inhibition of thrombin, but not of factor Xa. FS-BA-AT was shown to be a regular linear polymer of 4-linked α-L-fucopyranose 3-sulfate, the structure being confirmed by NMR spectra of desulfated polysaccharide. In spite of considerable sulfate content, FS-BA-AT was practically devoid of anticoagulant activity. FS-HS-AT cannot be purified completely from contamination of some FCS. Its structure was tentatively represented as a mixture of chains identical with FS-BA-AT and other chains built up of randomly sulfated alternating 4- and 3-linked α-L-fucopyranose residues.
Collapse
|
22
|
Structure Elucidation of Fucan Sulfate from Sea Cucumber Holothuria fuscopunctata through a Bottom-Up Strategy and the Antioxidant Activity Analysis. Int J Mol Sci 2022; 23:ijms23094488. [PMID: 35562879 PMCID: PMC9105098 DOI: 10.3390/ijms23094488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Fucan sulfate I (FSI) from the sea cucumber Holothuria fuscopunctata was purified and its structure was clarified based on a bottom-up strategy. The unambiguous structures of a series of oligosaccharides including disaccharides, trisaccharides, and tetrasaccharides, which were released from mild acid hydrolysis of FSI, were identified by one-dimensional (1D)/two-dimensional (2D) nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. All the glycosidic bonds in these oligosaccharides were presented as α1,3 linkages confirmed by correlated signals from their 1H-1H ROESY and 1H-13C HMBC spectra. The structural sequence of these oligosaccharides formed by Fuc2S4S, Fuc2S, and non-sulfated ones (Fuc0S), along with the general structural information of FSI, indicated that the structure of FSI could be elucidated as: [-L-Fuc2S4S-α1,3-L-Fuc(2S)-α1,3-L-Fuc2S-α1,3-L-Fuc0S-α1,3-1-]n. Moreover, the L-Fuc0S-α1,3-L-Fuc2S4S linkage in FSI was susceptible to be cleaved by mild acid hydrolysis. The antioxidant activity assays in vitro showed that FSI and the depolymerized product (dFSI') had potent activities for superoxide radical scavenging activity with IC50 of 65.71 and 83.72 μg/mL, respectively, while there was no scavenging effect on DPPH, hydroxyl and ABTS radicals.
Collapse
|
23
|
Shi F, Tian X, Chang Y, Shen J, Xue C. Structure-function relationships between the primary structural properties and multilayer emulsion-fabricating function of an anionic polysaccharide (sulfated fucan). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Mei X, Chang Y, Shen J, Zhang Y, Chen G, Liu Y, Xue C. Characterization of a sulfated fucan-specific carbohydrate-binding module: A promising tool for investigating sulfated fucans. Carbohydr Polym 2022; 277:118748. [PMID: 34893209 DOI: 10.1016/j.carbpol.2021.118748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/02/2022]
Abstract
Sulfated fucans are important polysaccharides with diverse biological and biomedical activities. Carbohydrate-binding modules (CBMs) could serve as beneficial tools for the investigation of polysaccharides. Nevertheless, no sulfated fucan-binding CBM has been hitherto discovered. In the present study, a novel CBM47 domain was cloned from the marine bacterium Wenyingzhuangia fucanilytica, and heterologously expressed in Escherichia coli. The expressed protein WfCBM47 exhibited a specific binding capacity to sulfated fucans with the backbone composed of 1,3-α-l-fucopyranose residues. Furthermore, a fluorescent probe was successfully constructed by fusing WfCBM47 with a green fluorescent protein, based on which the in situ visualization of sulfated fucan in the sea cucumber (Apostichopus japonicus) body wall was implemented for the first time. The discovery of WfCBM47 provided a promising tool for future investigations on sulfated fucans.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yanyan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
25
|
An Z, Zhang Z, Zhang X, Yang H, Lu H, Liu M, Shao Y, Zhao X, Zhang H. Oligosaccharide mapping analysis by HILIC-ESI-HCD-MS/MS for structural elucidation of fucoidan from sea cucumber Holothuria floridana. Carbohydr Polym 2022; 275:118694. [PMID: 34742421 DOI: 10.1016/j.carbpol.2021.118694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
The elucidation of precise structure of fucoidan is essential for understanding their structure-function relationship and promoting the development of marine drugs. In this work, we firstly reported the oligosaccharide mapping of fucoidan from Holothuria floridana using a combination of hydrothermal depolymerization, hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray mass spectrometry (ESI-FTMS) and high energy collision-induced dissociation (HCD-MS/MS) and 2D NMR analysis. With careful selection of fully deprotonated molecular ions of fucoidan oligosaccharides and their NaBD4 reduced alditols, HILIC-ESI-HCD-MS/MS provided structurally relevant glycosidic product ions with no sulfate loss for definitive assignment of sequence and sulfation pattern of all the oligosaccharides and their isomers from dp2 to dp7 from hydrothermal depolymerization. The oligosaccharide mapping clarified the structure of fucoidan with various oligosaccharide domains with 2,4-di-O-sulfated and 2-O sulfated fucose residues.
Collapse
Affiliation(s)
- Zizhe An
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiaomei Zhang
- The Technology Center of Qingdao Customs, No. 83, Xinyue Road, Qingdao, Shandong Province 266109, PR China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, No. 10, Lincheng Street, Zhoushan, Zhejiang Province 316021, PR China
| | - Haiyan Lu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Mengyang Liu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ying Shao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| | - Hongwei Zhang
- The Technology Center of Qingdao Customs, No. 83, Xinyue Road, Qingdao, Shandong Province 266109, PR China.
| |
Collapse
|
26
|
Low Molecular Weight, 4- O-Sulfation, and Sulfation at Meta-Fucose Positively Promote the Activities of Sea Cucumber Fucoidans on Improving Insulin Resistance in HFD-Fed Mice. Mar Drugs 2021; 20:md20010037. [PMID: 35049893 PMCID: PMC8781073 DOI: 10.3390/md20010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Fucoidans from sea cucumber (SC-FUC) have been proven to alleviate insulin resistance in several species. However, there are few studies that clarify the relationship between their structure and bioactivity. The present study evaluated the influence of molecular weight (Mw), sulfation concentrations (Cs), and sulfation position on improving insulin resistance using SC-FUC. Results showed that fucoidans with lower Mw exerted stronger effects. Having a similar Mw, Acaudina molpadioides fucoidans (Am-FUC) with lower Cs and Holothuria tubulosa fucoidans with higher Cs showed similar activities. However, Isostichopus badionotus fucoidans (higher Cs) activity was superior to that of low-Mw Thelenota ananas fucoidans (Ta-LFUC, lower Cs). Eliminating the effects of Mw and Cs, the bioactivity of Am-FUC with sulfation at meta-fucose exceeded that of Ta-FUC with sulfation at ortho-position. Moreover, the effects of Pearsonothuria graeffei fucoidans with 4-O-sulfation were superior to those of Am-LFUC with 2-O-sulfation. These data indicate that low Mw, 4-O-sulfation, and sulfation at meta-fucose contributed considerably to insulin resistance alleviation by SC-FUC, which could accelerate the development of SC-FUC as a potential food supplement to alleviate insulin resistance.
Collapse
|
27
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Chen G, Yu L, Zhang Y, Chang Y, Liu Y, Shen J, Xue C. Utilizing heterologously overexpressed endo-1,3-fucanase to investigate the structure of sulfated fucan from sea cucumber (Holothuria hilla). Carbohydr Polym 2021; 272:118480. [PMID: 34420739 DOI: 10.1016/j.carbpol.2021.118480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023]
Abstract
Sea cucumber sulfated fucan (SC-FUC) attracted increasing interests in the recent decades. Endo-1,3-fucanase has been employed in the structural clarification and structure-function relationship investigations of SC-FUC. Nevertheless, the preparation of wild-type endo-1,3-fucanase is costly and time-consuming, which hinders its further utilization. In this study, a heterologously overexpressed endo-1,3-fucanase (FunA) was introduced into structural identification of SC-FUC. FunA was efficiently prepared within one day and utilized in the investigation of sulfated fucan from sea cucumber Holothuria hilla (Hh-FUC). By using enzymatic degradation, glycomics and NMR analysis, the major structure of Hh-FUC was identified to be composed of a tetrasaccharide repeating unit →3-α-l-Fucp-1 → 3-α-l-Fucp2,4(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1→. Due to the efficient acquisition of enzyme and the superior oligosaccharide recovery, 0.6 mL of E. coli broth and 10 mg of Hh-FUC were sufficient for the structural identification. The results demonstrated the superiority of heterologously overexpressed fucanase over its wild-type enzyme in structural investigation of sulfated fucan.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Long Yu
- Adelaide Glycomics, School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5064, Australia
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yanyan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
29
|
Compared study of fucoidan from sea cucumber (Holothuria tubulosa) with different molecular weight on ameliorating β cell apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Ma Y, Gao N, Zuo Z, Li S, Zheng W, Shi X, Liu Q, Ma T, Yin R, Li X, Zhao J. Five distinct fucan sulfates from sea cucumber Pattalus mollis: Purification, structural characterization and anticoagulant activities. Int J Biol Macromol 2021; 186:535-543. [PMID: 34246676 DOI: 10.1016/j.ijbiomac.2021.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Fucan sulfates from echinoderm possess characteristic structures and various biological activities. Herein, comprehensive methods including enzymolysis, ion-exchange chromatography and size exclusion chromatography lead to the purification of five fucan sulfates (FSI, FSII, FSIII, FSIV, FSV) from the sea cucumber Pattalus mollis. Chemical composition analysis showed that they were all composed of l-fucose. Their sulfate content was determined by a conductimetric method. The molecular weight (Mw) of FSI, FSII, FSIII, FSIV and FSV were measured as 238.3 kDa, 81.0 kDa, 82.0 kDa, 23.2 kDa and 6.12 kDa, respectively. Detailed NMR spectroscopic analysis revealed that the structural sequence of FSI and FSII was →3)-l-FucS-α(1→, where FucS were Fuc2S4S (10%), Fuc2S (44%), Fuc0S (10%), Fuc4S (36%), that of FSIII was →4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → 4)-l-Fuc0S/3S-(α1→, where Fuc0S and Fuc3S were in equal molar, and that FSIV was →4)-l-Fuc2S3S-(α1 → 4)-l-Fuc2S3S-(α1 → 4)-l-Fuc2S-(α1→4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → . This is the first report that such a diversity of fucan sulfates were obtained from the same sea cucumber species. Biological activity showed that FSI, FSII, FSIII and FSIV exhibited potent anticoagulant by prolonging the APTT. Among them, FSII, FSIII and FSIV showed the similar potency, while FSI owned the strongest. Structure-activity relationships analysis showed that molecular weight and sulfation degree should be the crucial factors for the activity.
Collapse
Affiliation(s)
- Yan Ma
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Shanni Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiang Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qipei Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ting Ma
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xian Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
31
|
|
32
|
Shi F, Tian X, McClements DJ, Chang Y, Shen J, Xue C. Influence of molecular weight of an anionic marine polysaccharide (sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Lin C, Zhu X, Jin Q, Sui A, Li J, Shen L. Effects of Holothurian Glycosaminoglycan on the Sensitivity of Lung Cancer to Chemotherapy. Integr Cancer Ther 2021; 19:1534735420911430. [PMID: 32202167 PMCID: PMC7092648 DOI: 10.1177/1534735420911430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea cucumber is a kind of food. Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber. Administration of hGAG and cisplatin (DDP) together to treat lung cancer was investigated. Lung adenocarcinoma A549 cells were cultured and divided into 4 groups: control group, hGAG 100 µg/mL group, DDP 3 µg/mL group, and hGAG 100 µg/mL + DDP 3 µg/mL group. Cell inhibition and apoptosis was evaluated by CCK8 and Hoechst33258 staining. Cell cycle was tested by Annexin V-FITC/PI (propidium iodide) double-staining and flow cytometry. The expression of mRNA and protein of Bcl-2, Bax, caspase-3, and survivin were detected by reverse transcriptase-polymerase chain reaction and Western blot, respectively. The results showed that hGAG combined with DDP enhanced the inhibitory effect of DDP on A549 lung cells through apoptosis pathway. The mechanism of apoptosis may be related to the reduction of Bcl-2 and survivin, as well as the ascension of Bax and caspase-3. hGAG could promote A549 cell cycle arrest in G1 and G2 phase and improve the DDP chemotherapy effects on A549 cells.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Pulmonary Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xinhong Zhu
- Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qing Jin
- Department of Intensive Care Unit, The 903rd Hospital of People's Liberation Army, Hangzhou, Zhejiang, China
| | - Aihua Sui
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinfeng Li
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liyan Shen
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
34
|
Li X, Li S, Liu J, Lin L, Sun H, Yang W, Cai Y, Gao N, Zhou L, Qin H, Yin R, Zhao J. A regular fucan sulfate from Stichopus herrmanni and its peroxide depolymerization: Structure and anticoagulant activity. Carbohydr Polym 2021; 256:117513. [DOI: 10.1016/j.carbpol.2020.117513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
|
35
|
Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata. Int J Biol Macromol 2020; 164:3421-3428. [DOI: 10.1016/j.ijbiomac.2020.08.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
|
36
|
Zayed A, El-Aasr M, Ibrahim ARS, Ulber R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar Drugs 2020; 18:E571. [PMID: 33228066 PMCID: PMC7699409 DOI: 10.3390/md18110571] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans are marine sulfated biopolysaccharides that have heterogenous and complicated chemical structures. Various sugar monomers, glycosidic linkages, molecular masses, branching sites, and sulfate ester pattern and content are involved within their backbones. Additionally, sources, downstream processes, and geographical and seasonal factors show potential effects on fucoidan structural characteristics. These characteristics are documented to be highly related to fucoidan potential activities. Therefore, numerous chemical qualitative and quantitative determinations and structural elucidation methods are conducted to characterize fucoidans regarding their physicochemical and chemical features. Characterization of fucoidan polymers is considered a bottleneck for further biological and industrial applications. Consequently, the obtained results may be related to different activities, which could be improved afterward by further functional modifications. The current article highlights the different spectrometric and nonspectrometric methods applied for the characterization of native fucoidans, including degree of purity, sugar monomeric composition, sulfation pattern and content, molecular mass, and glycosidic linkages.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Mona El-Aasr
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Abdel-Rahim S. Ibrahim
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
37
|
Singh RP, Bhaiyya R, Khandare K, Tingirikari JMR. Macroalgal dietary glycans: potential source for human gut bacteria and enhancing immune system for better health. Crit Rev Food Sci Nutr 2020; 62:1674-1695. [PMID: 33190530 DOI: 10.1080/10408398.2020.1845605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macroalgae are the diverse group of photosynthetic algae found at the intertidal regions of oceans. Recent advances suggest that macroalgal derived glycans have tremendous potential to maintain gut microbiome and immune system. The human gut bacteria harbor unique arsenals for utilizing a variety of macroalgal glycans, and produce a variety of oligosaccharides in vivo. Those oligosaccharides interact with immune cell receptors, and also are available for microbial fermentation, thus play magnificent roles in balancing the gut homeostasis. However, this area of research is still in infancy condition in term to understand their molecular interactions. For wooing this area, we urge to emphasize more studies on mechanistic level sympathetic of depolymerizing marine dietary glycans by gut bacteria and elucidating molecular aspect of glycans to cell receptors interactions. This will invent new nutraceutical strategies to purposefully manipulate the microbial composition to improve health. Therefore, review focuses on the recent development of mechanistic understanding of human gut bacterial communities for utilizing macroalgal derived glycans. Recent trends of application of glycans in modulating immune system at mechanistic level and their available evidences are discussed.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Raja Bhaiyya
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Kiran Khandare
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | | |
Collapse
|
38
|
Shen J, Chang Y, Zhang Y, Mei X, Xue C. Discovery and Characterization of an Endo-1,3-Fucanase From Marine Bacterium Wenyingzhuangia fucanilytica: A Novel Glycoside Hydrolase Family. Front Microbiol 2020; 11:1674. [PMID: 32849348 PMCID: PMC7401878 DOI: 10.3389/fmicb.2020.01674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
Sulfated fucans are important marine polysaccharides widely distributed in brown algae and echinoderms, which gained increasing research interest for their various biological and biomedical activities. Fucanases could serve as tools in the bioconversion and structural investigation of sulfated fucans. A few gene-defined endo-1,4-fucanases have been characterized, while the sequence of endo-1,3-fucanase remain unstudied. Here, an endo-1,3-fucanase gene funA was screened from the genome of marine bacterium Wenyingzhuangia fucanilytica CZ1127T using transcriptomics. None of the previously reported glycoside hydrolase domains were predicted in the enzyme FunA, which hydrolyzed sulfated fucans in a random endo-acting manner. Ultrahigh performance size exclusion chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that FunA specifically cleaves α-1,3 glycosidic linkage between 2-O-sulfated and non-sulfated fucose residues. FunA exhibited transglycosylating activity with glycerin, methanol, and L-fucose as acceptors. D206 and E264 were critical for the functioning of FunA as identified by the site-directed mutagenesis. Another five homologs of FunA were confirmed to possess endo-1,3-fucanase activities. This is the first report on the sequence of endo-1,3-fucanase. The novelty of FunA and its homologs in sequences and activity shed light on a novel glycoside hydrolase family, GH168.
Collapse
Affiliation(s)
- Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
39
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
40
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
41
|
Zhu Q, Lin L, Zhao M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int J Biol Macromol 2020; 159:34-45. [PMID: 32437815 DOI: 10.1016/j.ijbiomac.2020.05.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Sulfated fucan chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber may be a good alternative to high-edible-value sea cucumber-derived polysaccharide for application in hypoglycemic functional foods. To evaluate the potential effect of low-edible-value sea cucumber-derived polysaccharide fraction on type 2 diabetes (T2DM), two sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fractions screening from 10 global commercial low-edible-value sea cucumber species were investigated to identify their anti-diabetics efficacies using a high-fat diet and streptozotocin-induced T2DM rat model. Sulfated fucan-dominated polysaccharide fraction from Thelenota ananas and fucosylated chondroitin sulfate-dominated polysaccharide fraction from Cucumaria frondosa ameliorated hyperglycemia, restored hypertriglyceridemia and hypercholesterolemia, decreased inflammatory status and oxidative stress, protected against liver injury, as well as improved insulin resistance and promoted accumulation of hepatic glycogen by activating IRS/PI3K/AKT signaling and regulating GSK-3β gene expression in T2DM rats. The current findings provide an available strategy for the commercialization of sea cucumber polysaccharide based-hypoglycemic functional food.
Collapse
Affiliation(s)
- Qiyuan Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| |
Collapse
|
42
|
Zayed A, Ulber R. Fucoidans: Downstream Processes and Recent Applications. Mar Drugs 2020; 18:E170. [PMID: 32197549 PMCID: PMC7142712 DOI: 10.3390/md18030170] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are multifunctional marine macromolecules that are subjected to numerous and various downstream processes during their production. These processes were considered the most important abiotic factors affecting fucoidan chemical skeletons, quality, physicochemical properties, biological properties and industrial applications. Since a universal protocol for fucoidans production has not been established yet, all the currently used processes were presented and justified. The current article complements our previous articles in the fucoidans field, provides an updated overview regarding the different downstream processes, including pre-treatment, extraction, purification and enzymatic modification processes, and shows the recent non-traditional applications of fucoidans in relation to their characters.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El Guish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
43
|
Li Q, Jiang S, Shi W, Qi X, Song W, Mou J, Yang J. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus. Carbohydr Polym 2020; 231:115767. [DOI: 10.1016/j.carbpol.2019.115767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
|
44
|
Zhu B, Ni F, Xiong Q, Yao Z. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Crit Rev Food Sci Nutr 2020; 61:60-74. [PMID: 31968996 DOI: 10.1080/10408398.2020.1716207] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine polysaccharides originated from seaweeds, including agar, alginate, carrageenan, and fucoidan, possess various kinds of physiological activities and have been widely used in food, agricultural and medical areas. However, the application has been greatly limited by their poor solubility and low bioavailability. Thus marine oligosaccharides, as the degradation products of those polysaccharides, have drawn increasing attentions due to their obvious biological activities, good solubility and excellent bioavailability. This review will summarize the recent advances on the source, molecular structure and physiological activity of marine oligosaccharides, emphasizing their application as functional food additives. Furthermore, the relationship between the structure and the physiological activity of marine oligosaccharides is also elucidated and highlighted. The review concludes with an outlook toward potential applications for preparing the functional oligosaccharides in food biotechnology and agriculture fields.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| |
Collapse
|
45
|
Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar Drugs 2019; 17:E674. [PMID: 31795427 PMCID: PMC6950075 DOI: 10.3390/md17120674] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Marine-derived antioxidant polysaccharides have aroused extensive attention because of their potential nutritional and therapeutic benefits. However, the comprehensive comparison of identified marine-derived antioxidant polysaccharides is still inaccessible, which would facilitate the discovery of more efficient antioxidants from marine organisms. Thus, this review summarizes the sources, chemical composition, structural characteristics, and antioxidant capacity of marine antioxidant polysaccharides, as well as their protective in vivo effects mediated by antioxidative stress reported in the last few years (2013-2019), and especially highlights the dominant role of marine algae as antioxidant polysaccharide source. In addition, the relationships between the chemical composition and structural characteristics of marine antioxidant polysaccharides with their antioxidant capacity were also discussed. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree.
Collapse
Affiliation(s)
- Qiwu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| |
Collapse
|
46
|
Li C, Niu Q, Li S, Zhang X, Liu C, Cai C, Li G, Yu G. Fucoidan from sea cucumber Holothuria polii: Structural elucidation and stimulation of hematopoietic activity. Int J Biol Macromol 2019; 154:1123-1131. [PMID: 31751735 DOI: 10.1016/j.ijbiomac.2019.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The structural elucidation of polysaccharides is essential for understanding their structure-bioactivity relationship and related drug development. In this study, fucoidan (Fuchp) was extracted and purified from sea cucumber Holothuria polii. Its sulfate content was 39.5 ± 1.4%, and the "weight-average" molecular mass was 103.1 ± 2.8 kDa. The primary structure of Fuchp was clarified using a combination of acid degradation, tandem mass spectrometry, and nuclear magnetic resonance spectroscopy analysis. As a result, Fuchp was found to be composed of a tetrafucose repeating unit [→3-α-l-Fucp-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2,4(OSO3-)-1→]. The stimulating hematopoiesis was further evaluated in a mouse model induced by cyclophosphamide. Based on these findings, intraperitoneally administered Fuchp may accelerate the recovery of white blood cells and neutrophils, in which its activity exceeded that of recombinant human granulocyte colony-stimulating factor (rhG-CSF). Meanwhile, in the background of cyclophosphamide-induced immunosuppression, treatment with Fuchp reduces platelet aggregation caused by CTX, so it might have the effect of reducing the risk of thrombosis. Therefore, Fuchp can be exploited as potentially promising stimulator of hematopoiesis in the future.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Shijie Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
47
|
Martín J, Asuero AG. High hydrostatic pressure for recovery of anthocyanins: effects, performance, and applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1632897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Julia Martín
- Department of Analytical Chemistry. Escuela Politécnica Superior. University of Seville, 41011, Seville, Spain
| | - Agustin G. Asuero
- Department of Analytical Chemistry. Faculty of Pharmacy. University of Seville, 41012, Seville, Spain
| |
Collapse
|
48
|
Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int J Biol Macromol 2019; 121:1145-1153. [DOI: 10.1016/j.ijbiomac.2018.10.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
49
|
Thinh PD, Ly BM, Usoltseva RV, Shevchenko NM, Rasin AB, Anastyuk SD, Malyarenko OS, Zvyagintseva TN, San PT, Ermakova SP. A novel sulfated fucan from Vietnamese sea cucumber Stichopus variegatus: Isolation, structure and anticancer activity in vitro. Int J Biol Macromol 2018; 117:1101-1109. [DOI: 10.1016/j.ijbiomac.2018.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022]
|
50
|
Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|