1
|
Liu B, Zhou LZ, He GW, Wang C. Highly efficient determination of metal ion in cosmetic samples by reversed-phase liquid-liquid microextraction based on green hydrophobic deep eutectic solvent. ANAL SCI 2024; 40:115-121. [PMID: 37845601 DOI: 10.1007/s44211-023-00437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In this paper, a green hydrophobic deep eutectic solvent (HDES) composed of menthol and hexanoic acid was employed to dissolve cosmetics containing Cd2+ and Cd2+ was extracted using an EDTA-2Na saturated solution, analyzed by FAAS. The study found that HDES-1 can be recycled and reused well; the stability constants of Cd2+ EDTA chelates play an important role in the extracting process; the optimum conditions were: the solubility of HDES-1 was 20 mL/g for cosmetic sample at an indoor temperature of around 10 °C; the dissolver-extractant ratio was 2:1; the LOD was 0.037 mg/kg; the RSD was 3.5%; and the recovery was 85.5-118.3%. The developed method was successfully applied to actual cosmetic samples with satisfactory results, and it was also applied for the determination of Mg2+, Mn2+, and Cu2+ in cosmetic samples.
Collapse
Affiliation(s)
- Bangfu Liu
- Hunan Electronic Information Industry Institute, Jiefangdonglu 51, Changsha, 410000, Hunan, People's Republic of China.
| | - Le-Zhou Zhou
- Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, 410007, Hunan, People's Republic of China
| | - Guo-Wen He
- College of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, Hunan, People's Republic of China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Military Medical University, Xi'an, 710000, Shanxii, People's Republic of China
| |
Collapse
|
2
|
Lauteri C, Ferri G, Piccinini A, Pennisi L, Vergara A. Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods 2023; 12:foods12061212. [PMID: 36981137 PMCID: PMC10048265 DOI: 10.3390/foods12061212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
An efficient microbiological decontamination protocol is required to guarantee safe food products for the final consumer to avoid foodborne illnesses. Ultrasound and non-thermal technology combinations represent innovative methods adopted by the food industry for food preservation and safety. Ultrasound power is commonly used with a frequency between 20 and 100 kHz to obtain an “exploit cavitation effect”. Microbial inactivation via ultrasound derives from cell wall damage, the oxidation of intracellular amino acids and DNA changing material. As an inactivation method, it is evaluated alone and combined with other non-thermal technologies. The evidence shows that ultrasound is an important green technology that has a good decontamination effect and can improve the shelf-life of products. This review aims to describe the applicability of ultrasound in the food industry focusing on microbiological decontamination, reducing bacterial alterations caused by food spoilage strains and relative foodborne intoxication/infection.
Collapse
|
3
|
Zarezadeh MR, Aboonajmi M, Ghasemi-Varnamkhasti M. Applications of ultrasound techniques in tandem with non-destructive approaches for the quality evaluation of edible oils. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2940-2950. [PMID: 35872733 PMCID: PMC9304511 DOI: 10.1007/s13197-022-05351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/03/2021] [Accepted: 12/25/2021] [Indexed: 06/15/2023]
Abstract
Edible oils include triglycerides that are extracted from oil seeds or fruits such as sunflowers, palms, olives, soys, rapeseeds, cocoa and many others. They are the elementary origins of unsaturated fats and vitamins especially vitamin 'E' in people's diets. Edible oils are at risk of intentional (such as inadequate storage conditions) and unintentional adulteration, so it is necessary to pay attention to their safety, health and fraud. Generally, this evaluation can be destructive or non-destructive. There are numerous methods to evaluate quality of edible oils which include sensory analysis, chemical analysis, chromatography, ultrasound, etc. The Ultrasonic approach is a non-destructive way and also fast, accurate, inexpensive, repeatable, portable and simple. Combination of ultrasound with other techniques such as electronic nose, electronic tongue, visible spectroscopic fingerprints, chemical descriptors, Raman spectroscopy, mid-infrared and machine vision, will improve quality evaluation and detection accuracy. This review summarizes the ultrasound idea and the latest knowledge of its application with other techniques on evaluation of edible oils.
Collapse
Affiliation(s)
- Mohammad Reza Zarezadeh
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, P.O. Box 3391653755, Iran
| | - Mohammad Aboonajmi
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, P.O. Box 3391653755, Iran
| | | |
Collapse
|
4
|
Farajzadeh MA, Nemati M, Altunay N, Tuzen M, Kaya S, Kheradmand F, Afshar Mogaddam MR. Experimental and density functional theory studies during a new solid phase extraction of phenolic compounds from wastewater samples prior to GC–MS determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Liu W, Zong B, Wang X, Yang G, Yu J. Deep eutectic solvents as switchable solvents for highly efficient liquid-liquid microextraction of phenolic antioxidant: Easily tracking the original TBHQ in edible oils. Food Chem 2022; 377:131946. [PMID: 34979403 DOI: 10.1016/j.foodchem.2021.131946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Synthetic antioxidant tert-butylhydroquinone (TBHQ) is easily oxidized to tert-butylquinone (TQ) during the storage of edible oils, resulting in an obvious decrease in the content of TBHQ in edible oils. Therefore, it is quite desirable to develop a simple analytical method for accurately tracking the original content of TBHQ in edible oils. In this work, deep eutectic solvents (DESs) have been successfully used in room temperature vortex-assisted liquid-liquid microextraction (VALLME) of TBHQ from edible oils. The DES composed of ethylene glycol and choline chloride (ChCl) could selectively extract TBHQ from edible oils containing both TBHQ and TQ. The DES composed of sesamol and ChCl (molar ratio of 3:1) could efficiently reduce TQ to TBHQ and extract TBHQ from edible oils. The whole VALLME process only required 5 min at room temperature. This switchable DESs-based VALLME with common RP-HPLC analysis showed high efficiency and good performance with linearity (R2 = 0.9999) in 5-500 mg/kg range, detection limit of 0.02 mg/kg, recoveries of 96.1-106.0% and intra-/inter-day precision below 2.0%. This analytical method is suitable for detecting the current content of TBHQ and tracking the original content of TBHQ during the storage of edible oils at room temperature, respectively.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, PR China.
| | - Bingyue Zong
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, PR China
| | - Xiaoping Wang
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, PR China
| | - Guolong Yang
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, PR China
| | - Jingjing Yu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Xie ZS, Xing RR, Chen X, Hu S, Bai XH. Simultaneous preconcentration of both polar and non-polar Q-markers of flavonoids in traditional Chinese medicine by reverse micellar floating solidification liquid-phase microextraction. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2026784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhong-shui Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rong-rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xiao-hong Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
7
|
Abstract
Oleuropein, a bitter substance that exists in olive leaves, can be hydrolyzed to hydroxytyrosol. These are the main phenolic compounds, and they have beneficial properties to human bodies. In this study, we established a simple and new method to determine oleuropein and hydroxytyrosol quickly by HPLC. HPLC conditions were set as follows: water (A) acetonitrile (B) as mobile phase, gradient elution orders: 90%A–10%B for 0–10 min, 80%A–20%B for 14–30 min, and then change to 90%A–10%B for 30–33 min; detection wavelength: 280 nm. Compared with other detection methods, the method simplified the elution procedure and shortened the time. Additionally, we provided a better drying method and preservation of olive leaves in tea drinking production that were air-dried at room temperature of 25 °C.
Collapse
|
8
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
9
|
Zeb A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res Int 2021; 143:110312. [PMID: 33992331 DOI: 10.1016/j.foodres.2021.110312] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Edible oils are used as a frying medium and in the preparation of several food products. They are mainly constituting triacylglycerols as major components, while other compounds are classified as minor constituents, which include polyphenols. This class of compounds plays an important role in the thermal stability and quality attributes of the finished industrial food products. In addition to other antioxidants, the desired thermal stability of edible is achieved by either fortification or mixing of edible oils. This comprehensive review was therefore aimed to review the different classes of polyphenolic compounds present in commonly consumed edible oils. The edible oils reviewed include soybean, olive, rapeseed, canola, sunflower, flaxseed, sesame, cottonseed, palm, almond, peanut, chestnut, coconut, and hazelnut oils. The identified classes of polyphenolic compounds such as simple phenols, hydroxybenzoic acids, phenylethanoids, hydroxycinnamic acid, esters of hydroxycinnamic acids, coumarins & chromans, stilbenes, flavonoids, anthocyanins, and lignans were discussed. It was observed that a single edible from different origins showed the varied composition of the different classes of phenolic compounds. Among the oils, soybean, sunflower, olive, and brassica oils received higher attention in terms of polyphenol composition. Some classes of phenolic compounds were either not reported or absent in one edible oil, while present in others. Among the different classes of phenolics, hydroxybenzoic acids, hydroxycinnamic acid and flavonoids were the most widely present compounds. Phenolic compounds in edible oils possess several health benefits such as antioxidant, antibacterial, anti-viral, anti-inflammatory, anti-tumour, antioxidants, cardioprotective, neuroprotective, anti-diabetic properties and anti-obesity.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
10
|
Gopal K, Al deeb I, Raaov M, Suah F, Samad N, Yahaya N, Lim V, Zain N. Supramolecular solvent combined with dispersive solid phase extraction based magnetic silicone surfactant activated charcoal adsorbent for extraction of phenolic compounds from industrial wastewater. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
El-Sharkawy RG, Taha RH, Ghanem HB. Immobilization of novel inorganic nano-complexes onto MWCNT nanomaterials as a novel adsorbent and anti-inflammatory therapy in an induced model of rheumatoid arthritis. NANOTECHNOLOGY 2020; 31:305706. [PMID: 32235044 DOI: 10.1088/1361-6528/ab851a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel supported inorganic metal nano-complexes of Ag(I) and Co(II) derived from 4-amino-N-(4-methylpyrimidin-2-yl) benzene sulfonamide (SulMer) were synthesized using olive leaf extract as a reducing agent with grinding and microwave methods. The prepared samples were denoted as Comp1-6. The surface morphologies of the synthesized nanomaterials were analyzed using C, H, N, S analysis, Fourier-transform infrared spectroscopy, UV- visible spectroscopy, proton and carbon nuclear magnetic resonance, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and x-ray powder diffraction (XRD) analysis. The data revealed that all the synthesized complexes exhibited a 1:1 metal-to-ligand ratio with a coordination number of 4 or 6. The mean particle size of the nanomaterial samples was 25-35 nm. The XRD patterns indicated a crystalline nature for the complexes. The supported inorganic metal nano-complexes displayed good activity in the adsorptive removal of Direct Red 81 (DR-81) from aqueous solutions. In addition, the effect of the supported metal nano-complexes on the immune system was studied as well as how these anti-inflammatory compounds could be used to treat many autoimmune diseases, most notably rheumatoid arthritis. An experimental model for arthritis can be induced using complete Freund's adjuvant. It was shown that the supported complex offers several advantages such stability, eco-friendliness, simple experimental conditions, short reaction times, and easy work- up.
Collapse
Affiliation(s)
- Rehab G El-Sharkawy
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia. Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
12
|
Ibrahim N‘I, Fairus S, Naina Mohamed I. The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence. Nutrients 2020; 12:nu12072055. [PMID: 32664390 PMCID: PMC7400923 DOI: 10.3390/nu12072055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is globally known as the number one cause of death with hyperlipidemia as a strong risk factor for CVD. The initiation of drug treatment will be recommended if lifestyle modification fails. However, medicines currently used for improving cholesterol and low-density lipoprotein cholesterols (LDL-C) levels have been associated with various side effects. Thus, alternative treatment with fewer or no side effects needs to be explored. A potential agent, oil palm phenolics (OPP) recovered from the aqueous waste of oil palm milling process contains numerous water-soluble phenolic compounds. It has been postulated that OPP has shown cardioprotective effects via several mechanisms such as cholesterol biosynthesis pathway, antioxidant and anti-inflammatory properties. This review aims to summarize the current evidence explicating the actions of OPP in cardiovascular health and the mechanisms that maybe involved for the cardioprotective effects.
Collapse
Affiliation(s)
- Nurul ‘Izzah Ibrahim
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Syed Fairus
- Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang Selangor 43000, Malaysia;
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-3-9145-9545
| |
Collapse
|
13
|
Hayakawa T, Yanagawa M, Yamamoto A, Aizawa SI, Taga A, Mochizuki N, Itabashi Y, Uchida H, Ishihara Y, Kodama S. A Simple Screening Method for Extra Virgin Olive Oil Adulteration by Determining Squalene and Tyrosol. J Oleo Sci 2020; 69:677-684. [PMID: 32522947 DOI: 10.5650/jos.ess20033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A simple screening method for discrimination between commercial extra virgin olive oils and their blends with other vegetable oils was developed. Squalene, which was contained relatively high amounts in virgin olive oil, was determined by HPLC after a simple pretreatment that was carried out by dilution of oil samples with 2-propanol. Tyrosol, which was contained at relatively high concentration in virgin olive oil among phenolic compounds, was determined by HPLC after a simple liquid-liquid extraction. When using squalene and tyrosol contents as axes, extra virgin olive oils could be discriminated from pure olive oils, blended oils (extra virgin olive oils with sunflower oil or grapeseed oil) and other vegetable oils. These results suggest that determining squalene and tyrosol in seed oil samples could be useful in distinguishing between extra virgin olive oil and blended oils as a screening method.
Collapse
Affiliation(s)
| | | | - Atsushi Yamamoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University
| | - Sen-Ichi Aizawa
- Graduate School of Science and Engineering, University of Toyama
| | | | | | | | - Hajime Uchida
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency
| | | | | |
Collapse
|
14
|
Simple Approach Based On Ultrasound-Assisted Emulsification Microextraction For Determination Of β-Sitosterol In Dietary Supplements And Selected Food Products. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Arslan D, Ok S. Characterization of Turkish Olive Oils in Details. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1630637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Derya Arslan
- Division of Food Sciences, Department of Food Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, Turkey
| | - Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
16
|
A highly efficient microextraction technique based on deep eutectic solvent formed by choline chloride and p-cresol for simultaneous determination of lignans in sesame oils. Food Chem 2019; 281:140-146. [DOI: 10.1016/j.foodchem.2018.12.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023]
|
17
|
Li X, Wang M, Zhao J, Guo H, Gao X, Xiong Z, Zhao L. Ultrasound-assisted emulsification liquid phase microextraction method based on deep eutectic solvent as extraction solvent for determination of five pesticides in traditional Chinese medicine. J Pharm Biomed Anal 2019; 166:213-221. [DOI: 10.1016/j.jpba.2019.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 11/28/2022]
|
18
|
Syarifah-Noratiqah SB, Zulfarina MS, Ahmad SU, Fairus S, Naina-Mohamed I. The Pharmacological Potential of Oil Palm Phenolics (OPP) Individual Components. Int J Med Sci 2019; 16:711-719. [PMID: 31217739 PMCID: PMC6566743 DOI: 10.7150/ijms.29934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/14/2019] [Indexed: 11/05/2022] Open
Abstract
The oil palm tree (Elaeis guineensis) from the family Arecaceae is a high oil-producing agricultural crop. A significant amount of vegetation liquor is discarded during the palm oil milling process amounting to 90 million tons per year around the world. This water-soluble extract is rich in phenolic compounds known as Oil Palm Phenolics (OPP). Several phenolic acids including the three isomers of caffeoylshikimic acid (CFA), p-hydroxybenzoic acid (PHBA), protocatechuic acid (PCA) and hydroxytyrosol are among the primary active ingredients in the OPP. Previous investigations have reported several positive pharmacological potentials by OPP such as neuroprotective and atheroprotective effects, anti-tumor and reduction in Aβ deposition in Alzheimer's disease model. In the current review, the pharmacological potential for CFA, PHBA, PCA and hydroxytyrosol is carefully reviewed and evaluated.
Collapse
Affiliation(s)
| | - Mohamed S Zulfarina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shihab Uddin Ahmad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syed Fairus
- Metabolics Unit, Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), Kajang, Selangor, Malaysia
| | - Isa Naina-Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Jing X, Cao C, Wu W, Zhao W, Wang Y. Deep Eutectic Solvent-based Vortex-assisted Dispersive Liquid–liquid Microextraction Combined with High Performance Liquid Chromatography for the Determination of Phenolic Acids in Vegetable Oils. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University
- Shanxi Functional Food Research Institute
| | - Chenyang Cao
- College of Food Science and Engineering, Shanxi Agricultural University
| | - Wenying Wu
- College of Resources and Environment, Shanxi Agricultural University
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University
- Shanxi Functional Food Research Institute
| |
Collapse
|
20
|
Liu W, Zong B, Wang X, Cai J, Yu J. A highly efficient vortex-assisted liquid–liquid microextraction based on natural deep eutectic solvent for the determination of Sudan I in food samples. RSC Adv 2019; 9:17432-17439. [PMID: 35519890 PMCID: PMC9064567 DOI: 10.1039/c9ra01405e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023] Open
Abstract
A natural deep eutectic solvent (NADES) composed of choline chloride (ChCl) and sesamol was successfully employed in the vortex-assisted liquid–liquid microextraction (VALLME) of food toxicant Sudan I (1-phenylazo-2-naphthalenol) in food samples for HPLC-UV analysis. Sesamol-based NADESs exhibited better Sudan I extraction abilities than other deep eutectic solvents and conventional organic solvents. 1H NMR and 2D NOESY spectra were used to characterize the sesamol-based NADESs, indicating that hydrogen bonds were formed between ChCl and sesamol. The developed VALLME method showed a high extraction efficiency (near 100%) within 60 s at room temperature. Under the optimized extraction conditions, this established method showed good linearity (r2 = 1.000) and a low limit of detection (LOD) of 0.02 mg kg−1. The recoveries were in the range of 93–118%, and the intra-day and inter-day precisions were less than 4.5%. The developed method was successfully applied to the determination of Sudan I in various food samples, including chili oil, chili sauce, and duck egg yolk. This method gave a higher recovery than that of the EU recommended method when applied to sample analysis. A highly efficient vortex-assisted liquid–liquid microextraction based on natural deep eutectic solvent was developed for the determination of Sudan I.![]()
Collapse
Affiliation(s)
- Wei Liu
- Grain & Corn Engineering Technology Research Center (State Administration of Grain)
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Bingyue Zong
- Grain & Corn Engineering Technology Research Center (State Administration of Grain)
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Xiaoping Wang
- Grain & Corn Engineering Technology Research Center (State Administration of Grain)
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Junlan Cai
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- P. R. China
| | - Jingjing Yu
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
21
|
Li J, Huang HY, Wang YZ. Optimized determination of phenolic compounds in Dendrobium officinale stems by reverse-phase high performance liquid chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1470983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Institute of Medical Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Heng-Yu Huang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yuan-Zhong Wang
- Institute of Medical Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
22
|
Salih SI, Al-Falahi NH, Saliem AH, Abedsalih AN. Effectiveness of platelet-rich fibrin matrix treated with silver nanoparticles in fracture healing in rabbit model. Vet World 2018; 11:944-952. [PMID: 30147264 PMCID: PMC6097570 DOI: 10.14202/vetworld.2018.944-952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/04/2018] [Indexed: 12/04/2022] Open
Abstract
Aim: The current study was conducted to evaluate the effect of platelet-rich fibrin matrix (PRFM) treated with silver nanoparticles (AgNPs) on enhancing the healing of the experimentally induced bone gap in a rabbit model. Materials and Methods: Twenty healthy male local rabbits aged between 6 and 8 months, their weights between 1.5 and 2 kg were used in this study and divided randomly into four equal groups, under general anesthesia (1 cm), bone gap was induced in the tibia bone to create a critical bone defect and leave it without any treatment in the first group (control group). While in the second group the bone gap was filled with PRFM; in the third group, the gap was filled with 0.3 ml AgNPs; and in the fourth group, the gap was filled with PRFM treated with AgNPs. Results: There was no infection at the operation site in all experimental animals, and the radiograph images showed periosteal and endosteal reaction; the gaps were bridged faster in the fourth group as compared with the other groups. The histological examination showed lamellar bone with haversian canal completely filled the fracture gap and contact with old bone in the fourth group as compared to other groups. Conclusion: Using a combination of PRFM and single nucleotide polymorphisms together gave better acceleration in the bone healing process than using each one of them separately.
Collapse
Affiliation(s)
| | - Nadia H Al-Falahi
- Department of Surgery and Obstetrics, University of Baghdad, Baghdad, Iraq
| | - Ali H Saliem
- Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq
| | - Ahmed N Abedsalih
- Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
23
|
Ascorbic acid and choline chloride: A new natural deep eutectic solvent for extracting tert-butylhydroquinone antioxidant. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.092] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Habibi H, Mohammadi A, Farhoodi M, Jazaeri S. Application and Optimization of Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography for the Determination of Oleuropein and Hydroxytyrosol in Olive Pomace. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1279-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Carnevale R, Silvestri R, Loffredo L, Novo M, Cammisotto V, Castellani V, Bartimoccia S, Nocella C, Violi F. Oleuropein, a component of extra virgin olive oil, lowers postprandial glycaemia in healthy subjects. Br J Clin Pharmacol 2018; 84:1566-1574. [PMID: 29577365 DOI: 10.1111/bcp.13589] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Extra virgin olive oil lowers postprandial glycaemia. We investigated if oleuropein, a component of extra virgin olive oil, exerts a similar effect on postprandial glycaemia and the underlying mechanism. METHODS Twenty healthy subjects were randomly allocated in a cross-over design to 20 mg oleuropein or placebo immediately before lunch. Postprandial glycaemia along with blood insulin, dipeptidyl-peptidase-4 (DPP-4) and glucagon-like peptide-1 and oxidative stress, which included soluble NADPH oxidase-derived peptide activity (sNox2-dp), 8-iso-prostaglandin-2α and platelet p47phox phosphorylation, were analysed before and 2 h after meal. RESULTS After 2 h, subjects who assumed oleuropein had significantly lower blood glucose, DPP-4 activity and higher insulin and glucagon-like peptide-1 compared to placebo. Furthermore, sNox2-dp, 8-iso-PGF2α and platelet p47phox phosphorylation were significantly lower in oleuropein- compared to placebo-treated subjects. DPP-4 significantly correlated with sNox2-dp [Spearman's rho (Rs) = 0.615; P < 0.001], p47phox phosphorylation (Rs = 0.435; P < 0.05) and 8-iso- prostaglandin-2α (Rs = 0.33; P < 0.05). In vitro study demonstrated that hydroxytyrosol, a metabolite of oleuropein, significantly reduced p47phox phosphorylation and isoprostane formation. CONCLUSIONS These findings indicate that oleuropein improves postprandial glycaemic profile via hampering Nox2-derived oxidative stress.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marta Novo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Valentina Castellani
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cristina Nocella
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Fernández E, Vidal L, Canals A. Rapid determination of hydrophilic phenols in olive oil by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Talanta 2018; 181:44-51. [DOI: 10.1016/j.talanta.2017.12.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
|
27
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Simal-Gándara J, Valentão P, Carrasco-Pancorbo A, Andrade P, Cancho-Grande B. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res Int 2018; 106:558-567. [DOI: 10.1016/j.foodres.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
28
|
Ojha KS, Tiwari BK, O'Donnell CP. Effect of Ultrasound Technology on Food and Nutritional Quality. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:207-240. [PMID: 29555070 DOI: 10.1016/bs.afnr.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ultrasound technology has been successfully demonstrated for several food processing and preservation applications. The majority of food processing applications reported refer to liquid foods. Ultrasound has been applied to solid foods in some niche applications, e.g., tenderization of meat, mass transfer applications, and drying. Similar to any other technology, ultrasound also has some positive and negative effects on food quality depending on the application and processing conditions employed. This chapter outlines various applications of ultrasound to food and its effect on food and nutritional quality.
Collapse
Affiliation(s)
- Kumari S Ojha
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland; School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland.
| | - Colm P O'Donnell
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Liu W, Zong B, Yu J, Bi Y. Ultrasonic-Assisted Liquid-Liquid Microextraction Based on Natural Deep Eutectic Solvent for the HPLC-UV Determination of Tert-Butylhydroquinone from Soybean Oils. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1174-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Rohman A, Che Man YB, Ismail A, Hashim P. FTIR spectroscopy coupled with chemometrics of multivariate calibration and discriminant analysis for authentication of extra virgin olive oil. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1336718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abdul Rohman
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center of Halal Products, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yaakob bin Che Man
- Halal Products Research Institute, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Halal Products Research Institute, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Puziah Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Gouvinhas I, Machado N, Sobreira C, Domínguez-Perles R, Gomes S, Rosa E, Barros AIRNA. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules 2017; 22:E1986. [PMID: 29144445 PMCID: PMC6150410 DOI: 10.3390/molecules22111986] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
Olive oil displays remarkable organoleptic and nutritional features, which turn it into a foodstuff appreciated by consumers, and a basic component of the Mediterranean diet. Indeed, the noticed benefits of including olive oil in the diet have been assigned to the presence of diverse bioactive compounds with different molecular structures. These compounds confer a wide range of biological properties to this food matrix, including the prevention of distinct human diseases as well as the modulation of their severity. The most relevant bioactive compounds present in olive oil correspond to benzoic and cinnamic acids, phenolic alcohols and secoiridoids, and also flavonoids. Over the last decades, several studies, devoted to gaining a further insight into the relative contribution of the separate groups and individual compounds for their biological activities, have been conducted, providing relevant information on structure-activity relationships. Therefore, this paper critically reviews the health benefits evidenced by distinct phenolic compounds found in olive oils, thus contributing to clarify the relationship between their chemical structures and biological functions, further supporting their interest as essential ingredients of wholesome foods.
Collapse
Affiliation(s)
- Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Nelson Machado
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Carla Sobreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Raúl Domínguez-Perles
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Sónia Gomes
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Lisboa, Portugal.
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Ana I R N A Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
32
|
Zokaei M, Abedi AS, Kamankesh M, Shojaee-Aliababadi S, Mohammadi A. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples. Food Chem 2017; 234:55-61. [DOI: 10.1016/j.foodchem.2017.04.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/20/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
|
33
|
Mishra P, Lleó L, Cuadrado T, Ruiz-Altisent M, Hernández-Sánchez N. Monitoring oxidation changes in commercial extra virgin olive oils with fluorescence spectroscopy-based prototype. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2984-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yang X, Li Y, Li S, Oladejo AO, Ruan S, Wang Y, Huang S, Ma H. Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein. ULTRASONICS SONOCHEMISTRY 2017; 38:19-28. [PMID: 28633819 DOI: 10.1016/j.ultsonch.2017.02.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 05/28/2023]
Abstract
The effects of ultrasound pretreatment with different frequencies and working modes, including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU) and tri-frequency ultrasound (TFU), on the degree of hydrolysis (DH) of rice protein (RP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of RP hydrolysate were investigated. Ultraviolet-visible (UV) spectroscopy, fourier transform infrared (FTIR) spectroscopy, surface hydrophobicity and scanning electron microscopy (SEM) of RP pretreated with ultrasound were measured. The results showed that ultrasound pretreatment did not increase DH of RP significantly (p>0.05). However, all the ultrasound pretreatment increased the ACE inhibitory activity of RP hydrolysate significantly (p<0.05). The MFU of 20kHz showed higher ACE inhibitory activity compared to that of other MFU. The ACE inhibitory activity of sequential DFU was higher than that of simultaneous with the same frequency combination. Sequential TFU of 20/35/50kHz produced the highest increase in ACE inhibitory activity in contrast with other ultrasound frequencies and working modes. All the results under ultrasound pretreatment showed that ultrasound frequencies and working modes were of great effect on the ACE inhibitory activity of RP. The changes in UV-Vis spectra and surface hydrophobicity indicated the unfolding of protein and exposure of hydrophobic groups by ultrasound. The FTIR analysis showed that all the ultrasound pretreatment with different frequencies and working modes decreased α-helix, β-turn content and increased β-sheet, random coil content of RP. The SEM results indicated that ultrasound pretreatment resulted in the deformation of RP. In conclusion, the frequency selection of ultrasound pretreatment of RP is essential for the preparation of ACE inhibitory peptide.
Collapse
Affiliation(s)
- Xue Yang
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yunliang Li
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Suyun Li
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Road, Zhengzhou, Henan 450002, China; Collaborative Innovation Center of Food Production and Safety, Henan Province, 5 Dongfeng Road, Zhengzhou, Henan 450002, China
| | - Ayobami Olayemi Oladejo
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Food Engineering, University of Uyo, P.M.B 1017, Uyo 520001, Nigeria
| | - Siyu Ruan
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yucheng Wang
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shanfen Huang
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture PR China, School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
35
|
Olmo-García L, Bajoub A, Monasterio RP, Fernández-Gutiérrez A, Carrasco-Pancorbo A. Metabolic profiling approach to determine phenolic compounds of virgin olive oil by direct injection and liquid chromatography coupled to mass spectrometry. Food Chem 2017; 231:374-385. [DOI: 10.1016/j.foodchem.2017.03.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 01/12/2023]
|
36
|
Liu W, Zhang K, Yu J, Bi Y. A Green Ultrasonic-Assisted Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for the HPLC-UV Determination of TBHQ in Edible Oils. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0891-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants. Food Chem 2017; 227:111-121. [PMID: 28274410 DOI: 10.1016/j.foodchem.2017.01.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 01/16/2017] [Indexed: 02/02/2023]
Abstract
The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties.
Collapse
|
38
|
Farsimadan S, Goudarzi N, Chamjangali MA, Bagherian G. Optimization of ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplets by experimental design methodologies for determination of three anti-anxiety drugs in human serum and urine samples by high performance liquid chromatography. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Mousavi MM, Nemati M, Alizadeh Nabili AA, mahmoudpour M, Arefhosseini S. Application of dispersive liquid–liquid microextraction followed by gas chromatography/mass spectrometry as effective tool for trace analysis of organochlorine pesticide residues in honey samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0939-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Hachicha Hbaieb R, Kotti F, Gargouri M, Msallem M, Vichi S. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile. Food Chem 2016; 203:548-558. [DOI: 10.1016/j.foodchem.2016.01.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
41
|
Mousavi MM, Arefhosseini S, Alizadeh Nabili AA, Mahmoudpour M, Nemati M. Development of an ultrasound-assisted emulsification microextraction method for the determination of chlorpyrifos and organochlorine pesticide residues in honey samples using gas chromatography with mass spectrometry. J Sep Sci 2016; 39:2815-22. [DOI: 10.1002/jssc.201600197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mir-Michael Mousavi
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
- Students’ Research Committee, Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | | | | | - Mansour Mahmoudpour
- Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
- Students’ Research Committee, Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mahboob Nemati
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
- Food and Drug control Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
42
|
Dagdelen A, Ozkan G, Karasu S, Sagdıc O. Differentiation of olive oils based on rheological and sensory characteristics obtained from six olive cultivars. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A. Dagdelen
- Balıkesir University, Faculty of Engineering and Architecture, Department of Food Engineering, Çağış Campus, 10165 Balıkesir, Turkey
| | - G. Ozkan
- Suleyman Demirel University, Faculty of Engineering, Department of Food Engineering, 32260 Isparta, Turkey
| | - S. Karasu
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, 34210 Istanbul, Turkey
| | - O. Sagdıc
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, 34210 Istanbul, Turkey
| |
Collapse
|
43
|
Kalhor H, Hashemipour S, Yaftian MR. Ultrasound-Assisted Emulsification-Microextraction/Ion Mobility Spectrometry Combination: Application for Analysis of Organophosphorus Pesticide Residues in Rice Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0492-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Khezeli T, Daneshfar A, Sahraei R. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 2015; 150:577-85. [PMID: 26838445 DOI: 10.1016/j.talanta.2015.12.077] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%.
Collapse
Affiliation(s)
- Tahere Khezeli
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran
| | - Ali Daneshfar
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran.
| | - Reza Sahraei
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran
| |
Collapse
|
45
|
Tsai CJ, Li JH, Feng CH. Dual dispersive liquid–liquid microextraction for determination of phenylpropenes in oils by gas chromatography–mass spectrometry. J Chromatogr A 2015; 1410:60-7. [DOI: 10.1016/j.chroma.2015.07.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023]
|
46
|
Goudarzi N, Farsimadan S, Chamjangali MA, Bagherian GA. Optimization of modified dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the simultaneous preconcentration and determination of nitrazepam and midazolam drugs: An experimental design. J Sep Sci 2015; 38:1673-9. [DOI: 10.1002/jssc.201500007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 11/07/2022]
|
47
|
Wu Z, Li H, Tu D. Application of Fourier Transform Infrared (FT-IR) Spectroscopy Combined with Chemometrics for Analysis of Rapeseed Oil Adulterated with Refining and Purificating Waste Cooking Oil. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0149-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Alu'datt MH, Rababah T, Ereifej K, Gammoh S, Alhamad MN, Mhaidat N, Kubow S, Johargy A, Alnaiemi OJ. Investigation of natural lipid-phenolic interactions on biological properties of virgin olive oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11967-11975. [PMID: 25389645 DOI: 10.1021/jf504557k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is limited knowledge regarding the impact of naturally occurring lipid-phenolic interactions on the biological properties of phenolics in virgin olive oil. Free and bound phenolics were isolated via sequential methanolic extraction at 30 and 60 °C, and were identified and quantified using reversed phase high performance liquid chromatography, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and gas chromatography. Decreased oleic acid concentrations and increased concentrations of palmitoleic acid, stearic, linoleic, and linolenic acids were observed in virgin olive oil after removal of free and bound lipid phenolic compounds. The presence of p-hydroxybenzoic acid and tyrosol bound to glycerides was determined via LC-MS/MS, which indicates natural lipid-phenolic interactions in virgin olive oil. Both free and lipid bound phenolic extracts exerted antiproliferative activities against the CRC1 and CRC5 colorectal cancer cell lines. The present work indicates that naturally occurring lipid-phenolic interactions can affect the biological properties of phenolics in virgin olive oil.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology , P.O. Box 3030, Irbid 22110, Jordan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Reboredo-Rodríguez P, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain. Food Chem 2014; 164:418-26. [DOI: 10.1016/j.foodchem.2014.05.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 02/01/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
50
|
Fernández-Ávila C, Montes R, Castellote AI, Chisaguano AM, Fitó M, Covas MI, Muñoz-Aguallo D, Nyyssönen K, Zunft HJ, López-Sabater MC. Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins. Biomed Chromatogr 2014; 29:1035-41. [DOI: 10.1002/bmc.3389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 10/15/2014] [Indexed: 01/26/2023]
Affiliation(s)
- C. Fernández-Ávila
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - R. Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - A. I. Castellote
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - A. M. Chisaguano
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - M. Fitó
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - M. I. Covas
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - D. Muñoz-Aguallo
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - K. Nyyssönen
- Research Institute of Public Health; University of Kuopio; Kuopio Finland
| | - H. J. Zunft
- German Institute of Human Nutrition; Postdam-Rehbruecke; Germany
| | - M. C. López-Sabater
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| |
Collapse
|