1
|
Liu Y, Xing J, Bi X, Shen J, Zhang S, Xu X, Mao L, Lou Y, Wu X, Mu Y. A novel and sensitive method for simultaneous determination of 6 low-calorie bulk sweeteners by HPLC-ELSD. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124008. [PMID: 38244427 DOI: 10.1016/j.jchromb.2024.124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
A novel and sensitive method for the simultaneous analysis of six low-calorie bulk sweeteners (D-allulose, D-tagatose, D-mannitol, mycose, palatinose, and erythritol) without derivatisation was developed using high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). Chromatographic separations were carried out on a Zorbax Original NH2 (5 μm particle size, 250 mm×4.60 mm id, 70 Å) column with flow rate gradient elution with acetonitrile: water (80:20, v/v). Drift tube temperature was set at 50 ℃, the nebuliser carrier gas flow rate was 1.0 mL·min-1, and nitrogen pressure was regulated to 276 kPa with gain:3. The regression equation showed good linearity (R2 = 0.9985-0.9998) for all six low-calorie bulk sweeteners in the tested range (0.060-0.60 mg·mL-1). The limits of detection (LOD) for the six low-calorie bulk sweeteners ranged from 0.02 to 0.06 mg·mL-1. The proposed HPLC-ELSD method was validated for the quantification of the low-calorie bulk sweeteners in 14 types of foods, and the results were satisfactory. In addition, the results showed that the number of sweeteners in each food product varied. The presence of multiple low-calorie bulk sweeteners in certain foods is interesting. This method is successful in monitoring low-calorie bulk sweeteners in food.
Collapse
Affiliation(s)
- Yu Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China; Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Jiali Xing
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China.
| | - Xiaoli Bi
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Jian Shen
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Shufen Zhang
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Xiaorong Xu
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Lingyan Mao
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China
| | - Yongjiang Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xi Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinghua Mu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
2
|
Kumar A, Singh N, Joshi R. Deciphering the metabolic signatures of Trigonella microgreens as a function of photoperiod and temperature using targeted compound analysis and non-targeted UHPLC-QTOF-IMS based approach. Food Res Int 2024; 176:113834. [PMID: 38163730 DOI: 10.1016/j.foodres.2023.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Trigonella foenum-graecum L. (Fenugreek) is an annual herb that belongs to Fabaceae family. The compositional make-up of microgreens depends on prevailing environmental conditions. So, Trigonella microgreens were cultivated under different photoperiod and temperature conditions and evaluated for plant height, total chlorophyll content (TCC), targeted compound analysis and non-targeted UHPLC-QTOF-IMS based metabolomic profile. The plant height and TCC of Trigonella microgreens increased by approximately 22 % and 20 %, respectively under T1 conditions (longer photoperiod of 22 h with 22 °C in light and 17 °C in dark). The targeted phenolic profile analysis revealed the dominant presence of gallic acid, p-coumaric acid and apigenin in Trigonella microgreens. Also, the concentration of p-coumaric acid concentration raised from 3.51 mg/g to 5.83 mg/g as a response of T1 conditions. The sugar profile revealed augmented concentration of myo-inositol, glucose, fructose, xylose, maltose, and sucrose in longer photoperiod with T1 conditions. The microgreens were also rich in amino acids like aspartic acid, glutamic acid, leucine, isoleucine, and phenylalanine. Notably, the concentration of proline increased from 10.40 mg/g to 16.92 mg/g as a response to T1 growth conditions. The concentration of these metabolites varied significantly under different photoperiod and temperature conditions. The comprehensive non-targeted UHPLC-QTOF-IMS analysis of microgreens revealed different class of metabolites like organic compounds, alkaloids, coumarin-derivatives, phenolic and flavonoid derivatives, terpenoids, sugars, amino acids and few nucleic acid derivatives. The multivariate PLS-DA explained different expression level of metabolites under different growing conditions. The T1 growing condition resulted in the increased biosynthesis of phenolic compounds and various metabolites. The expression level of terpenoid derivatives specifically of Trigonelloside C and Trigoneoside XIIa/b increased under T1 conditions. The substantial alteration in the metabolites due to growing conditions may alter the microgreen's dietary benefits. So, additional research may be warranted.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India.
| | - Robin Joshi
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania (UPenn), Philadelphia, PA 19104, USA; Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
3
|
Huang YP, Paviani B, Fukagawa NK, Phillips KM, Barile D. Comprehensive oligosaccharide profiling of commercial almond milk, soy milk, and soy flour. Food Chem 2023; 409:135267. [PMID: 36586264 DOI: 10.1016/j.foodchem.2022.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Oligosaccharides are known for several bioactivities on health, however, in sensitive individuals, can cause intestinal discomfort. This study aimed to investigate the oligosaccharide profiles in selected plant-based food products. A quantification method based on high-performance anion-exchange chromatography-pulsed amperometric detection was developed, validated, and used to measure major oligosaccharides. Additional low-abundant oligosaccharides and glycosides were characterized by liquid chromatography-tandem mass spectrometry and glycosidases. The summed concentration of raffinose, stachyose, and verbascose ranged from 0.12-0.19 mg/g in almond milk, 3.6-6.4 mg/g in soy milk, and 74-77 and 4.8-57 mg/g in defatted and full-fat soy four. Over 80 different oligosaccharides were characterized. Novel compounds, 2,3-butanediol glycosides, were identified in almond milk. Low-abundant oligosaccharides represented 25 %, 6 %, and 10 % of total OS in almond milk, soy milk, and soy flour, respectively. The data here are useful to estimate oligosaccharide consumption from dietary intake and facilitate further studies on their bioactivity.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Naomi K Fukagawa
- USDA ARS Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, BARC-East, Center Road, Beltsville, MD 20705, United States
| | | | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
4
|
Dong X, Chen L, Yang H, Tian L, Dong F, Chai Y, Qu LQ. Pho1 cooperates with DPE1 to control short maltooligosaccharide mobilization during starch synthesis initiation in rice endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:47. [PMID: 36912930 DOI: 10.1007/s00122-023-04250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Plastidial α-glucan phosphorylase is a key factor that cooperates with plastidial disproportionating enzyme to control short maltooligosaccharide mobilization during the initiation process of starch molecule synthesis in developing rice endosperm. Storage starch synthesis is essential for grain filling. However, little is known about how cereal endosperm controls starch synthesis initiation. One of core events for starch synthesis initiation is short maltooligosaccharide (MOS) mobilization consisting of long MOS primer production and excess MOS breakdown. By mutant analyses and biochemical investigations, we present here functional identifications of plastidial α-glucan phosphorylase (Pho1) and disproportionating enzyme (DPE1) during starch synthesis initiation in rice (Oryza sativa) endosperm. Pho1 deficiency impaired MOS mobilization, triggering short MOS accumulation and starch synthesis reduction during early seed development. The mutant seeds differed significantly in MOS level and starch content at 15 days after flowering and exhibited diverse endosperm phenotypes during mid-late seed development: ranging from pseudonormal to shrunken (Shr), severely or excessively Shr. The level of DPE1 was almost normal in the PN seeds but significantly reduced in the Shr seeds. Overexpression of DPE1 in pho1 resulted in plump seeds only. DPE1 deficiency had no obvious effects on MOS mobilization. Knockout of DPE1 in pho1 completely blocked MOS mobilization, resulting in severely and excessively Shr seeds only. These findings show that Pho1 cooperates with DPE1 to control short MOS mobilization during starch synthesis initiation in rice endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liangke Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Pu Z, Chen X, Dong B, Ma P, Li X. Multiple approaches to characterize and visualize the chemical composition of Sijunzi Decoction comprehensively. J Sep Sci 2023; 46:e2200737. [PMID: 36807552 DOI: 10.1002/jssc.202200737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
Sijunzi Decoction is composed of Ginseng Radix et Rhizoma, Atractylodes Macrocephalae Rhizoma, Poria, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle, and it is a classic formula for treating spleen deficiency syndrome in Chinese medicine. Clarifying the active substances is an effective way to develop Traditional Chinese medicine and innovative medicines. Carbohydrates, proteins, amino acids, saponins, flavonoids, phenolic acids, and inorganic elements in the decoction were analyzed by multiple approaches. A molecular network was also used for visualizing the ingredients in Sijunzi Decoction, and representative components were also quantified. The detected components accounted for 74.544% of the Sijunzi Decoction freeze-dried powder, including 41.751% crude polysaccharides, 17.826% sugars (degree of polymerization 1-2), 8.181% total saponins, 2.427% insoluble precipitates, 2.154% free amino acids, 1.177% total flavonoids, 0.546% total phenolic acids, and 0.483% inorganic elements. Molecular network and quantitative analysis used to characterize the chemical composition of Sijunzi Decoction. The present study systematically characterized the constituents of Sijunzi Decoction, revealed the composition ratio of each type of constituent, and provided a reference for study on the substance basis of other Chinese medicine.
Collapse
Affiliation(s)
- Zongjin Pu
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Xiaonan Chen
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Bangjian Dong
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Ping Ma
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Xiaobo Li
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| |
Collapse
|
6
|
Kumar A, Singh N, Kaur A, Joshi R. Sneak-peek into the chlorophyll content, antioxidant activity, targeted and non-targeted UHPLC-QTOF LC/MS metabolomic fingerprints of pulse microgreens grown under different photoperiod regimes. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Development of Green UV-Vis Method for Direct Determination of Total Sugars in the Aqueous Extract of Teff ( Eragrostis tef (Zuccagni) Trotter) Grains and Other Cereals. Int J Anal Chem 2022; 2022:5129510. [PMID: 36388771 PMCID: PMC9643061 DOI: 10.1155/2022/5129510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
There is no ultraviolet visible (UV-Vis) spectrophotometric method for the direct determination of total sugars in the aqueous extract of teff grain samples. Therefore, the objective of this study was to develop a green UV-Vis spectrophotometric method to determine total sugars in the aqueous extract of white teff, brown teff, white rice, and red wheat grain samples. The calibration curve was established in the range of 20.11-7,907 mg/L using sucrose as a standard with R 2 = 0.9996. The limit of detection and limit of quantification were 4.4 and 14.6 mg/L, respectively. The relative standard deviation (6.9%) of the method for the sucrose standard was within the acceptable range indicating that the method is precise. The amount of total sugars determined in the white teff (5.48-9.44% (w/w), brown teff (6.17-10.32% (w/w)), white rice (3.19% (w/w)), and red wheat (9.22% (w/w)) grain samples was comparable with other reported cereal grains. Furthermore, the accuracy of the developed analytical method was also evaluated by spiking the known amount of the sucrose standard solution to the white teff, brown teff, white rice, and red wheat sample extracts, and percentage recoveries found were in the acceptable range (85 ± 2 - 105 ± 4%) with an average recovery of 93%, confirming that the new green method is quantitatively reproducible. Hence, a fast, simple, inexpensive, widely used, selective, sensitive, precise, and accurate green UV-Vis method was developed and validated for the direct determination of total sugars in the aqueous extract of teff, white rice, and red wheat grain samples.
Collapse
|
8
|
Fraga S, Domingues Nasário F, Gonçalves D, Antonio Cabral F, José Maximo G, José de Almeida Meirelles A, Jocelyne Marsaioli A, Araujo Sampaio K. Caferana seeds ( Bunchosia glandulifera) as a new source of nutrients: Evaluation of the proximal composition, solvent extraction, bioactive compounds, and δ-lactam isolation. Food Chem X 2021; 12:100161. [PMID: 34877526 PMCID: PMC8633560 DOI: 10.1016/j.fochx.2021.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022] Open
Abstract
Caferana seeds powder is a promising raw material for nutraceutical products. There were found 9 essential amino acids and high levels of protein and carbohydrates. 10 compounds were identified in the volatile profile. The lyophilized caferana seeds flour was subjected to solvent extraction. Extracts contained phenolic compounds, caffeine, and δ-lactam.
The proximal composition, amino acid, carbohydrate, and volatile profiles of caferana (Bunchosia glandulifera) seeds flour were here assessed. Seeds were also subjected to the following extraction processes: one with pressurized ethanol (PLE) and two with ethanol + supercritical CO2 mixture at different temperatures and pressures (SC1 and SC2). Extracts were characterized in terms of caffeine, total phenolic, and δ-lactam. The characterization of caferana seed and its extracts is unprecedented in terms of carbohydrate and volatiles profiles, besides the δ-lactam identification/isolation. SC2 extract exhibited a higher caffeine (9.3 mg/g) and δ-lactam (29.4 mg/g) content, whereas the PLE extract contained a higher total phenolic amount (3.0 mgGAE/g). Caferana is regionally associated to protective effects on mental health. Its byproduct (seed) revealed to be a promising source of bioactive compounds, and a potential raw material of nutritive extracts and flours that can be incorporated into pharmaceutical, nutraceutical, cosmetic, and food products.
Collapse
Key Words
- 1H-pyrrole-2,5-dione (PubChem CID10935)
- Amino acids
- Arabinose (PubChem CID66308)
- Aspartate (PubChem CID5960)
- CO2, carbon dioxide
- Caffeine
- Caffeine (PubChem CID2519)
- Carbohydrates
- EDTA, ethylenediamine tetra-acetic acid
- FTIR, Fourier transform infrared spectroscopy
- Fructose (PubChem CID2723872)
- GAE, gallic acid equivalent
- GC–MS, gas chromatography coupled to a mass spectrometry
- GRAS, generally recognized as safe
- Glutamate (PubChem CID33032)
- HPLC, high performance liquid chromatography
- HS-SPME, headspace solid phase microextraction
- Hexanal (PubChem CID6184)
- IUPAC, International Union of Pure and Applied Chemistry Extraction
- Leucine (PubChem CID6106)
- M%, moisture, in percentage
- NMR, nuclear magnetic resonance
- PLE, pressurized ethanol extraction (process 3)
- PLE, pressurized liquid extraction
- PUFAs, polyunsaturated fatty acids
- Phenolic compounds
- SC1, supercritical carbon dioxide and ethanol extraction (process 1)
- SC2, supercritical carbon dioxide and ethanol extraction (process 2)
- SFE, supercritical fluid extraction
- ScCO2, supercritical carbon dioxide
- Sorbitol (PubChem CID5780)
- Supercritical extraction
- TPC, total phenolic compounds
- VM%, volatile + moisture content, in percentage
- Volatile compounds
- δ-lactam (PubChem CID6453994)
Collapse
Affiliation(s)
- Sara Fraga
- School of Food Engineering (FEA), University of Campinas (UNICAMP), 80 Monteiro Lobato St., 13083-862 Campinas, SP, Brazil
| | - Fábio Domingues Nasário
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 126 Josué de Castro St., 13083-861 Campinas, SP, Brazil
| | - Daniel Gonçalves
- School of Food Engineering (FEA), University of Campinas (UNICAMP), 80 Monteiro Lobato St., 13083-862 Campinas, SP, Brazil
| | - Fernando Antonio Cabral
- School of Food Engineering (FEA), University of Campinas (UNICAMP), 80 Monteiro Lobato St., 13083-862 Campinas, SP, Brazil
| | - Guilherme José Maximo
- School of Food Engineering (FEA), University of Campinas (UNICAMP), 80 Monteiro Lobato St., 13083-862 Campinas, SP, Brazil
| | | | - Anita Jocelyne Marsaioli
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 126 Josué de Castro St., 13083-861 Campinas, SP, Brazil
| | - Klicia Araujo Sampaio
- School of Food Engineering (FEA), University of Campinas (UNICAMP), 80 Monteiro Lobato St., 13083-862 Campinas, SP, Brazil
| |
Collapse
|
9
|
Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation. Food Chem 2020; 343:128423. [PMID: 33168261 DOI: 10.1016/j.foodchem.2020.128423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
The aim was to determine inhibition of human α-amylase activity by (poly)phenols using maltoheptaoside as substrate with direct chromatographic product quantification, compared to hydrolysis of amylose and amylopectin estimated using 3,5-dinitrosalicylic acid. Acarbose exhibited similar IC50 values (50% inhibition) with maltoheptaoside, amylopectin or amylose as substrates (2.37 ± 0.11, 3.71 ± 0.12 and 2.08 ± 0.01 µM respectively). Epigallocatechin gallate, quercetagetin and punicalagin were weaker inhibitors of hydrolysis of maltoheptaoside (<50% inhibition) than amylose (IC50: epigallocatechin gallate = 20.41 ± 0.25 µM, quercetagetin = 30.15 ± 2.05 µM) or amylopectin. Interference using 3,5-dinitrosalicylic acid was in the order punicalagin > epigallocatechin gallate > quercetagetin, with minimal interference using maltoheptaoside as substrate. The main inhibition mechanism of epigallocatechin gallate and punicalagin was through complexation with starch, especially amylose, whereas only quercetagetin additionally binds to the α-amylase active site. Interference is minimised using maltoheptaoside as substrate with product detection by chromatography, potentially allowing assessment of direct enzyme inhibition by almost any compound.
Collapse
|
10
|
Li Y, Liang J, Shen Y, Kuang HX, Xia YG. A new application of acetylation for analysis of acidic heteropolysaccharides by liquid chromatography-electrospray mass spectrometry. Carbohydr Polym 2020; 245:116439. [DOI: 10.1016/j.carbpol.2020.116439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
|
11
|
Moretti A, Arias CL, Mozzoni LA, Chen P, McNeece BT, Mian MAR, McHale LK, Alonso AP. Workflow for the Quantification of Soluble and Insoluble Carbohydrates in Soybean Seed. Molecules 2020; 25:E3806. [PMID: 32825674 PMCID: PMC7504011 DOI: 10.3390/molecules25173806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/12/2023] Open
Abstract
Soybean seed composition has a profound impact on its market value and commercial use as an important commodity. Increases in oil and protein content have been historically pursued by breeders and genetic engineers; consequently, rapid methods for their quantification are well established. The interest in complete carbohydrate profiles in mature seeds, on the other hand, has recently increased due to numerous attempts to redirect carbohydrates into oil and protein or to offer specialty seed with a specific sugar profile to meet animal nutritional requirements. In this work, a sequential protocol for quantifying reserve and structural carbohydrates in soybean seed was developed and validated. Through this procedure, the concentrations of soluble sugars, sugar alcohols, starch, hemicellulose, and crystalline cellulose can be determined in successive steps from the same starting material using colorimetric assays, LC-MS/MS, and GC-MS. The entire workflow was evaluated using internal standards to estimate the recovery efficiency. Finally, it was successfully applied to eight soybean genotypes harvested from two locations, and the resulting correlations of carbohydrate and oil or protein are presented. This methodology has the potential not only to guide soybean cultivar optimization processes but also to be expanded to other crops with only slight modifications.
Collapse
Affiliation(s)
- Ademar Moretti
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| | - Cintia L. Arias
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| | - Leandro A. Mozzoni
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873, USA;
| | - Brant T. McNeece
- USDA-ARS, Soybean & Nitrogen Fixation Unit, Raleigh, NC 27607, USA; (B.T.M.); (M.A.R.M.)
| | - M. A. Rouf Mian
- USDA-ARS, Soybean & Nitrogen Fixation Unit, Raleigh, NC 27607, USA; (B.T.M.); (M.A.R.M.)
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| |
Collapse
|
12
|
Bioresource Utilization of Djulis (Chenopodium formosanum) Biomass as Natural Antioxidants. SUSTAINABILITY 2020. [DOI: 10.3390/su12155926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Djulis (Chenopodium formosanum) is a yearly, fast-growing, under-utilized pseudo-cereal with a high proportion of biomass content. We used the hulls, which are usually removed from djulis as crop residue, to evaluate the free-radical scavenging and antioxidant capacity of djulis. We studied the antioxidant capacity of ethanol- and water-extracted hulls and roots by using various in vitro methods. Ascorbic acid was the reference sample. The extract samples were used at 200, 400, 600, 800, and 1000 µg/mL. Total sugar content, total phenolic content, and total flavonoid content were assessed. Antioxidant activity was assessed by using the Trolox equivalent antioxidant capacity, ferric reducing antioxidant power, cupric ion reducing antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and N, N-dimethyl-ρ-phenylenediamine. Ethanol- and water-extracted red djulis hulls showed high amounts of total sugar, total phenolic content, total flavonoid content, and antioxidant capacity. Moreover, ethanol- and water-extracted red djulis roots showed moderate antioxidant capacity. However, ethanol- and water-extracted yellow djulis hulls showed limited antioxidant activities. Utilization of the biomass of djulis hulls and roots as natural antioxidant resources may be environmentally friendly and foreseeable.
Collapse
|
13
|
Pitsch J, Höglinger O, Weghuber J. Roasted Rye as a Coffee Substitute: Methods for Reducing Acrylamide. Foods 2020; 9:foods9070925. [PMID: 32674330 PMCID: PMC7404811 DOI: 10.3390/foods9070925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is assumed to be a potential carcinogen, and reference values have therefore been implemented in EU legislation. Thus, the food industry needs to reduce the acrylamide content in consumer products to the lowest possible value. In this study, roasted rye was evaluated for its suitability as a coffee substitution product with respect to its acrylamide content. The influence of process modifiers, free asparagine content, storage, and rye type on the final content of acrylamide was investigated. Changes in carbohydrate composition and brightness caused by the roasting process were described. Sample analysis was conducted via GC-MS and HPLC-CAD. Existing methods were adapted to roasted rye as the sample matrix. CaCl2 and asparaginase treatment as well as pH adjustments prior to roasting did not prove to reduce the acrylamide content. A significantly (* p < 0.027) lower free asparagine content in the raw material resulted in a lower formation of acrylamide in the final product. The acrylamide content significantly decreased (**** p < 0.0001) after 3 (1100 ± 18 µg kg−1) and 6 (490 ± 7 µg kg−1) months of long-term storage. Only samples stored for 6 months (490 ± 7 µg kg−1) met the EU acrylamide content requirements (<500 µg kg−1) for grain-based coffee substitution products.
Collapse
Affiliation(s)
- Johannes Pitsch
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Otmar Höglinger
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- Correspondence: ; Tel.: +43-50804-44403
| |
Collapse
|
14
|
Kumari M, Joshi R, Kumar R. Metabolic signatures provide novel insights to Picrorhiza kurroa adaptation along the altitude in Himalayan region. Metabolomics 2020; 16:77. [PMID: 32577832 DOI: 10.1007/s11306-020-01698-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Along the altitude, environmental conditions vary significantly that might influence plant performance and distribution. Adaptation to these changing conditions is a complex biological process that involves reprogramming of genes, proteins and metabolites. The metabolic response of medicinal plants along the altitude has been less explored yet. OBJECTIVES In the present study, we investigated the adaptation strategies of Picrorhiza kurroa Royle ex Benth. along the altitude in organ specific manner using metabolomic approach. METHODS Picrorhiza kurroa plants at flowering stage were randomly sampled from three altitudes viz. 3400, 3800 and 4100 masl in the Himalayan region. Leaf, root and rhizome were used for LC-MS based non-targeted metabolite profiling and targeted analysis of sugars, amino acids, picrosides and their corresponding phenolic acids. RESULTS A total of 220, primary and secondary metabolites (SMs) were identified (p < 0.05) representing an extensive inventory of metabolites and their spatial distribution in P. kurroa. Differential accumulation of metabolites suggests source-sink carbon partitioning, occurrence of partial TCA cycle, ascorbate metabolism, purine catabolism and salvage route, pyrimidine synthesis, lipid alteration besides gibberellins and cytokinin inhibition might be an adaptive strategy to alpine environmental stress along the altitude. Further, marked differences of organ and altitude specific SMs reflect alteration in secondary metabolic pathways. Significant accumulation of picrosides suggests their probable role in P. kurroa adaptation. CONCLUSION This study provides a platform that would be useful in deciphering the role of metabolites considered to be involved in plant adaptation.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India.
| |
Collapse
|
15
|
Li M, Du J, Zhang K. Profiling of carbohydrates in commercial beers and their influence on beer quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3062-3070. [PMID: 32077484 DOI: 10.1002/jsfa.10337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The carbohydrates in beer play an important role as they are essential for fermentation. Any change in their composition may influence the sensory characteristics of the beer and so their determination is of great interest. This study compares the carbohydrates in three types of commercial beer - barley malt beer, wheat beer, and barley malt beer with adjuncts - and examines their influence on beer quality, which is important for selecting raw ingredients and production conditions, and for quality control. RESULTS Among the oligosaccharides in three types of beer, raffinose was the most, followed by maltotetraose, maltotriose and maltose. Monosaccharides were only present in small amounts. Dextrin, oligosaccharides with 2-6 polymerization degree and non-starch polysaccharides (NSP) make up 15.90-34.83%, 17.59-38.63%, and 2.33-7.47% of the total carbohydrates in beer, respectively. The dextrin content and NSP content were significantly (P < 0.05) different in wheat beer and barley malt beer, and their content was significantly (P < 0.01) correlated with the content of extracts in beer. Non-starch polysaccharide, dextrin, trisaccharide, and tetrasaccharide content significantly (P < 0.05) correlated with beer viscosity. These beer samples could be categorized clearly into three groups by principal component analysis. CONCLUSION The oligosaccharides in beer reflect yeast utilization, depending on the type of beer. Dextrin, oligosaccharides with 2-4 polymerization, and NSP, were major carbohydrates in beer. Their composition and concentration influenced its characteristics and quality, and played an important role in the discrimination of different beer types. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Kaili Zhang
- Shandong Taishan Beer Limited Co., Tai'an, China
| |
Collapse
|
16
|
Wang H, Blakeslee JJ, Jones ML, Chapin LJ, Dami IE. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110437. [PMID: 32081274 DOI: 10.1016/j.plantsci.2020.110437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Previous studies have demonstrated that the freezing tolerance (FT) of grapevine was enhanced by foliar application of exogenous abscisic acid (exo-ABA), a treatment which might be incorporated into cultural practices to mitigate cold damage in vineyards. To investigate the underlying mechanisms of this response, a two-year (2017 and 2018) study was conducted to characterize the effects of exo-ABA on greenhouse-grown 'Cabernet franc' grapevine. In control grapevines, both physiological (deeper dormancy) and biochemical (sugar accumulation in buds) changes occurred, indicating that grapevines initiated cold acclimation in the greenhouse. Compared to control, exo-ABA decreased stomatal conductance 2 h after application. Two weeks post application, exo-ABA treated grapevines showed accelerated transition of grapevine physiology during cold acclimation (increased depth of dormancy, decreased bud water content and enhanced bud FT), relative to control. Exo-ABA induced the accumulation of several sugars in buds including the raffinose family oligosaccharides (RFOs), and the RFO precursor, galactinol. The expression of raffinose and galactinol synthase genes was higher in exo-ABA treated grapevine buds, compared to control. The new findings from this study have advanced our understanding of the role of ABA in grapevine FT, which will be useful to develop future strategies to protect grapevines from cold damage.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA; Ohio Agricultural Research and Development Center Metabolite Analysis Cluster, The Ohio State University, Wooster, OH, 44691, USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Laura J Chapin
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Imed E Dami
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
17
|
Pico J, Pismag RY, Laudouze M, Martinez MM. Systematic evaluation of the Folin–Ciocalteu and Fast Blue BB reactions during the analysis of total phenolics in legumes, nuts and plant seeds. Food Funct 2020; 11:9868-9880. [DOI: 10.1039/d0fo01857k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Solid Phase Extraction (SPE) is highly advised for the analysis of total phenolics in legumes and nuts, even using Fast Blue BB (FBBB), which in turn displayed better performance over SPE-Folin Ciocalteu (FC).
Collapse
Affiliation(s)
- Joana Pico
- School of Engineering
- University of Guelph
- Guelph
- Canada
| | - Remigio Y. Pismag
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Food Engineering School
| | | | - Mario M. Martinez
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Department of Food Science
| |
Collapse
|
18
|
Ispiryan L, Heitmann M, Hoehnel A, Zannini E, Arendt EK. Optimization and Validation of an HPAEC-PAD Method for the Quantification of FODMAPs in Cereals and Cereal-Based Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4384-4392. [PMID: 30915837 DOI: 10.1021/acs.jafc.9b00382] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study presents an analytical method for the quantification of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) in cereals and cereal-based products, considering diverse ingredients, such as different cereals in addition to wheat, pulses, or pseudocereals. All carbohydrates have been separated, identified, and quantified with a high-performance anion-exchange chromatographic system coupled with a pulsed amperometric detection (HPAEC-PAD). The total fructan content and the average degree of polymerization (DPav) have been determined after enzymatic hydrolysis to the monomers glucose and fructose, on the basis of the principle of the official method for fructan quantification in food products, AOAC 997.08. The methods for extraction, separation, and detection as well as fructan determination are based on several other studies and were modified in order to minimize interferences in the analysis. The method has been validated with regard to the limits of detection and quantification, the linearity, the repeatability, and the accuracy as well as the DPav of the fructans.
Collapse
Affiliation(s)
- Lilit Ispiryan
- Food and Nutritional Sciences , University College Cork , College Road , Cork T12Y337 , Ireland
| | - Mareile Heitmann
- Food and Nutritional Sciences , University College Cork , College Road , Cork T12Y337 , Ireland
| | - Andrea Hoehnel
- Food and Nutritional Sciences , University College Cork , College Road , Cork T12Y337 , Ireland
| | - Emanuele Zannini
- Food and Nutritional Sciences , University College Cork , College Road , Cork T12Y337 , Ireland
| | - Elke K Arendt
- Food and Nutritional Sciences , University College Cork , College Road , Cork T12Y337 , Ireland
- APC Microbiome Ireland , Cork T12YT20 , Ireland
| |
Collapse
|
19
|
Simultaneous Determination of Cyclitols and Sugars Following a Comprehensive Investigation of 40 Plants. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01481-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Roman L, Sahagun M, Gomez M, Martinez MM. Nutritional and physical characterization of sugar-snap cookies: effect of banana starch in native and molten states. Food Funct 2019; 10:616-624. [DOI: 10.1039/c8fo02266f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starch digestion and consumer's acceptance of gluten-free sugar-snap cookies can be simultaneously improved by using banana starch as starchy replacer.
Collapse
Affiliation(s)
- Laura Roman
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Food Technology Area. College of Agricultural Engineering
| | - Marta Sahagun
- Food Technology Area. College of Agricultural Engineering
- University of Valladolid
- 34004 Palencia
- Spain
| | - Manuel Gomez
- Food Technology Area. College of Agricultural Engineering
- University of Valladolid
- 34004 Palencia
- Spain
| | | |
Collapse
|
21
|
Pokrzywnicka M, Koncki R. Disaccharides Determination: A Review of Analytical Methods. Crit Rev Anal Chem 2017; 48:186-213. [DOI: 10.1080/10408347.2017.1391683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Robert Koncki
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Segundo C, Román L, Lobo M, Martinez MM, Gómez M. Ripe Banana Flour as a Source of Antioxidants in Layer and Sponge Cakes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:365-371. [PMID: 28887738 DOI: 10.1007/s11130-017-0630-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
About one-fifth of all bananas harvested become culls that are normally disposed of improperly. However, ripe banana pulp contains significant amounts of fibre and polyphenol compounds as well as a high content of simple sugars (61.06 g/100 g), making it suitable for sucrose replacement in bakery products. This work studied the feasibility of incorporating ripe banana flour (20 and 40% of replacement) in cake formulation. Physical, nutritional and sensory attributes of sponge and layer cakes were evaluated. The inclusion of ripe banana flour generally led to an increased batter consistency that hindered cake expansion, resulting in a slightly lower specific volume and higher hardness. This effect was minimised in layer cakes where differences in volume were only evident with the higher level of replacement. The lower volume and higher hardness contributed to the decline of the acceptability observed in the sensory test. Unlike physical attributes, the banana flour inclusion significantly improved the nutritional properties of the cakes, bringing about an enhancement in dietary fibre, polyphenols and antioxidant capacity (up to a three-fold improvement in antioxidant capacity performance). Therefore, results showed that sugar replacement by ripe banana flour enhanced the nutritional properties of cakes, but attention should be paid to its inclusion level.
Collapse
Affiliation(s)
- Cristina Segundo
- Facultad de Ingeniería, CIT Jujuy, Universidad nacional de Jujuy, CONYCET, Avenida Italo Palanca, 4600, Salvador de Jujuy, Jujuy, Argentina
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004, Palencia, Spain
| | - Laura Román
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004, Palencia, Spain
| | - Manuel Lobo
- Facultad de Ingeniería, CIT Jujuy, Universidad nacional de Jujuy, CONYCET, Avenida Italo Palanca, 4600, Salvador de Jujuy, Jujuy, Argentina
| | - Mario M Martinez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004, Palencia, Spain
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004, Palencia, Spain.
| |
Collapse
|
23
|
Schievano E, Tonoli M, Rastrelli F. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey. Anal Chem 2017; 89:13405-13414. [DOI: 10.1021/acs.analchem.7b03656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Schievano
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Tonoli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
24
|
Odjo S, Huart F, Béra F, Jacquet N, Richel A, Blecker C, Malumba P. Influence of corn variety, drying temperature, and moisture content at harvest on the saccharides released during an in vitro pepsin-pancreatin digestion. STARCH-STARKE 2017. [DOI: 10.1002/star.201600292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sylvanus Odjo
- Gembloux Agro-Bio Tech, Food Process Engineering Laboratory; University of Liege; Belgium
| | - François Huart
- Gembloux Agro-Bio Tech, Food Process Engineering Laboratory; University of Liege; Belgium
| | - François Béra
- Gembloux Agro-Bio Tech, Food Process Engineering Laboratory; University of Liege; Belgium
| | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Department of Industrial Biological Chemistry; University of Liege; Belgium
| | - Aurore Richel
- Gembloux Agro-Bio Tech, Department of Industrial Biological Chemistry; University of Liege; Belgium
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation; University of Liege; Belgium
| | - Paul Malumba
- Gembloux Agro-Bio Tech, Food Process Engineering Laboratory; University of Liege; Belgium
| |
Collapse
|
25
|
Koh DW, Park JW, Lim JH, Yea MJ, Bang DY. A rapid method for simultaneous quantification of 13 sugars and sugar alcohols in food products by UPLC-ELSD. Food Chem 2017; 240:694-700. [PMID: 28946331 DOI: 10.1016/j.foodchem.2017.07.142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/24/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
A novel, rapid, simultaneous analysis method for five sugars (fructose, glucose, sucrose, maltose, and lactose) and eight sugar alcohols (erythritol, xylitol, sorbitol, mannitol, inositol, maltitol, lactitol, and isomalt) was developed using UPLC-ELSD, without derivatization. The analysis conditions, including the gradient conditions, modifier concentration and column length, were optimized. Thirteen sugars and sugar alcohols were separated well and the resolution of their peaks was above 1.0. Their optimum analysis condition can be analyzed within 15min. Standard curves for sugars and sugar alcohols with concentrations of 5.0-0.1% and 2.0-0.05% are presented herein, and their correlation coefficients are found to be above 0.999 and the limit of detection (LOD) was around 0.006-0.018%. This novel analysis system can be used for foodstuffs such as candy, chewing gum, jelly, chocolate, processed chocolate products, and snacks containing 0.21-46.41% of sugars and sugar alcohols.
Collapse
Affiliation(s)
- Dong-Wan Koh
- Lotte R&D Center, 19, Yangpyeong-ro 19-gil, Yeongdeungpo-gu, Seoul 07209, Republic of Korea
| | - Jae-Woong Park
- Lotte R&D Center, 19, Yangpyeong-ro 19-gil, Yeongdeungpo-gu, Seoul 07209, Republic of Korea
| | - Jung-Hoon Lim
- Lotte R&D Center, 19, Yangpyeong-ro 19-gil, Yeongdeungpo-gu, Seoul 07209, Republic of Korea
| | - Myeong-Jai Yea
- Lotte R&D Center, 19, Yangpyeong-ro 19-gil, Yeongdeungpo-gu, Seoul 07209, Republic of Korea
| | - Dae-Young Bang
- Lotte R&D Center, 19, Yangpyeong-ro 19-gil, Yeongdeungpo-gu, Seoul 07209, Republic of Korea.
| |
Collapse
|
26
|
Aguirre Valadez JM, Rivera-Espinosa L, Méndez-Guerrero O, Chávez-Pacheco JL, García Juárez I, Torre A. Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag 2016; 12:1729-1748. [PMID: 27920543 PMCID: PMC5125722 DOI: 10.2147/tcrm.s115902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A "leaky gut" is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications.
Collapse
Affiliation(s)
| | | | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | | | - Ignacio García Juárez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | - Aldo Torre
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| |
Collapse
|
27
|
Martínez MM, Pico J, Gómez M. Synergistic maltogenic α-amylase and branching treatment to produce enzyme-resistant molecular and supramolecular structures in extruded maize matrices. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Ni C, Zhu B, Wang N, Wang M, Chen S, Zhang J, Zhu Y. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar. Food Chem 2016; 194:555-60. [DOI: 10.1016/j.foodchem.2015.08.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022]
|
29
|
Odjo S, Béra F, Jacquet N, Richel A, Malumba P. Characterization of saccharides released during an in vitro pepsin-pancreatin digestion of corn flour using HPAEC-PAD. STARCH-STARKE 2016. [DOI: 10.1002/star.201500281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sylvanus Odjo
- Laboratory of Food Process Engineering, University of Liege; Gembloux Agro-Bio Tech; Passage des Déportés Gembloux Belgium
| | - François Béra
- Laboratory of Food Process Engineering, University of Liege; Gembloux Agro-Bio Tech; Passage des Déportés Gembloux Belgium
| | - Nicolas Jacquet
- Department of Industrial Biological Chemistry, University of Liege; Gembloux Agro-Bio Tech; Passage des Déportés Gembloux Belgium
| | - Aurore Richel
- Department of Industrial Biological Chemistry, University of Liege; Gembloux Agro-Bio Tech; Passage des Déportés Gembloux Belgium
| | - Paul Malumba
- Laboratory of Food Process Engineering, University of Liege; Gembloux Agro-Bio Tech; Passage des Déportés Gembloux Belgium
- Department of Chemistry and Agricultural Industry; University of Kinshasa; Kinshasa Democratic Republic of Congo
| |
Collapse
|