1
|
González-Noriega JA, Valenzuela-Melendres M, Hernández-Mendoza A, Astiazarán-García H, Islava-Lagarda T, Tortoledo-Ortiz O, Huerta-Ocampo JÁ, de La Garza AL, Peña-Ramos EA. Angiotensin converting enzyme inhibitory hydrolysate and peptide fractions from chicken skin collagen, as modulators of lipid accumulation in adipocytes 3 T3-L1, after in vitro gastrointestinal digestion. Food Chem 2024; 460:140551. [PMID: 39083965 DOI: 10.1016/j.foodchem.2024.140551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Inhibitory activity against angiotensin-converting enzyme (IAACE) by chicken skin collagen hydrolysate (CSCH) and their peptide fractions before and after in-vitro gastrointestinal digestion, were evaluated; as well as their ability to modulate lipid accumulation in 3 T3-L1 adipocytes. Before digestion, peptide fraction <1 kDa (F4) showed the highest IAACE (p < 0.05) followed by CSCH. After these samples were digested, F4 presented an IAACE with IC50 similar to its digest (DF4) (188.84 and 220.03 μg/mL, respectively), which was 2-fold lower (p < 0.05) than IC50 of fraction <1 kDa from post-digested hydrolysate (FDH) (388.57 μg/mL). Nine peptides were identified as the potential ACE inhibitors in F4 and DF4. Addition of DF4 (800 μg/mL) reduced(p < 0.05) lipid accumulation by 83% within preadipocytes. A 45-60% reduction of lipid accumulation within differentiated adipocytes was obtained by adding FDH and DF4 (regardless the concentration). These results, digested CSCH and F4 with IAACE may be considered as potential adjuvants for obesity treatment.
Collapse
Affiliation(s)
- Julio Alfonso González-Noriega
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora C.P. 83304, Mexico..
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora C.P. 83304, Mexico..
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora C.P. 83304, Mexico..
| | - Humberto Astiazarán-García
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Nutrición. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora, Mexico. C,. P. 83304.
| | - Thalia Islava-Lagarda
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora C.P. 83304, Mexico..
| | - Orlando Tortoledo-Ortiz
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Nutrición. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora, Mexico. C,. P. 83304.
| | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia de los Alimentos. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora, Mexico. C,. P. 83304.
| | - Ana Laura de La Garza
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, Mexico.
| | - Etna Aída Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal. Carr. Gustavo Astiazaran No. 46, Hermosillo, Sonora C.P. 83304, Mexico..
| |
Collapse
|
2
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Li J, Hu H, Chen F, Yang C, Yang W, Pan Y, Yu X, He Q. Characterization, mechanisms, structure-activity relationships, and antihypertensive effects of ACE inhibitory peptides: rapid screening from sufu hydrolysate. Food Funct 2024; 15:9224-9234. [PMID: 39158526 DOI: 10.1039/d4fo02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
This study investigates the characterization, mechanisms of action, structure-activity relationships, and in vivo antihypertensive effects of ACE inhibitory peptides derived from sufu hydrolysate following simulated gastrointestinal digestion. Sufu was enzymatically digested using pepsin, trypsin, and chymotrypsin to mimic gastrointestinal conditions, followed by ultrafiltration to fractionate the peptides based on molecular weight. The fraction under 1 kDa exhibited the highest ACE inhibitory activity. LC-MS/MS analysis identified 119 peptide fragments, with bioinformatics screening highlighting 41 peptides with potential ACE inhibitory properties. Among these, two peptides, AWR and LLR, were selected and synthesized for in vitro validation, displaying IC50 values of 98.04 ± 2.56 μM and 94.01 ± 5.07 μM, respectively. Stability tests showed that both peptides maintained their ACE inhibitory activity across various temperatures and pH levels. Molecular docking and Highest Occupied Molecular Orbital analysis indicated strong binding interactions between these peptides and ACE, with the second-position tryptophan in AWR and the N-terminal leucine in LLR identified as key bioactive sites. These findings were further supported by molecular dynamics simulations, which confirmed the stability of the peptide-ACE complexes. In vivo studies using spontaneously hypertensive rats demonstrated significant reductions in both systolic and diastolic blood pressure, indicating that AWR and LLR have strong antihypertensive potential. This study illustrates that ultrafiltration, combined with LC-MS/MS and bioinformatics analysis, is an effective approach for the rapid screening of ACE inhibitory peptides. These results not only enhance our understanding of sufu-derived peptides but also offer promising implications for hypertension management.
Collapse
Affiliation(s)
- Jianfei Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Haohan Hu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Feng Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Chenying Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Wanzhou Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Yuexin Pan
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
4
|
Li G, Miao Z, Liu X, Wang Q, Zheng X. Four novel anti-adhesive activity peptides against Helicobacter pylori derived from rice bran protein: release, identification and anti-adhesive mechanisms elucidation. Food Funct 2024; 15:8418-8431. [PMID: 39042096 DOI: 10.1039/d4fo01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
H. pylori is a highly pathogenic and prevalent pathogen that is a class I carcinogen. More than 50% of the world's population is infected with H. pylori. An anti-adhesive strategy is an effective way to antagonize H. pylori infection, which does not cause H. pylori resistance and is safer compared to antibiotic therapy. In the present study, to obtain rice bran protein-derived anti-adhesive activity peptides against H. pylori, an efficient enzymatic hydrolysis system was established, and it was found that rice bran protein hydrolysate prepared under specific conditions possessed anti-adhesive activity against H. pylori. The anti-adhesive activity of rice bran protein hydrolysate (RPH) was 43.74 ± 1.12% (4 mg mL-1), and gastric digestion (RPHA) had no significant effect on its activity. Hydrophobic amino acids and aromatic amino acids were important for its anti-adhesive activity. Further, 284 peptide sequences with potential anti-adhesive activity were isolated and identified from RPHA. Combined with molecular docking results, four novel anti-adhesive activity peptides were finally screened, namely LS5 (LSFRL), SN8 (SNTPGMVY), VV7 (VVNFGNL) and PV9 (PVLWGVPKG). Among them, PV9 showed the highest anti-adhesive activity of 59.64 ± 2.00% (4 mg mL-1). These four peptides could bind H. pylori adhesins BabA and SabA, occupying the binding sites of cell receptors and acting as anti-adhesion agents. In conclusion, four rice bran protein-derived anti-adhesive activity peptides against H. pylori can be used for the development of novel functional foods antagonizing H. pylori infection.
Collapse
Affiliation(s)
- Guanlong Li
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Zhengfei Miao
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Xiaolan Liu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China.
| | - QuanXin Wang
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Xiqun Zheng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
5
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
6
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
7
|
Chen Q, Nie X, Huang W, Wang C, Lai R, Lu Q, He Q, Yu X. Unlocking the potential of chicken liver byproducts: Identification of antioxidant peptides through in silico approaches and anti-aging effects of a selected peptide in Caenorhabditis elegans. Int J Biol Macromol 2024; 272:132833. [PMID: 38834112 DOI: 10.1016/j.ijbiomac.2024.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Chicken meat processing generates a substantial number of byproducts, which are either underutilized or improperly disposed. In this study, we employed in silico approaches to identify antioxidant peptides in chicken liver byproducts. Notably, the peptide WYR exhibited remarkable 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity with an IC50 of 0.13 ± 0.01 mg/mL and demonstrated stability under various conditions, including thermal, pH, NaCl, and simulated gastrointestinal digestion. Molecular docking analysis revealed significant hydrogen bonding interactions, while molecular dynamics showed differential stability with ABTS and 2,2-Diphenyl-1-picrylhydrazyl (DPPH). WYR exhibited improved stress resistance, decreased levels of reactive oxygen species (ROS), elevated the activities of superoxide dismutase (SOD) and catalase (CAT), and modulated the expression of crucial genes through the insulin/insulin-like growth factor (IIS) signaling pathway, mitogen-activated protein kinase (MAPK), and heat shock transcription factor-1 (HSF-1) pathways. These effects collectively contributed to the extension of Caenorhabditis elegans' lifespan. This study not only provides an effective method for antioxidant peptide analysis but also highlights the potential for enhancing the utilization of poultry byproducts.
Collapse
Affiliation(s)
- Qianzi Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuekui Nie
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wangxiang Huang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chen Wang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
8
|
Kim JH, Lee DY, Lee SY, Mariano E, Jeong JW, Yun SH, Lee J, Park J, Choi Y, Han D, Kim JS, Jo C, Hur SJ. Study on the Digestion-Induced Changes in the Characteristics and Bioactivity of Korean Native and Overseas Cattle-Derived Peptides. Food Sci Anim Resour 2024; 44:551-569. [PMID: 38765291 PMCID: PMC11097022 DOI: 10.5851/kosfa.2024.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 05/21/2024] Open
Abstract
This study was conducted to compare and analyze the changes in the biochemical characteristics and biological activity of peptide extracts derived from Chickso, Hanwoo, and Wagyu beef during digestion. The results of the in vitro digestion analysis revealed that the digestion rate, total free amino acid content, and antioxidant and antihypertensive activities of Chickso loin and shank myofibrillar proteins were significantly higher (p<0.05) than those of Hanwoo and Wagyu loin and shank myofibrillar proteins. Particularly, the peptide extracts of Chickso loin and shank had a high angiotensin-converting enzyme inhibitory activity. In mice in vivo digestion experiment, the blood serum of mice fed with Chickso loin peptide extract (<10 kDa) showed the highest antioxidant enzyme activity. Thus, Chickso peptide extracts were deemed to be similar or more bioactive than Hanwoo and Wagyu peptide extracts, and can be used as bioactive materials.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
9
|
Meng M, She Z, Feng Y, Zhang J, Han R, Qi Y, Sun L, Sun H. Optimization of Extraction Process and Activity of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptide from Walnut Meal. Foods 2024; 13:1067. [PMID: 38611371 PMCID: PMC11012047 DOI: 10.3390/foods13071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In order to further realize the resource reuse of walnut meal after oil extraction, walnut meal was used as raw material to prepare polypeptide, and its angiotensin-converting enzyme (ACE) inhibitory activity was investigated. The ACE inhibitory peptides were prepared from walnut meal protein by alkaline solution and acid precipitation. The hydrolysis degree and ACE inhibition rate were used as indexes to optimize the preparation process by single-factor experiment and response surface method. The components with the highest ACE activity were screened by ultrafiltration, and their antioxidant activities were evaluated in vitro. The effect of gastrointestinal digestion on the stability of walnut peptide was analyzed by measuring molecular weight and ACE inhibition rate. The results showed that the optimal extraction conditions were pH 9.10, hydrolysis temperature 54.50 °C, and hydrolysis time 136 min. The ACE inhibition rate of walnut meal hydrolysate (WMH) prepared under these conditions was 63.93% ± 0.43%. Under the above conditions, the fraction less than 3 kDa showed the highest ACE inhibitory activity among the ACE inhibitory peptides separated by ultrafiltration. The IC50 value of scavenging ·OH free radical was 1.156 mg/mL, the IC50 value of scavenging DPPH free radical was 0.25 mg/mL, and the IC50 value of scavenging O2- was 3.026 mg/mL, showing a strong total reducing ability. After simulated gastrointestinal digestion in vitro, the ACE inhibitory rate of walnut peptide decreased significantly, but it still maintained over 90% ACE inhibitory activity. This study provides a reference for the application of low-molecular-weight walnut peptide as a potential antioxidant and ACE inhibitor.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ziyi She
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yinyin Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Junhan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yanlong Qi
- Research Institute of Farm Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830091, China;
| | - Lina Sun
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, No. 291 South Nanchang Road, Urumqi 830091, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| |
Collapse
|
10
|
Cai L, Wu S, Jia C, Cui C, Sun-Waterhouse D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L) protein through identification, molecular docking, and virtual screening. Food Chem 2023; 429:136912. [PMID: 37480780 DOI: 10.1016/j.foodchem.2023.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Hemp (Cannabis sativa L) seeds are rich in proteins of high nutritional value, which makes the study of beneficial properties of hemp seed proteins and peptides, such as hypotensive and hypoglycemic effects, increasingly attractive. The present results confirm the good processability and stability of the hemp protein hydrolysate obtained by enzymatic hydrolysis of non-dehulled hemp seed meal (NDHM). Six peptides with potential hypoglycemic activity were obtained by ethanol-graded precipitation, Nano LC-Q-Orbitrap-MS/MS mass spectrometry, and computerized virtual screening. Further, validation experiments for in vitro synthesis showed that TGLGR, SPVI, FY, and FR exhibited good α-glucosidase inhibitory activity, respectively. Animal experiments showed that the hemp protein peptides modulated blood glucose and blood lipids in hyperglycemic rats. These results indicate that hemp protein peptides can reduce blood glucose levels in hyperglycemic rats, suggesting that hemp proteins may be a promising natural source for the prevention and treatment of hyperglycemia.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Shengwen Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chenggang Jia
- Guilin Sanjin Pharmaceutical Co., Ltd, Guilin 541100, Guangxi, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
11
|
Kęska P, Stadnik J, Łupawka A, Michalska A. Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis. Nutrients 2023; 15:3539. [PMID: 37630730 PMCID: PMC10460020 DOI: 10.3390/nu15163539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder characterized by abnormal blood glucose levels in the body. The development of therapeutic strategies for restoring and maintaining blood glucose homeostasis is still in progress. Synthetic alpha-amylase and alpha-glucosidase inhibitors can improve blood glucose control in diabetic patients by effectively reducing the risk of postprandial hyperglycemia. Peptides of natural origin are promising compounds that can serve as alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Potential alpha-glucosidase-inhibiting peptides obtained from aqueous and saline extracts from dry-cured pork loins inoculated with probiotic LAB were evaluated using in vitro and in silico methods. To identify the peptide sequences, liquid chromatography-mass spectrometry was used. For this purpose, in silico calculation methods were used, and the occurrence of bioactive fragments in the protein followed the ADMET approach. The most promising sequences were molecularly docked to test their interaction with the human alpha-glycosidase molecule (PDB ID: 5NN8). The docking studies proved that oligopeptides VATPPPPPPPK, DIPPPPM, TPPPPPPG, and TPPPPPPPK obtained by hydrolysis of proteins from ripening dry-cured pork loins showed the potential to bind to the human alpha-glucosidase molecule and may act effectively as a potential antidiabetic agent.
Collapse
Affiliation(s)
| | - Joanna Stadnik
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | | | | |
Collapse
|
12
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
13
|
Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chem 2023; 406:135046. [PMID: 36446284 DOI: 10.1016/j.foodchem.2022.135046] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
New challenges in food production and processing are appearing due to increasing global population and the purpose of achieving a sustainable food system. Bioactive peptides obtained from food proteins can be employed to prevent or pre-treat several diseases such as diabetes, cardiovascular diseases, inflammation, thrombosis, cancer, etc. Research on the bioactivity of protein hydrolysates is very extensive, especially in vitro tests, although there are also tests in animal models and in humans studies designed to verify their efficacy. However, there is very little published literature on the functionality of these protein hydrolysates as an ingredient in food matrices, as well as the effect that thermal or non-thermal processing, and storage may have on the bioactivity of these bioactive peptides. This review aims to summarize the published literature on protein hydrolysates as a functional ingredient including processing, storage and simulated gastrointestinal digestion regarding the bioactivity of these peptides inside food matrices.
Collapse
|
14
|
Zan R, Zhu L, Wu G, Zhang H. Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates. Foods 2023; 12:foods12081574. [PMID: 37107370 PMCID: PMC10137677 DOI: 10.3390/foods12081574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Alcohol dehydrogenase (ADH) is one of the main rate-limiting enzymes in alcohol metabolism. Food protein-derived peptides are thought to have ADH activating ability. We verified for the first time that chickpea protein hydrolysates (CPHs) had the ability to activate ADH and identified novel peptides from them. CPHs obtained by hydrolysis with Alcalase for 30 min (CPHs-Pro-30) showed the highest ADH activating ability, and the ADH activation rate could still maintain more than 80% after in vitro simulated gastrointestinal digestion. We have verified four peptides with activation ability to ADH: ILPHF, MFPHLPSF, LMLPHF and FDLPALRF (concentration for 50% of maximal effect (EC50): 1.56 ± 0.07 µM, 1.62 ± 0.23 µM, 1.76 ± 0.03 µM and 9.11 ± 0.11 µM, respectively). Molecular docking showed that the mechanism for activating ADH was due to the formation of a stable complex between the peptide and the active center of ADH through hydrogen bonding. The findings suggest that CPHs and peptides with ADH activating ability may be developed as natural anti-alcoholic ingredients to prevent alcoholic liver disease (ALD).
Collapse
Affiliation(s)
- Rong Zan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Xiao C, Zhou L, Gao J, Jia R, Zheng Y, Zhao S, Zhao M, Toldrá F. Musculus senhousei as a promising source of bioactive peptides protecting against alcohol-induced liver injury. Food Chem Toxicol 2023; 174:113652. [PMID: 36764475 DOI: 10.1016/j.fct.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Alcohol-induced liver injury has become a leading risk for human health, however, effective strategies for the prevention or treatment are still lacking. Hence, the present study explored the potential of Musculus senhousei as a source of hepatoprotective peptides against alcoholic liver injury using in vitro, in vivo and in silico methods. Results indicated that Musculus senhousei peptides (MSP, extracted by simulated gastrointestinal digestion of cooked mussel) exhibited notable antioxidant (ABTS and DPPH assays) and alcohol dehydrogenase (ADH) stabilizing activity in vitro. The ingestion of MSP markedly alleviated alcohol-induced liver injury in mice, as indicated by the decrease of serum transaminases (AST and ALT). In line with in vitro assays, significantly increased hepatic ADH activity and activated antioxidative defense system (GSH, SOD, GSH-Px and CAT) were observed, whereas the oxidative stress (MDA) was decreased. Peptidomic analysis revealed over 6000 peptides with favorable amino acid compositions, and a total of 20 potentially novel peptides with bioactivity and bioavailability were excavated among 746 of the most influential peptides using an in silico strategy. Peptides (i.e. WLPMKL, WLWLPA, RLC and RCL) were further synthesized and validated in vitro to be bioactive. These findings suggest that Musculus senhousei can be an ideal source of bioactive peptides for the prevention of alcoholic liver injury.
Collapse
Affiliation(s)
- Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China
| | - Liuyang Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| | - Ruibo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China
| | - Yang Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
16
|
Joshua Ashaolu T, Le TD, Suttikhana I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res Int 2023; 168:112786. [PMID: 37120233 DOI: 10.1016/j.foodres.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
Collapse
|
17
|
Muñoz-Rosique B, Hernández-Correas N, Abellán A, Bueno E, Gómez R, Tejada L. Influence of Pig Genetic Line and Salt Reduction on Peptide Production and Bioactivity of Dry-Cured Hams. Foods 2023; 12:foods12051022. [PMID: 36900539 PMCID: PMC10000787 DOI: 10.3390/foods12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Ham (Jamón) is a product of great value in Spanish gastronomy, although experts have recommended reducing its consumption due to its high salt content and its relationship with cardio-vascular diseases due to the increase in blood pressure it may cause. Therefore, the objective of this study was to evaluate how the reduction of salt content and the pig genetic line influence bioactivity in boneless hams. For this purpose, 54 hams were studied, 18 boneless Iberian hams (RIB), 18 boneless white hams from commercial cross-bred pigs (RWC), and 18 salted and traditionally processed Iberian hams (TIB) to check if the pig genetic line (RIB vs. RWC) or the processing (RIB vs. TIB) affect the peptide production and bioactivity of the hams. The pig genetic line significantly affected the activity of ACE-I and DPPH, with RWC having the highest ACE-I activity and RIB having the highest antioxidative activity. This coincides with the results obtained in the identification of the peptides and the bioactivity analysis performed. Salt reduction positively affected the different hams, influencing their proteolysis and increasing their bioactivity in traditionally cured hams.
Collapse
Affiliation(s)
- Beatriz Muñoz-Rosique
- Departamento de Calidad, AromaIbérica Serrana, S.L. Ctra. Fuente Álamo, Km 17.4, 30332 Murcia, Spain
| | - Noelia Hernández-Correas
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
- Correspondence:
| | - Adela Abellán
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| | - Estefanía Bueno
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| | - Rafael Gómez
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14014 Córdoba, Spain
| | - Luis Tejada
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| |
Collapse
|
18
|
Zhu Q, Xue J, Wang P, Wang X, Zhang J, Fang X, He Z, Wu F. Identification of a Novel ACE Inhibitory Hexapeptide from Camellia Seed Cake and Evaluation of Its Stability. Foods 2023; 12:foods12030501. [PMID: 36766030 PMCID: PMC9914026 DOI: 10.3390/foods12030501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 μmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.
Collapse
Affiliation(s)
- Qiaonan Zhu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawen Xue
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xianbo Wang
- Zhejiang Feixiangyuan Food Co., Ltd., Lishui 323400, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xuezhi Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| | - Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| |
Collapse
|
19
|
ŞEN ARSLAN H, SARIÇOBAN C. Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Res Int 2022; 161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
|
21
|
Wójciak KM, Kęska P, Prendecka-Wróbel M, Ferysiuk K. Peptides as Potentially Anticarcinogenic Agent from Functional Canned Meat Product with Willow Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206936. [PMID: 36296529 PMCID: PMC9611610 DOI: 10.3390/molecules27206936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
The aim of the study was to demonstrate canned pork as a functional meat product due to the presence of potentially anti-cancer factors, e.g., (a) bioactive peptides with potential activity against cancer cells; (b) lowering the content of sodium nitrite and with willow herb extract. In silico (for assessing the anticancer potential of peptides) and in vitro (antiproliferation activity on L-929 and CT-26 cell lines) analysis were performed, and the obtained results confirmed the bioactive potential against cancer of the prepared meat product. After 24 h of incubation with peptides obtained from meat product containing lyophilized herb extract at a concentration of 150 mg/kg, the viability of both tested cell lines was slightly decreased to about 80% and after 72 h to about 40%. On the other hand, after 72 h of incubation with the peptides obtained from the variant containing 1000 mg/kg of freeze-dried willow herb extract, the viability of intestinal cancer cells was decreased to about 40%, while, by comparison, the viability of normal cells was decreased to only about 70%.
Collapse
Affiliation(s)
- Karolina M. Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Paulina Kęska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
- Correspondence: ; Tel.: +48-81-4623340; Fax: +48-81-4623345
| | - Monika Prendecka-Wróbel
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Ferysiuk
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
22
|
Zhan J, Li G, Dang Y, Pan D. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100101. [PMID: 35769399 PMCID: PMC9235047 DOI: 10.1016/j.fochms.2022.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Porcine plasma was enzymatically hydrolyzed with different times. The hydrolysate with high hydrolysis degree was isolated and purified by G-15 gel chromatography and HPLC. The ace inhibition rates of different purified compounds were determined. The sequence of the polypeptide with best ace inhibition (IFPPKPKDTL) was determined by Q exactive LC-MS / MS. The hypotensive function of synthetic peptide IFPPKPKDTL was also determined in spontaneously hypertensive rat.
We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inactivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and has potential functional value.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
23
|
Yang X, Ren X, Ma H. Effect of Microwave Pretreatment on the Antioxidant Activity and Stability of Enzymatic Products from Milk Protein. Foods 2022; 11:foods11121759. [PMID: 35741957 PMCID: PMC9222228 DOI: 10.3390/foods11121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The effects of microwave pretreatment on the antioxidant activity and stability of enzymatic products from milk protein (MP) were studied. The peptide content, molecular weight distribution, and amino acid composition of MP hydrolysate were also measured to explain the change of antioxidant activity under microwave pretreatment. The results showed that microwave pretreatment increased the degree of hydrolysis of MP with the power of 400 W for the highest value. The DPPH scavenging activity and the total antioxidant capacity of MP pretreated by microwave with a power of 300 W presented the highest effect and increased by 53.97% and 16.52%, respectively, compared to those of control. In addition, the results of thermal stability and in vitro digestion of MP hydrolysate showed that the MP hydrolysate pretreated by microwave exerted excellent antioxidative stability, especially for the microwave power of 300 W. After pretreated with microwave, the peptide content increased as the rise of power and it reached the peak at the power of 400 W. The molecular weight of MP hydrolysate pretreated by microwave with the power of 300 W showed more percentage of peptides between 200 Da and 500 Da. The result of amino acid composition showed that total amino acid (TAA) content of MP hydrolysate pretreated by microwave with power of 400 W showed the highest value, which increased by 7.58% compared to the control. The ratio of total hydrophobic amino acids to the TAA of MP hydrolysate showed the most increased amplitude with the microwave power of 300 W. The antioxidant activity of MP hydrolysate was related to the peptide content, and it was also relevant to the amino acid category and content. In conclusion, microwave pretreatment is an effective method for the preparation of antioxidant peptides and an increase in antioxidant stability.
Collapse
Affiliation(s)
- Xue Yang
- School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
- Correspondence: ; Tel.: +86-0314-2517023
| | - Xiaofeng Ren
- Jiangsu Provincial Key Laboratory for Food Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.R.); (H.M.)
| | - Haile Ma
- Jiangsu Provincial Key Laboratory for Food Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.R.); (H.M.)
| |
Collapse
|
24
|
Xing L, Fu L, Toldrá F, Teng S, Yin Y, Zhang W. The stability of dry‐cured ham‐derived peptides and its anti‐inflammatory effect in RAW264.7 macrophage cells. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lujuan Xing
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Lijuan Fu
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Fidel Toldrá
- Instituto de Agroquímicay Tecnología de Alimentos (CSIC) Avenue Agustín Escardino 7 46980 Paterna Valencia Spain
| | - Shuang Teng
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yantao Yin
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
25
|
Hernández-Olivas E, Muñoz-Pina S, García-Hernández J, Andrés A, Heredia A. Impact of common gastrointestinal disorders in elderly on in vitro meat protein digestibility and related properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Li H, Wu J, Wan J, Zhou Y, Zhu Q. Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Wang Z, Shu G, Chen L, Dai C, Li Y, Niu J, Wan H. Directed‐Vat‐Set starter producing ACE‐inhibitory peptides: Opimization and evaluation of stability. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zifei Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an China
| | - Guowei Shu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an China
| | - Li Chen
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
| | - Chunji Dai
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an China
| | - Yilin Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an China
| | - Jinfeng Niu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an China
| | - Hongchang Wan
- Department of Research and Development Shaanxi Yatai Dairy Co., Ltd Xianyang 713701 China
| |
Collapse
|
28
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Heres A, Yokoyama I, Gallego M, Toldrá F, Arihara K, Mora L. Antihypertensive potential of sweet Ala-Ala dipeptide and its quantitation in dry-cured ham at different processing conditions. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Kęska P, Stadnik J. Effect of
in vitro
gastro‐pancreatic digestion on antioxidant activity of low‐molecular‐weight (<3.5 kDa) peptides from dry‐cured pork loins with probiotic strains of LAB. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| |
Collapse
|
31
|
Zhang X, Noisa P, Yongsawatdigul J. Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Kęska P, Stadnik J. Potential DPP IV Inhibitory Peptides from Dry-Cured Pork Loins after Hydrolysis: An In Vitro and In Silico Study. Curr Issues Mol Biol 2021; 43:1335-1349. [PMID: 34698081 PMCID: PMC8928953 DOI: 10.3390/cimb43030095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Peptidyl peptidase IV (DPP-IV) is a pharmacotherapeutic target in type 2 diabetes, and inhibitors of this enzyme are an important class of drugs for the treatment of type 2 diabetes. In the present study, peptides (<7 kDa) isolated from dry-cured pork loins after pepsin and pancreatin hydrolysis were identified by mass spectrometry and tested as potential inhibitors of DPP-IV by the in silico method. Two peptides, namely WTIAVPGPPHS from myomesin (water-soluble fraction, A = 0.9091) and FKRPPL from troponin (salt-soluble fraction, A = 0.8333), were selected as the most promising inhibitors of DPP-IV. Both peptides were subjected to ADMET analysis. Fragments of these peptides showed promising drug-likeness properties as well as favorable absorption, distribution, metabolism, excretion, and toxicity functions, suggesting that they are novel leads in the development of DPP-IV inhibitors from food.
Collapse
|
33
|
Bioactive Compounds of Porcine Hearts and Aortas May Improve Cardiovascular Disorders in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147330. [PMID: 34299780 PMCID: PMC8307898 DOI: 10.3390/ijerph18147330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
Functional foods promote health benefits in human metabolism, with bioactive compounds acting as therapeutic agents. The aim was to investigate the biological effects of a pâté made of pork hearts and aortas, minced, sterilised and packed in tins. Adults (61–66 years old) with a body mass index of 26.4–60.7 kg/m2 (n = 36) were randomly divided into two groups: one group consumed a low-calorie diet (LCD), while the other consumed an LCD with the developed meat product (MP) for 28–30 days. Serum biochemical parameters, anthropometry and blood pressure were measured. Consumption of an LCD + MP by experimental group participants helped to maintain reduced cholesterol levels. The difference in total cholesterol was significantly different (p = 0.018) from that of the control group, mainly due to the difference in low-density lipoprotein cholesterol (p = 0.005). Six peptides with potential cholesterol-binding properties and four peptides with potential antioxidant activity were identified in the MP, while elevation of the content of two peptides with potential angiotensin-converting enzyme-inhibitory activity was detected in patients’ plasma. Intervention with the MP can be considered as a supportive therapy to the main treatment for medical cardiovascular diseases due to a positive effect on serum cholesterol.
Collapse
|
34
|
Korczek KR, Tkaczewska J, Duda I, Migdał W. Effect of Heat Treatment on the Antioxidant Activity as Well as In vitro Digestion Stability of Herring ( Clupea harengus) Protein Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1946630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Klaudia Róża Korczek
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Iwona Duda
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Władysław Migdał
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| |
Collapse
|
35
|
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules 2021; 11:631. [PMID: 33922830 PMCID: PMC8145060 DOI: 10.3390/biom11050631] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Food-derived bioactive peptides are being used as important functional ingredients for health-promoting foods and nutraceuticals in recent times in order to prevent and manage several diseases thanks to their biological activities. Bioactive peptides are specific protein fractions, which show broad applications in cosmetics, food additives, nutraceuticals, and pharmaceuticals as antimicrobial, antioxidant, antithrombotic, and angiotensin-I-converting enzyme (ACE)-inhibitory ingredients. These peptides can preserve consumer health by retarding chronic diseases owing to modulation or improvement of the physiological functions of human body. They can also affect functional characteristics of different foods such as dairy products, fermented beverages, and plant and marine proteins. This manuscript reviews different aspects of bioactive peptides concerning their biological (antihypertensive, antioxidative, antiobesity, and hypocholesterolemic) and functional (water holding capacity, solubility, emulsifying, and foaming) properties. Moreover, the properties of several bioactive peptides extracted from different foods as potential ingredients to formulate health promoting foods are described. Thus, multifunctional properties of bioactive peptides provide the possibility to formulate or develop novel healthy food products.
Collapse
Affiliation(s)
| | - Zohreh Karami
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
36
|
Li KJ, Brouwer-Brolsma EM, Burton-Pimentel KJ, Vergères G, Feskens EJM. A systematic review to identify biomarkers of intake for fermented food products. GENES AND NUTRITION 2021; 16:5. [PMID: 33882831 PMCID: PMC8058972 DOI: 10.1186/s12263-021-00686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Background Fermented foods are ubiquitous in human diets and often lauded for their sensory, nutritious, and health-promoting qualities. However, precise associations between the intake of fermented foods and health have not been well-established. This is in part due to the limitations of current dietary assessment tools that rely on subjective reporting, making them prone to memory-related errors and reporting bias. The identification of food intake biomarkers (FIBs) bypasses this challenge by providing an objective measure of intake. Despite numerous studies reporting on FIBs for various types of fermented foods and drinks, unique biomarkers associated with the fermentation process (“fermentation-dependent” biomarkers) have not been well documented. We therefore conducted a comprehensive, systematic review of the literature to identify biomarkers of fermented foods commonly consumed in diets across the world. Results After title, abstract, and full-text screening, extraction of data from 301 articles resulted in an extensive list of compounds that were detected in human biofluids following the consumption of various fermented foods, with the majority of articles focusing on coffee (69), wine (69 articles), cocoa (62), beer (34), and bread (29). The identified compounds from all included papers were consolidated and sorted into FIBs proposed for a specific food, for a food group, or for the fermentation process. Alongside food-specific markers (e.g., trigonelline for coffee), and food-group markers (e.g., pentadecanoic acid for dairy intake), several fermentation-dependent markers were revealed. These comprised compounds related to the fermentation process of a particular food, such as mannitol (wine), 2-ethylmalate (beer), methionine (sourdough bread, cheese), theabrownins (tea), and gallic acid (tea, wine), while others were indicative of more general fermentation processes (e.g., ethanol from alcoholic fermentation, 3-phenyllactic acid from lactic fermentation). Conclusions Fermented foods comprise a heterogeneous group of foods. While many of the candidate FIBs identified were found to be non-specific, greater specificity may be observed when considering a combination of compounds identified for individual fermented foods, food groups, and from fermentation processes. Future studies that focus on how fermentation impacts the composition and nutritional quality of food substrates could help to identify novel biomarkers of fermented food intake. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00686-4.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| | - Kathryn J Burton-Pimentel
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
37
|
Sun X, Udenigwe CC. Chemistry and Biofunctional Significance of Bioactive Peptide Interactions with Food and Gut Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12972-12977. [PMID: 31994880 DOI: 10.1021/acs.jafc.9b07559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food-derived bioactive peptides (BAPs) have gained significant interest as functional agents for developing food products with health benefits. To elucidate the underlying bioactivity mechanisms, current research investigates mostly the structure-activity relationship of native peptides. However, peptide structures are highly susceptible to chemical modifications, which can subsequently influence their physiological behaviors and bioactivities. This paper highlights the peptide structure modifications occurring with major food components during processing and the digestive environment of the gut as well as associated changes in peptide properties and biofunctions. Given the modification propensity of peptides, focus should be shifted toward characterizing the nature, biofunctions, gut activity, bioavailability, and safety of the modified peptides toward achieving pragmatic food applications of BAPs.
Collapse
Affiliation(s)
- Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
38
|
Chicken breast-derived alcohol dehydrogenase-activating peptides in response to physicochemical changes and digestion simulation: The vital role of hydrophobicity. Food Res Int 2020; 136:109592. [DOI: 10.1016/j.foodres.2020.109592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
|
39
|
The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem 2020; 321:126689. [DOI: 10.1016/j.foodchem.2020.126689] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
|
41
|
Liu K, Du R, Chen F. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chem 2020; 319:126540. [DOI: 10.1016/j.foodchem.2020.126540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
42
|
Guo Z, Zhao F, Chen H, Tu M, Tao S, Wang Z, Wu C, He S, Du M. Heat treatments of peptides from oyster ( Crassostrea gigas) and the impact on their digestibility and angiotensin I converting enzyme inhibitory activity. Food Sci Biotechnol 2020; 29:961-967. [PMID: 32582458 DOI: 10.1007/s10068-020-00736-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/28/2022] Open
Abstract
The changes of protein digestibility, the peptides in the digestive juice and angiotensin I converting enzyme (ACE) inhibitory activity after heating of oysters were investigated. The digestibility of raw oysters was 71.1%, and that of oysters heated at 100 °C was 67.9%. A total of 169 and 370 peptides were identified from the digestion of raw oysters and heated oysters, respectively. According to UPLC-Q-TOF-MS spectra, the peptides with a molecular weight below 2000 Da accounted for 87.6% of the total peptides of raw oysters and 94% of heated oysters. Testing the ACE inhibitory activity in vitro, the IC50 values of raw oyster and cooked oyster were 6.77 μg/mL and 3.34 μg/mL, respectively. Taken together, the results showed that heated oysters could produce more active peptides and provide ACE inhibitory activity.
Collapse
Affiliation(s)
- Zixuan Guo
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Fujunzhu Zhao
- Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, State College, Pennsylvania 16802 USA
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Shuaifei Tao
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Shudong He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 China
| |
Collapse
|
43
|
Gallego M, Mauri L, Aristoy MC, Toldrá F, Mora L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103956] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Preparation of sea cucumber (Stichopus variegates) peptide fraction with desired organoleptic property and its anti-aging activity in fruit flies and D-galactose-induced aging mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
45
|
Xia Y, Yu J, Xu W, Shuang Q. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. J Dairy Sci 2020; 103:4919-4928. [DOI: 10.3168/jds.2019-17594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
46
|
Mora L, González-Rogel D, Heres A, Toldrá F. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Barrón-Ayala CG, Valenzuela-Melendres M, Camou JP, Sebranek JG, Dávila-Ramírez JL, Cumplido-Barbeitia G. Pork frankfurters prepared with hydrolyzed whey: Preliminary product quality aspects and inhibitory activity of the resulting peptides on angiotensin-converting enzyme. Meat Sci 2020; 166:108111. [PMID: 32171565 DOI: 10.1016/j.meatsci.2020.108111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 01/26/2023]
Abstract
The objective of this study was to assess the addition of whey protein hydrolysate (WH) on quality and antihypertensive potential of pork frankfurters, as the first step in development of a functional meat product. A hydrolyzed whey protein solution was incorporated in the frankfurter formula according to the following treatments: T0 (30% water), T1 (10% WH, 20% water), T2 (20% WH, 10% water) and T3 (30% WH). Addition of up to 30% WH increased lightness and yellowness, decreased hardness and chewiness by 15% and shear force by 43%, with no effect on pH (6.36) and cooking yield (93%). The WH addition resulted in an increase in the antihypertensive potential (IC50 258.78 μg/mL) relative to the T0 (IC50 1548.25 μg/mL). Cold storage of the product with 30% WH did not impact physicochemical quality, nor did it modify the antihypertensive potential. Incorporation of whey hydrolysate into pork frankfurters could be an option for providing antihypertensive peptides in food for health-oriented consumers.
Collapse
Affiliation(s)
- Cynthia G Barrón-Ayala
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Juan P Camou
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico.
| | - Joseph G Sebranek
- Iowa State University, Department of Animal Science, 215 Meat Laboratory, Ames, IA 50011, USA
| | - José L Dávila-Ramírez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Germán Cumplido-Barbeitia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
48
|
Bechaux J, Ferraro V, Sayd T, Chambon C, Le Page JF, Drillet Y, Gatellier P, Santé-Lhoutellier V. Workflow towards the generation of bioactive hydrolysates from porcine products by combining in silico and in vitro approaches. Food Res Int 2020; 132:109123. [PMID: 32331690 DOI: 10.1016/j.foodres.2020.109123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Food-derived bioactive peptides have generated an increasing interest in the field of health and well-being research. They can act either against the metabolic syndrome, participate in regulating the oxidation balance or act on the immune system. The aim of this study is to develop a workflow to generate bioactive peptides from three porcine offals namely, heart, liver, and lung and one muscle the Longissimus Dorsi, by combining in silico and in vitro approaches. Bioinformatics tools (e.i. BIOPEP and Uniprot) permitted to orientate the choice of enzymes for generating abundant bioactive peptides from the four studied porcine products. With papain and subtilisin, the main bioactivities potentially released were ACE inhibitors, DPP4 inhibitors and antioxidant peptides. An in vitro validation study using papain and subtilisin demonstrated high DPP4 inhibitors and antioxidant bioactivities for the generation of peptides. This work allowed: i) the identification of all proteins that composed porcine heart, liver, lung and LD muscle that could be useful for the scientific community, ii) the development of a workflow to select most abundant proteins in a product while considering abundance factors and iii) the potential of porcine meat and offals to generate DPP4 inhibitors and antioxidant peptides. However, there is still a need in developing new tools in order to face limitations of mass spectrometry for the identification of peptides with less than six amino acids. Such a work may contribute to the development of the circular economy and the innovative creation of value-added products from animal production.
Collapse
Affiliation(s)
- Julia Bechaux
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France; Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Vincenza Ferraro
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Thierry Sayd
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Christophe Chambon
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Plateforme exploration du métabolisme (PFEM), Site de Theix, 63122 Saint Genès Champanelle, France
| | | | - Yoan Drillet
- Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Philippe Gatellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Véronique Santé-Lhoutellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France.
| |
Collapse
|
49
|
Dellafiora L, Pugliese R, Bollati C, Gelain F, Galaverna G, Arnoldi A, Lammi C. "Bottom-Up" Strategy for the Identification of Novel Soybean Peptides with Angiotensin-Converting Enzyme Inhibitory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2082-2090. [PMID: 31984733 PMCID: PMC7997397 DOI: 10.1021/acs.jafc.9b07361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/01/2023]
Abstract
IAVPTGVA (Soy1) and LPYP are two soybean peptides, which display a multifunctional behavior, showing in vitro hypocholesterolemic and hypoglycemic activities. A preliminary screening of their structures using BIOPEP suggested that they might be potential angiotensin-converting enzyme (ACE) inhibitors. Therefore, a bottom-up-aided approach was developed in order to clarify the in vitro hypotensive activity. Soy1 and LPYP dropped the intestinal and renal ACE enzyme activity with IC50 values equal to 14.7 ± 0.28 and 5.0 ± 0.28 μM (Caco-2 cells), and 6.0 ± 0.35 and 6.8 ± 0.20 μM (HK-2 cells), respectively. In parallel, a molecular modeling study suggested their capability to act as competitive inhibitors of this enzyme. Finally, in order to increase both their stability and hypotensive properties, a suitable strategy for the harmless control of their release from a nanomaterial was developed through their encapsulation into the RADA16-assembling peptide.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department
of Food and Drug, University of Parma, Parma 43124, Italy
| | - Raffaele Pugliese
- Tissue
Engineering Unit, Institute for Stem Cell
Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT,
Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Foggia, Italy
| | - Carlotta Bollati
- Department
of Pharmaceutical Sciences, University of
Milan, Milan 20133, Italy
| | - Fabrizio Gelain
- Tissue
Engineering Unit, Institute for Stem Cell
Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT,
Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Foggia, Italy
- Center
for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Gianni Galaverna
- Department
of Food and Drug, University of Parma, Parma 43124, Italy
| | - Anna Arnoldi
- Department
of Pharmaceutical Sciences, University of
Milan, Milan 20133, Italy
| | - Carmen Lammi
- Department
of Pharmaceutical Sciences, University of
Milan, Milan 20133, Italy
| |
Collapse
|
50
|
Isolation and identification of alcohol dehydrogenase stabilizing peptides from Alcalase digested chicken breast hydrolysates. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|