1
|
Guan ZJ, Zheng M, Tang ZX, Wei W, Stewart CN. Proteomic Analysis of Bt cry1Ac Transgenic Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2319. [PMID: 37375944 DOI: 10.3390/plants12122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Oilseed rape (Brassica napus L.) is an important cash crop, but transgenic oilseed rape has not been grown on a commercial scale in China. It is necessary to analyze the characteristics of transgenic oilseed rape before commercial cultivation. In our study, differential expression of total protein from the leaves in two transgenic lines of oilseed rape expressing foreign Bt Cry1Ac insecticidal toxin and their non-transgenic parent plant was analyzed using a proteomic approach. Only shared changes in both of the two transgenic lines were calculated. Fourteen differential protein spots were analyzed and identified, namely, eleven upregulated expressed protein spots and three downregulated protein spots. These proteins are involved in photosynthesis, transporter function, metabolism, protein synthesis, and cell growth and differentiation. The changes of these protein spots in transgenic oilseed rape may be attributable to the insertion of the foreign transgenes. However, the transgenic manipulation might not necessarily cause significant change in proteomes of the oilseed rape.
Collapse
Affiliation(s)
- Zheng-Jun Guan
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Zheng
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Department of Hotel Management, Linyi Technician Institute, Linyi 276005, China
| | - Zhi-Xi Tang
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, 2505 EJ Chapman Drive, Knoxville, TN 37996-4561, USA
| |
Collapse
|
2
|
Ramazan S, Jan N, John R. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature. BMC PLANT BIOLOGY 2023; 23:183. [PMID: 37020183 PMCID: PMC10074880 DOI: 10.1186/s12870-023-04198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Low temperature (LT) stress is one of the major environmental stress factors affecting the growth and yield of maize (Zea mays L.). Hence, it is important to unravel the molecular mechanisms behind LT stress tolerance to improve molecular breeding in LT tolerant genotypes. In the present study, two maize genotypes viz. Gurez local from Kashmir Himalaya and tropical grown GM6, were dissected for their LT stress response in terms of accumulation of differentially regulated proteins (DRPs). Leaf proteome analysis at three-leaf stage of maize seedlings subjected to LT stress of 6 °C for a total of 12 h duration was performed using two dimensional gel electrophoresis (2D-PAGE) followed by subsequent identification of the proteins involved. RESULTS After MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) and bioinformatics analysis, 19 proteins were successfully identified in Gurez local, while as 10 proteins were found to get successful identification in GM6. The interesting observations from the present investigation is the identification of three novel proteins viz. threonine dehydratase biosynthetic chloroplastic, thylakoidal processing peptidase 1 chloroplastic, and nodulin-like protein, whose role in abiotic stress tolerance, in general, and LT stress, in particular, has not been reported so far. It is important to highlight here that most of LT responsive proteins including the three novel proteins were identified from Gurez local only, owing to its exceptional LT tolerance. From the protein profiles, obtained in both genotypes immediately after LT stress perception, it was inferred that stress responsive protein accumulation and their expression fashion help the Gurez local in seedling establishment and withstand unfavorable conditions as compared to GM6. This was inferred from the findings of pathway enrichment analysis like regulation of seed growth, timing of floral transition, lipid glycosylation, and aspartate family amino acid catabolic processes, besides other key stress defense mechanisms. However, in GM6, metabolic pathways enriched were found to be involved in more general processes including cell cycle DNA replication and regulation of phenylpropanoid metabolism. Furthermore, majority of the qRT-PCR results of the selected proteins demonstrated positive correlation between protein levels and transcript abundance, thereby strengthening our findings. CONCLUSIONS In conclusion, our findings reported majority of the identified proteins in Gurez local exhibiting up-regulated pattern under LT stress as compared to GM6. Furthermore, three novel proteins induced by LT stress were found in Gurez local, requiring further functional validation. Therefore, our results offer more insights for elucidating the molecular networks mediating LT stress tolerance in maize.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Nelofer Jan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India.
| |
Collapse
|
3
|
Naab FZ, Coles D, Goddard E, Frewer LJ. Public Perceptions Regarding Genomic Technologies Applied to Breeding Farm Animals: A Qualitative Study. BIOTECH 2021; 10:biotech10040028. [PMID: 35822802 PMCID: PMC9245485 DOI: 10.3390/biotech10040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The societal acceptability of different applications of genomic technologies to animal production systems will determine whether their innovation trajectories will reach the commercialisation stage. Importantly, technological implementation and commercialisation trajectories, regulation, and policy development need to take account of public priorities and attitudes. More effective co-production practices will ensure the application of genomic technologies to animals aligns with public priorities and are acceptable to society. Consumer rejection of, and limited demand for, animal products developed using novel genomic technologies will determine whether they are integration into the food system. However, little is known about whether genomic technologies that accelerate breeding but do not introduce cross-species genetic changes are more acceptable to consumers than those that do. Five focus groups, held in the north east of England, were used to explore the perceptions of, and attitudes towards, the use of genomic technologies in breeding farm animals for the human food supply chain. Overall, study participants were more positive towards genomic technologies applied to promote animal welfare (e.g., improved disease resistance), environmental sustainability, and human health. Animal “disenhancement” was viewed negatively and increased food production alone was not perceived as a potential benefit. In comparison to gene editing, research participants were most negative about genetic modification and the application of gene drives, independent of the benefits delivered.
Collapse
Affiliation(s)
- Francis Z. Naab
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (F.Z.N.); (D.C.)
| | - David Coles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (F.Z.N.); (D.C.)
- Enhance International, The Bacchus, Elsdon, Newcastle upon Tyne NE19 1AA, UK
| | - Ellen Goddard
- Agricultural Marketing and Business, Faculty of Agricultural, Life and Environmental Sciences, 515 General Services Building, University of Alberta, Edmonton, AB T6G 2H1, Canada;
| | - Lynn J. Frewer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (F.Z.N.); (D.C.)
- Correspondence: ; Tel.: +44-(0)7553152743
| |
Collapse
|
4
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
5
|
Zanon Agapito-Tenfen S, Guerra MP, Nodari RO, Wikmark OG. Untargeted Proteomics-Based Approach to Investigate Unintended Changes in Genetically Modified Maize for Environmental Risk Assessment Purpose. FRONTIERS IN TOXICOLOGY 2021; 3:655968. [PMID: 35295118 PMCID: PMC8915820 DOI: 10.3389/ftox.2021.655968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Profiling technologies, such as proteomics, allow the simultaneous measurement and comparison of thousands of plant components without prior knowledge of their identity. The combination of these non-targeted methods facilitates a more comprehensive approach than targeted methods and thus provides additional opportunities to identify genotypic changes resulting from genetic modification, including new allergens or toxins. The purpose of this study was to investigate unintended changes in GM Bt maize grown in South Africa. In the present study, we used bi-dimensional gel electrophoresis based on fluorescence staining, coupled with mass spectrometry in order to compare the proteome of the field-grown transgenic hybrid (MON810) and its near-isogenic counterpart. Proteomic data showed that energy metabolism and redox homeostasis were unequally modulated in GM Bt and non-GM maize variety samples. In addition, a potential allergenic protein-pathogenesis related protein -1 has been identified in our sample set. Our data shows that the GM variety is not substantially equivalent to its non-transgenic near-isogenic variety and further studies should be conducted in order to address the biological relevance and the potential risks of such changes. These finding highlight the suitability of unbiased profiling approaches to complement current GMO risk assessment practices worldwide.
Collapse
Affiliation(s)
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
6
|
Gasperini AM, Garcia-Cela E, Sulyok M, Medina A, Magan N. Fungal diversity and metabolomic profiles in GM and isogenic non-GM maize cultivars from Brazil. Mycotoxin Res 2021; 37:39-48. [PMID: 33047278 PMCID: PMC7819916 DOI: 10.1007/s12550-020-00414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
There is little knowledge of the microbial diversity, mycotoxins and associated secondary metabolites in GM maize and isogenic non-GM cultivars (cvs). This study has quantified the microbial populations and dominant fungal genera in 6 cvs of each type representative of herbicide, pesticide or stacked resistance to both. The predominant mycotoxins and targeted metabolomics profiles were also compared between the two sets of cvs. This showed that the overall fungal populations were 8.8 CFUs g-1 maize. The dominant genera, isolated from maize samples, whether surface-sterilised or not, in all maize cvs were Fusarium, followed by Penicillium, Aspergillus and occasionally Cladosporium and Alternaria. The analysis of the targeted metabolomics showed that approx. 29 different metabolites were detected. These were dominated by fumonisins and minor Penicillium spp. metabolites (questiomycin A and rugulovasine A). Interestingly, the range and number of mycotoxins present in the GM cvs were significantly lower than in the non-GM maize samples. This suggests that while the fungal diversity of the two types of maize appeared to be very similar, the major contaminant mycotoxins and range of toxic secondary metabolites were much lower in the GM cvs.
Collapse
Affiliation(s)
- A M Gasperini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - E Garcia-Cela
- Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - M Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenzstr. 20, A-3430, Tulln, Vienna, Austria
| | - A Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - N Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
7
|
Hejri S, Salimi A, Malboobi MA, Fatehi F. Comparative proteome analyses of rhizomania resistant transgenic sugar beets based on RNA silencing mechanism. GM CROPS & FOOD 2021; 12:419-433. [PMID: 34494497 PMCID: PMC8820250 DOI: 10.1080/21645698.2021.1954467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rhizomania is an economically important disease of sugar beet, which is caused by Beet necrotic yellow vein virus (BNYVV). As previously shown, RNA silencing mechanism effectively inhibit the viral propagation in transgenic sugar beet plants. To investigate possible proteomic changes induced by gene insertion and/or RNA silencing mechanism, the root protein profiles of wild type sugar beet genotype 9597, as a control, and transgenic events named 6018-T3:S6-44 (S6) and 219-T3:S3-13.2 (S3) were compared by two-dimensional gel electrophoresis. The accumulation levels of 25 and 24 proteins were differentially regulated in S3 and S6 plants, respectively. The accumulation of 15 spots were increased or decreased more than 2-fold. Additionally, 10 spots repressed or induced in both, while seven spots showed variable results in two events. All the differentially expressed spots were analyzed by MALDI-TOF-TOF mass spectrometry. The functional analysis of differentially accumulated proteins showed that most of them are related to the metabolism and defense/stress response. None of these recognized proteins were allergens or toxic proteins except for a spot identified as phenylcoumaran benzylic ether reductase, Pyrc5, which was decreased in the genetically modified S6 plant. These data are in favor of substantial equivalence of the transgenic plants in comparison to their related wild type cultivar since the proteomic profile of sugar beet root was not remarkably affected by gene transfer and activation RNA silencing mechanism.
Collapse
Affiliation(s)
- Sara Hejri
- Department of Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Plant Biology, Faculty of Biosciences, Kharazmi University, Tehran, Iran
| | - Azam Salimi
- Department of Plant Biology, Faculty of Biosciences, Kharazmi University, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| |
Collapse
|
8
|
de Campos BK, Galazzi RM, Dos Santos BM, Balbuena TS, Dos Santos FN, Mokochinski JB, Eberlin MN, Arruda MAZ. Comparison of generational effect on proteins and metabolites in non-transgenic and transgenic soybean seeds through the insertion of the cp4-EPSPS gene assessed by omics-based platforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110918. [PMID: 32800253 DOI: 10.1016/j.ecoenv.2020.110918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This work evaluates different generations of transgenic (cp4-EPSPS gene) and non-transgenic soybean plants through proteomics and metabolomics. For proteomics purpose, 24 differentially abundant protein spots were found through 2-D DIGE, being 4 belonging to transgenic plants. From this total, 19 were successfully identified, storage proteins as predominant class. Some identified proteins are involved in growing and cell division, and stress response, such as LEA and dehydrin. For metabolomics, 17 compounds were putatively annotated, mainly belonging to the secondary metabolism, such as flavonoids. From these analyzes, all generations and varieties of the soybean are prone to be differentiate by PLS-DA. According to our results, transgenic plants appear to be more stable than non-transgenic ones. In addition, the omics-based approaches allowed access some relations between those differential spot proteins and metabolites, mainly those storage proteins and flavonoid.
Collapse
Affiliation(s)
- Bruna K de Campos
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rodrigo M Galazzi
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Bruna M Dos Santos
- Department of Technology, School of Agricultural and Veterinary Studies, State University "Júlio de Mesquita Filho"- UNESP - Jaboticabal, SP, 14884- 900, Brazil
| | - Tiago S Balbuena
- Department of Technology, School of Agricultural and Veterinary Studies, State University "Júlio de Mesquita Filho"- UNESP - Jaboticabal, SP, 14884- 900, Brazil
| | - Fábio N Dos Santos
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - João B Mokochinski
- London Institute of Medical Sciences, Faculty of Medicine Imperial College London, UK Research and Innovation, London, W12 0NN, United Kingdom
| | - Marcos N Eberlin
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
9
|
Guimarães Neto JOA, Aguiar TR. Evaluation of the efficiency of three different mineral adsorbents in the removal of pollutants in samples from a tropical spring in Northeastern Brazil. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1195-1207. [PMID: 32090402 DOI: 10.1002/wer.1314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human water sources are increasingly threatened around the world due to various sources of pollution such as agriculture and industry. The objective of this study was to evaluate three new adsorbents as pollutant remedies for subsequent application in the Joanes River located in the State of Bahia in Brazil. The specific pollutants were nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins. Initially, studies (pH 7 and 22°C) were performed with samples contaminated in the laboratory with phosphorus (P), nitrate ( NO 3 - ), and ammonia (NH3 ), to select the most efficient adsorbent and to determine the equilibrium time. Pumice bituminous coal was found to have the best efficiencies (≥70%) at 360 min (equilibration time). The experimental data did not fit the Langmuir and Freundlich model. The bituminous coal with pumice stone was then applied to water samples from a designated capture point of the Joanes springs, a river system that is responsible for supplying the city of Salvador and the metropolitan region, located on the northern coast of Bahia. The removal efficiency analyses were performed on a DR6000 UV/VIS SPECTROPHOTOMETER, using the methodology defined in the Standard Methods 2017, after which this adsorbent was subjected to scanning electron microscopy. As a result, removal efficiencies (≥98%) were obtained for all contaminants (nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins) as well as a highly heterogeneous layer pointed by SEM images, further demonstrating the adsorbent potential as a efficient alternative in environmental control after additional studies. PRACTITIONER POINTS: Pumice bituminous coal has proven to be an excellent adsorbent for a wide range of pollutants such as phosphorus, nitrogen, ammonia, toxins, cyanobacteria, and metals. The adsorbent promoted a high reduction in phosphorus concentrations (3.40 mg/L to 0.01 mg/L), about 98% and 81% for cyanobacteria (12,850 Cel/ml to 2,560 Cel/ml). The adsorbent promoted a high reduction in concentrations of 98% saxitoxins (4.32 µg/L to 0.2 µg/L).
Collapse
Affiliation(s)
| | - Terencio Rebello Aguiar
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
10
|
Jiang J, Xing F, Wang C, Zeng X, Zou Q. Investigation and development of maize fused network analysis with multi-omics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:380-387. [PMID: 31220804 DOI: 10.1016/j.plaphy.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 05/19/2023]
Abstract
Maize is a critically important staple crop in the whole world, which has contributed to both economic security and food in planting areas. The main target for researchers and breeding is the improvement of maize quality and yield. The use of computational biology methods combined with multi-omics for selecting biomolecules of interest for maize breeding has been receiving more attention. Moreover, the rapid growth of high-throughput sequencing data provides the opportunity to explore biomolecules of interest at the molecular level in maize. Furthermore, we constructed weighted networks for each of the omics and then integrated them into a final fused weighted network based on a nonlinear combination method. We also analyzed the final fused network and mined the orphan nodes, some of which were shown to be transcription factors that played a key role in maize development. This study could help to improve maize production via insights at the multi-omics level and provide a new perspective for maize researchers. All related data have been released at http://lab.malab.cn/∼jj/maize.htm.
Collapse
Affiliation(s)
- Jing Jiang
- School of Aerospace Engineering, Xiamen University, Xiamen, 361001, China
| | - Fei Xing
- School of Aerospace Engineering, Xiamen University, Xiamen, 361001, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
11
|
Tan Y, Zhang J, Sun Y, Tong Z, Peng C, Chang L, Guo A, Wang X. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Sci Rep 2019; 9:8219. [PMID: 31160654 PMCID: PMC6547748 DOI: 10.1038/s41598-019-44748-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Proteomic differences were compared between phytase-transgenic (PT) maize seeds and nontransgenic (NT) maize seeds through two-dimensional electrophoresis (2-DE) with mass spectrometry (MS). When maize was grown under field conditions, 30 differentially accumulated proteins (DAPs) were successfully identified in PT seeds (PT/NT). Clusters of Orthologous Groups (COG) functional classification of these proteins showed that the largest group was associated with posttranslational modifications. To investigate the effects of environmental factors, we further compared the seed protein profiles of the same maize planted in a greenhouse or under field conditions. There were 76 DAPs between the greenhouse- and field-grown NT maize seeds and 77 DAPs between the greenhouse- and field-grown PT maize seeds However, under the same planting conditions, there were only 43 DAPs (planted in the greenhouse) or 37 DAPs (planted in the field) between PT and NT maize seeds. The results revealed that DAPs caused by environmental factors were more common than those caused by the insertion of exogenous genes, indicating that the environment has much more important effects on the seed protein profiles. Our maize seed proteomics results also indicated that the occurrence of unintended effects is not specific to genetically modified crops (GMCs); instead, such effects often occur in traditionally bred plants. Our data may be beneficial for biosafety assessments of GMCs at the protein profile level in the future.
Collapse
Affiliation(s)
- Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China. .,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
12
|
Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. Recent applications of omics-based technologies to main topics in food authentication. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Agapito-Tenfen SZ, Vilperte V, Traavik TI, Nodari RO. Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:37. [PMID: 30294516 PMCID: PMC6153861 DOI: 10.1186/s12302-018-0168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND While some genetically modified organisms (GMOs) are created to produce new double-stranded RNA molecules (dsRNA), in others, such molecules may occur as an unintended effect of the genetic engineering process. Furthermore, GMOs might produce naturally occurring dsRNA molecules in higher or lower quantities than its non-transgenic counterpart. This study is the first to use high-throughput technology to characterize the miRNome of commercialized GM maize events and to investigate potential alterations in miRNA regulatory networks. RESULTS Thirteen different conserved miRNAs were found to be dys-regulated in GM samples. The insecticide Bt GM variety had the most distinct miRNome. These miRNAs target a range of endogenous transcripts, such as transcription factors and nucleic acid binding domains, which play key molecular functions in basic genetic regulation. In addition, we have identified 20 potential novel miRNAs with target transcripts involved in lipid metabolism in maize. isomiRs were also found in 96 conserved miRNAs sequences, as well as potential transgenic miRNA sequences, which both can be a source of potential off-target effects in the plant genome. We have also provided information on technical limitations and when to carry on additional in vivo experimental testing. CONCLUSIONS These findings do not reveal hazards per se but show that robust and reproducible miRNA profiling technique can strengthen the assessment of risk by detecting any new intended and unintended dsRNA molecules, regardless of the outcome, at any stage of GMO development.
Collapse
Affiliation(s)
| | - Vinicius Vilperte
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
- Present Address: Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover, 30419 Hannover, Germany
| | - Terje Ingemar Traavik
- GenØk–Centre for Biosafety, Forskningsparken i Breivika, Sykehusveien 23, 9294 Tromsø, Norway
| | - Rubens Onofre Nodari
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
| |
Collapse
|
14
|
Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Ann Allergy Asthma Immunol 2017; 119:214-222.e3. [PMID: 28890018 DOI: 10.1016/j.anai.2017.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- S Eliza Dunn
- Medical Sciences and Outreach Lead, Monsanto Company, St Louis, Missouri; Division of Emergency Medicine, Washington University, St Louis, Missouri
| | - John L Vicini
- Food and Feed Safety Scientific Affairs Lead, Monsanto Company, St Louis, Missouri
| | - Kevin C Glenn
- Allergenicity/Pipeline Issues Management Lead, Monsanto Company, St Louis, Missouri
| | - David M Fleischer
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew J Greenhawt
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
15
|
Rossi GB, Valentim-Neto PA, Blank M, Faria JCD, Arisi ACM. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (Phaseolus vulgaris L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7588-7597. [PMID: 28777559 DOI: 10.1021/acs.jafc.7b03220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.
Collapse
Affiliation(s)
| | | | | | - Josias Correa de Faria
- Embrapa Arroz e Feijão, Caixa Postal 179, 75375-000 Santo Antônio de Goiás, Goiás, Brazil
| | | |
Collapse
|
16
|
Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Sci Rep 2017; 7:9246. [PMID: 28835691 PMCID: PMC5569035 DOI: 10.1038/s41598-017-09557-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Proteomics has become a powerful technique for investigating unintended effects in genetically modified crops. In this study, we performed a comparative proteomics of the seeds of phytase-transgenic (PT) and non-transgenic (NT) maize using 2-DE and iTRAQ techniques. A total of 148 differentially expressed proteins (DEPs), including 106 down-regulated and 42 up-regulated proteins in PT, were identified. Of these proteins, 32 were identified through 2-DE and 116 were generated by iTRAQ. It is noteworthy that only three proteins could be detected via both iTRAQ and 2-DE, and most of the identified DEPs were not newly produced proteins but proteins with altered abundance. These results indicated that many DEPs could be detected in the proteome of PT maize seeds and the corresponding wild type after overexpression of the target gene, but the changes in these proteins were not substantial. Functional classification revealed many DEPs involved in posttranscriptional modifications and some ribosomal proteins and heat-shock proteins that may generate adaptive effects in response to the insertion of exogenous genes. Protein-protein interaction analysis demonstrated that the detected interacting proteins were mainly ribosomal proteins and heat-shock proteins. Our data provided new information on such unintended effects through a proteomic analysis of maize seeds.
Collapse
|
17
|
Xin X, Liu X, Li X, Ding X, Yang S, Jin C, Li G, Guo H. Comparative muscle proteomics/phosphoproteomics analysis provides new insight for the biosafety evaluation of fat-1 transgenic cattle. Transgenic Res 2017; 26:625-638. [DOI: 10.1007/s11248-017-0032-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 07/04/2017] [Indexed: 02/03/2023]
|
18
|
Molecular features of grass allergens and development of biotechnological approaches for allergy prevention. Biotechnol Adv 2017; 35:545-556. [PMID: 28535924 DOI: 10.1016/j.biotechadv.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/28/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses.
Collapse
|
19
|
Mesnage R, Agapito-Tenfen SZ, Vilperte V, Renney G, Ward M, Séralini GE, Nodari RO, Antoniou MN. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 2016; 6:37855. [PMID: 27991589 PMCID: PMC5171704 DOI: 10.1038/srep37855] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as 'substantially equivalent' to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | | | - Vinicius Vilperte
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - George Renney
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Malcolm Ward
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Gilles-Eric Séralini
- University of Caen, Institute of Biology, EA 2608 and Network on Risks, Quality and Sustainable Environment, MRSH, Esplanade de la Paix, University of Caen, Caen 14032, Cedex, France
| | - Rubens O. Nodari
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| |
Collapse
|
20
|
Tan Y, Yi X, Wang L, Peng C, Sun Y, Wang D, Zhang J, Guo A, Wang X. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety. FRONTIERS IN PLANT SCIENCE 2016; 7:1211. [PMID: 27582747 PMCID: PMC4987384 DOI: 10.3389/fpls.2016.01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence.
Collapse
Affiliation(s)
- Yanhua Tan
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoping Yi
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Cunzhi Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiaming Zhang
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Anping Guo
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xuchu Wang
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| |
Collapse
|
21
|
Schmidt D, Gaziola SA, Boaretto LF, Azevedo RA. Proteomic analysis of mature barley grains from C-hordein antisense lines. PHYTOCHEMISTRY 2016; 125:14-26. [PMID: 26976333 DOI: 10.1016/j.phytochem.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 05/24/2023]
Abstract
Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.
Collapse
Affiliation(s)
- Daiana Schmidt
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Salete Aparecida Gaziola
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Luis Felipe Boaretto
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil.
| |
Collapse
|