1
|
Sultanova ED, Bogdanov IM, Gromova NI, Astrakhantseva AV, Kapralov MA, Nizamutdinov AS, Mukhametzyanov TA, Islamov DR, Usachev KS, Serov NY, Burilov VA, Solovieva SE, Antipin IS. Synthesis of zwitterionic asymmetric and symmetric carboxy-imidazolium derivatives and their use in molecular interactions with bovine serum albumin. Org Biomol Chem 2025; 23:1981-1994. [PMID: 39834332 DOI: 10.1039/d4ob01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism. The effect of the oxo-bridge and the presence of a hydrophobic fragment in the structure of the molecules and its influence on their aggregation properties and interaction with BSA has also been studied. According to the fluorescence data, only in the case of the asymmetric derivatives with long alkyl fragments a shift of the BSA emission maximum is observed, indicating a change in the BSA microenvironment. The secondary structure of BSA remains virtually unchanged in the presence of carboxytriazoleimidazolium derivatives, as shown by circular dichroism. No significant changes in the structure of BSA were observed in the presence of zwitterionic compounds with an oxo-bridge at concentrations where fluorescence quenching occurs, as shown by time-resolved fluorescence measurements. Electrophoretic light scattering showed a recharging of BSA from a negative to a positive zeta potential in the presence of amphiphilic derivatives.
Collapse
Affiliation(s)
- Elza D Sultanova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Ilshat M Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Nadezhda I Gromova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Anna V Astrakhantseva
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Mikhail A Kapralov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Alexey S Nizamutdinov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Timur A Mukhametzyanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Daut R Islamov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Konstantin S Usachev
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, 2/31 Lobachevskogo Str., Kazan, 420111, Russian Federation
| | - Nikita Y Serov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir A Burilov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Svetlana E Solovieva
- A.E. Arbuzov Institute of Organic & Physical Chemistry, 8 Arbuzov str., Kazan, 420088, Russian Federation
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| |
Collapse
|
2
|
Taylor R, Swift T, Wilkinson D, Afarinkia K. A method for estimation of plasma protein binding using diffusion ordered NMR spectroscopy (DOSY). RSC Med Chem 2024; 15:2372-2379. [PMID: 39026647 PMCID: PMC11253862 DOI: 10.1039/d4md00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The plasma protein binding (PPB) of a drug plays a key role in both its pharmacokinetic and pharmacodynamic properties. During lead optimisation, medium and high throughput methods for the early determination of PPB can provide important information about potential PKPD profile within a chemotype or between different chemotype series. Diffusion ordered spectroscopy (DOSY) is an NMR spectroscopic technique that measures the diffusion of a molecule through the magnetic field gradient, according to its molecular size/weight. Here, we describe the use of DOSY for a rapid and straightforward method to evaluate the PPB of drug molecules, using their binding to bovine serum albumin (BSA) as a model.
Collapse
Affiliation(s)
- Rachel Taylor
- Institute of Cancer Therapeutics, University of Bradford Richmond Road BD7 1DP UK
| | - Thomas Swift
- Polymer and Biomaterials Laboratories, School of Chemistry and Bioscience, University of Bradford Richmond Road BD7 1DP UK
| | | | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford Richmond Road BD7 1DP UK
- School of Medicine and Biosciences, University of West London Saint Mary's Road London W5 5RF UK
| |
Collapse
|
3
|
Chen Y, Yi X, Pei Z, Zhang X, Gao X, Zhang W, Shen X. Bovine serum albumin-liposome stabilized high oil-phase emulsion: Effect of liposome ratio on interface properties and stability. Int J Biol Macromol 2024; 266:131040. [PMID: 38518937 DOI: 10.1016/j.ijbiomac.2024.131040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This study aimed to solve the issue of poor lipophilicity of natural bovine serum albumin (BSA) by combining with liposomes (Lips) to stabilize high oil-phase emulsions (HOPEs). The interaction between BSA and Lips was mainly driven by hydrophobic forces, followed by hydrogen bonding. The secondary structure and tertiary structure of BSA were characterized and indicated that the addition of Lips promoted the structural expansion of BSA exposing the hydrophobic groups inside. Interfacial adsorption behaviours were assessed through dynamic interfacial tension, three-phase contact angle, and quartz crystal microbalance with dissipation. These results indicated that BSA-Lips crosslinking improved wettability, promoting adsorption and rearrangement at the oil-water interface, thereby resulting in a dense interfacial layer. The emulsifying efficacy of BSA-stabilized HOPEs also displayed a distinct Lips dependency. Varying the BSA-to-Lips ratio transformed their consistency from flowing to semi-solid, reinforcing the gel network. Under optimal conditions (BSA: Lips = 1:1), the droplet size of BSA-Lips stabilized HOPEs reached a minimum with a highly uniform distribution. Moreover, a 1:1 BSA to Lips ensured outstanding storage, thermal, and centrifugal stability for the HOPEs. This work provides valuable references for the interaction between protein and Lips, guiding the development of highly stable HOPEs stabilizers.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
4
|
Zhu M, Pang X, Wang K, Sun L, Wang Y, Hua R, Shi C, Yang X. Enantioselective effect of chiral prothioconazole on the conformation of bovine serum albumin. Int J Biol Macromol 2023; 240:124541. [PMID: 37086758 DOI: 10.1016/j.ijbiomac.2023.124541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
As a typical chiral triazole fungicide, the enantioselective toxicity of prothioconazole to environmental organisms is of increasing concern. Herein, the binding mechanism of chiral PTCs to BSA was investigated by multi-spectral technique and molecular docking. Fluorescence titration and fluorescence lifetime experiments fully established that quenching BSA fluorescence by chiral PTCs is static quenching and could spontaneously bind to BSA. Hydrophobic interactions dominate the binding process of chiral PTCs to BSA. Differently, although both chiral PTCs and BSA have a primary binding site, the difference in chiral isomerism leads to a stronger binding ability of S-PTC than R-PTC. Both configurations of PTC can change the conformation of BSA and induce changes in the microenvironment around its amino acid residues, and the effect of S-PTC is more significant. Overall, S-PTC exhibited a more substantial effect on BSA structure relative to R-PTC. That is, S-PTC may lead to more potent potential toxicological effects on environmental organisms. This study provides a comprehensive assessment of the environmental behavior of chiral pesticides and their potential toxicity to environmental organisms at the molecular level and provides a theoretical basis for the screening of highly effective and biologically less toxic enantiomers of chiral pesticides.
Collapse
Affiliation(s)
- Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Kangquan Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Ce Shi
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
5
|
Wang Y, Zhang J, Zhang L. Study on the mechanism of non-covalent interaction between rose anthocyanin extracts and whey protein isolate under different pH conditions. Food Chem 2022; 384:132492. [PMID: 35217461 DOI: 10.1016/j.foodchem.2022.132492] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
The non-covalent interaction between anthocyanin and dietary protein had an impact on their physicochemical property. The purpose of this study was to study the non-covalent interaction mechanism between rose anthocyanin extract (RAEs) and whey protein isolate (WPI), and further compare the interaction mechanism with pure anthocyanin (PC) and WPI. At pH 3.0 and pH 7.0, RAEs and WPI had non-covalent interactions in the two systems with two types of unequal and mutually influencing binding sites, and the interaction forces were both hydrogen bonds and van der Waals forces. Interestingly, PC and WPI also had non-covalent interactions in both systems, the number of which binding sites was about one type, and the forces were hydrogen bonds and van der Waals forces. In addition, a variety of spectral combination techniques indicated that RAEs and PC caused similar changes in the secondary structure of WPI.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
6
|
Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120509. [PMID: 34688060 DOI: 10.1016/j.saa.2021.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A water-soluble, stable, simple and dual ligands (bovine serum albumin and L-histidine)-enhanced copper nanoclusters (BSA-CuNCs@L-His) was synthesized by one-step wet chemical method. Interestingly, the introduction of L-His ligand could improve evidently the quantum yields (QYs, 3.47%) and stability of BSA-CuNCs due to forming the stronger interaction of L-His and Cu and producing bigger diameter CuNCs by coordination-induced aggregation. Thus, a new ratiometric fluorescent probe (RF-probe) was successfully exploited for sensitively and selectively mensurating doxycycline (DOX) because DOX could simultaneously regulate the fluorescence (FL) intensities of BSA-CuNCs@L-His at 410 and 520 nm. The FL quenching of BSA-CuNCs@L-His at 410 nm by DOX was mainly originated from the static quenching process, while DOX could bind to Trp-212 in BSA from the skeleton of BSA-CuNCs@L-His by electrostatic interaction causing the appearance of new emission peak at 520 nm. The content of DOX was monitored by the RF-probe with a linear range of 0.05-14.0 μM and a LOD (limit of detection) and LOQ (limit of quantification) of 6.4 and 21.3 nM (at 3σ/slope and 10σ/slope). Moreover, compared to the standard HPLC method, the proposed RF-probe was extended to the detection of DOX in doxycycline hydrochloride (DOXH) tablets, DOXH injections and DOXH capsules with satisfactory results.
Collapse
Affiliation(s)
- Yucong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
7
|
Szymaszek P, Fiedor P, Chachaj-Brekiesz A, Tyszka-Czochara M, Świergosz T, Ortyl J. Molecular interactions of bovine serum albumin (BSA) with pyridine derivatives as candidates for non-covalent protein probes: a spectroscopic investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Binding characteristics of hydroxylated polybrominated diphenyl ether with thyroid protein and its potential toxicity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Liu H, Hao C, Nan Z, Qu H, Zhang X, Zhang Z, Sun R. Fabrication of graphene oxide and sliver nanoparticle hybrids for fluorescence quenching of DNA labeled by methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118802. [PMID: 32827915 DOI: 10.1016/j.saa.2020.118802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Since graphene oxide‑silver nanoparticles (GO-AgNPs) have special affinities to DNA, it become increasingly important in fields of biological analysis in which GO-AgNPs nanocomposites universally functioned as a quencher. In this paper, GO-AgNPs nanocomposites with different GO to AgNPs ratios were synthesized as a fluorescence quencher to interact with DNA labeled by methylene blue (MB). The results showed that the fluorescence intensity of DNA-MB system decreased with the increasing of GO-AgNPs nanocomposites concentration. The quenching phenomenon of DNA-MB by AgNPs and GO was not a simple additive effect but a synergistic effect. The quenching efficiency of synthesized GO-AgNPs nanocomposites with different ratios (1:1, 1:3, 1:5, 1:10) increased with the decrease of GO/Ag ratio. Thermodynamic analysis was employed to investigate the interaction of GO-AgNPs and DNA-MB, it can be concluded that the intermolecular force between GO-AgNPs and DNA-MB was hydrogen bonding. Our works will provide important theoretical and experimental bases for fluorescence sensing of DNA.
Collapse
Affiliation(s)
- Hengyu Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhezhu Nan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Hongjin Qu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xianggang Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Ziyi Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
10
|
Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chem 2020; 315:126228. [PMID: 31991257 DOI: 10.1016/j.foodchem.2020.126228] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 11/21/2022]
Abstract
Monascin (MS) is a yellow lipid-soluble azaphilonoid pigment identified from Monascus-fermented products with promising biological activities. This work studied interactions between MS and bovine serum albumin (BSA) as well as their influences on the antioxidant activity of MS. Experimental results demonstrated that the fluorescence emission of BSA was quenched by MS via static quenching mechanism and the formed BSA-MS complex was mainly maintained by hydrophobic and hydrogen bond interactions. Meanwhile, the probable binding pocket of MS located near site I of BSA and the corresponding conformational and structural alterations of BSA were determined. Furthermore, the molecular modeling approach was performed to understand the visual representation of binding mode between BSA and MS. It was noticeable that the BSA-MS complex exhibited reduced DPPH radical-scavenging ability, which might be attributed to the restraining effect of BSA on the relevant reaction pathways involved in antioxidation by MS.
Collapse
|
11
|
Qu H, Hao C, Nan Z, Zhang X, Sun R. Modulation of membrane properties by DNA in liposomes: A spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117459. [PMID: 31419746 DOI: 10.1016/j.saa.2019.117459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Liposome mediated DNA transport possesses a number of preventing diseases in clinical trials, thus, the study of interaction between DNA and liposomes has become a hot research direction. In this paper, the adsorption behavior of DNA onto two representative lipids had been studied by the fluorescence spectrum measurement, Ultraviolet absorption spectrum and Langmuir-Blodgett technology. The results of fluorescence spectrum measurement indicated that the fluorescence liposomes were quenched statically by DNA at all three temperatures. Thermodynamic analysis displayed that the intermolecular forces between DNA and liposomes were van der Waals forces and Hydrogen bonding. The experimental results of Ultraviolet absorption spectrum and Langmuir-Blodgett technology further verified these mechanisms. This work provides useful theoretical basis for the development of novel DNA delivery materials.
Collapse
Affiliation(s)
- Hongjin Qu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhezhu Nan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xianggang Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
12
|
Dantas MDDA, Silva MDM, Silva ON, Franco OL, Fensterseifer ICM, Tenório HDA, Pereira HJV, Figueiredo IM, Santos JCC. Interactions of tetracyclines with milk allergenic protein (casein): a molecular and biological approach. J Biomol Struct Dyn 2019; 38:5389-5400. [PMID: 31814537 DOI: 10.1080/07391102.2019.1702587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) interactions with the allergenic milk protein casein (CAS) were here evaluated simulating food conditions. The antibiotics assessed interact with CAS through static quenching and form non-fluorescent complexes. At 30 °C, the binding constant (Kb) varied from 0.05 to 1.23 × 106 M-1. Tetracycline interacts with CAS preferably through electrostatic forces, while oxytetracycline and chlortetracycline interactions occur by hydrogen bonds and van der Waals forces. The interaction process is spontaneous, and the magnitude of interaction based on Kb values, followed the order: TC < CTC < OTC. The distances between the donor (protein) and the receptors (TC, OTC, and CTC) were determined by Förster resonance energy transfer (FRET) and varied from 3.67 to 4.08 nm. Under natural feeding conditions, the citrate decreased the affinity between TC and CAS; a similar effect was observed for OTC in the presence of Ca(II), Fe(III) and lactose. Synchronized and three-dimensional (3D) fluorescence studies indicated alterations in the original protein conformation due to the interaction process, which may influence allergenic processes. In addition, complexation with CAS modulated the antimicrobial activity of CTC against S. aureus, demonstrated that the interaction process possibly alters the biological properties of antibiotics and the own protein, in the food conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Osmar Nascimento Silva
- S-Inova Biotech, Post-Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Octavio Luiz Franco
- S-Inova Biotech, Post-Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil
| | | | | | - Hugo Juarez V Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Isis M Figueiredo
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
13
|
Sun Q, Gan N, Zhang S, Zhao L, Tang P, Pu H, Zhai Y, Gan R, Li H. Insights into protein recognition for γ-lactone essences and the effect of side chains on interaction via microscopic, spectroscopic, and simulative technologies. Food Chem 2019; 278:127-135. [DOI: 10.1016/j.foodchem.2018.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022]
|
14
|
Li Y, Jia Y, Zeng Q, Jiang X, Cheng Z. A multifunctional sensor for selective and sensitive detection of vitamin B12 and tartrazine by Förster resonance energy transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:178-188. [PMID: 30537629 DOI: 10.1016/j.saa.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/25/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
We used thiamine nitrate (TN) as single material to fabricate nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs) with a quantum yield of 10.4% through one-pot hydrothermal method, and its properties were characterized by TEM, XPS, FTIR, fluorescence (FL) and UV-vis spectrophotometer, respectively. The fluorescence of N,S-CQDs was effectively quenched in the presence of vitamin B12 (VB12)/tartrazine due to Förster resonance energy transfer (FRET). Moreover, the rate (KT) and efficiency (E%) of energy transfer from N,S-CQDs (as a donor) to VB12/tartrazine (as an acceptor) enhanced with increasing the concentrations of acceptor, and the KT and E% were also varied with the change of excitation wavelengths (from 338 to 408 nm). Based on this principle, a multifunctional fluorescence probe was designed for selective and sensitive detection of VB12/tartrazine with a detection limit (3σ/slope) of 15.6/18.0 nmol/L. Meanwhile, the proposed method was successfully employed to detect VB12/tartrazine in milk and several beverages with a recovery range of 97.5-104.2%/91.0-110.6%.
Collapse
Affiliation(s)
- Yingping Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Yong Jia
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Qi Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
15
|
Nan Z, Hao C, Ye X, Feng Y, Sun R. Interaction of graphene oxide with bovine serum albumin: A fluorescence quenching study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:348-354. [PMID: 30476875 DOI: 10.1016/j.saa.2018.11.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Fluorescence quenching was used to elucidate the binding interaction mechanism between bovine serum albumin (BSA) and graphene oxide (GO). By analyzing the values of Stern-Volmer quenching constant (KSV) and binding constant (KA) which were affected by temperature, we supposed that the quenching process between GO and BSA was mainly determined by static quenching, combined with dynamic quenching. The study of thermodynamics showed that the values of enthalpy change (∆H), entropy change (∆S) and Free Energy (∆G) were all negative, which implied that the weak interaction of the molecular between BSA and GO was Van der Waals interaction or hydrogen bond, and the quenching process was exothermic and spontaneous. The red shift in the synchronous fluorescence spectra suggested that the conformation of tryptophan was changed in the presence of GO. According to Förster's non-radiative energy transfer theory, the distance r between BSA (donor) and GO (acceptor) was calculated and indicated the occurrence of energy transfer from BSA to GO had high probability. The AFM observation and Raman spectroscopy revealed that the interaction between BSA and GO has occurred. Compared with other literatures, the explosion of surface topography about BSA and GO was paid more attention on in this study.
Collapse
Affiliation(s)
- Zhezhu Nan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Xiaoqi Ye
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Ying Feng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
16
|
Braga TC, Silva TF, Maciel TMS, da Silva ECD, da Silva-Júnior EF, Modolo LV, Figueiredo IM, Santos JCC, de Aquino TM, de Fátima Â. Ionic liquid-assisted synthesis of dihydropyrimidin(thi)one Biginelli adducts and investigation of their mechanism of urease inhibition. NEW J CHEM 2019. [DOI: 10.1039/c9nj03556g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three out of twenty-six synthesized Biginelli adducts were identified as potent competitive urease inhibitors.
Collapse
|
17
|
Jia J, Wang Y, Liu Y, Xiang Y. Exploration of interaction of canthaxanthin with human serum albumin by spectroscopic and molecular simulation methods. LUMINESCENCE 2017; 33:425-432. [PMID: 29251407 DOI: 10.1002/bio.3430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three-dimensional fluorescence spectra, synchronous fluorescence spectra, UV-vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three-dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.
Collapse
Affiliation(s)
- Jie Jia
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuxian Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
18
|
de Paula HMC, Coelho YL, Agudelo AJP, Rezende JDP, Ferreira GMD, Ferreira GMD, Pires ACDS, da Silva LHM. Kinetics and thermodynamics of bovine serum albumin interactions with Congo red dye. Colloids Surf B Biointerfaces 2017; 159:737-742. [DOI: 10.1016/j.colsurfb.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
|
19
|
Ran L, Ding Y, Luo L, Gan X, Li X, Chen Y, Hu D, Song B. Interaction research on an antiviral molecule that targets the coat protein of southern rice black-streaked dwarf virus. Int J Biol Macromol 2017; 103:919-930. [DOI: 10.1016/j.ijbiomac.2017.05.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/14/2017] [Indexed: 01/10/2023]
|
20
|
Determination of driving forces for bovine serum albumin-Ponceau4R binding using surface plasmon resonance and fluorescence spectroscopy: A comparative study. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cao H, Yi Y. Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 2017; 30:529-539. [PMID: 28523598 DOI: 10.1007/s10534-017-0022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.
Collapse
Affiliation(s)
- Hongguang Cao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanli Yi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
22
|
Binding interactions between enantiomeric α-aminophosphonate derivatives and tobacco mosaic virus coat protein. Int J Biol Macromol 2017; 94:603-610. [DOI: 10.1016/j.ijbiomac.2016.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022]
|
23
|
Li T, Cheng Z, Cao L, Jiang X, Fan L. Interactions of two food colourants with BSA: Analysis by Debye-Hückel theory. Food Chem 2016; 211:198-205. [PMID: 27283623 DOI: 10.1016/j.foodchem.2016.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 01/12/2023]
Abstract
We have focused on exploring pH- and ionic strength-modulated binding of acid red 1 (AR1) and acid green 50 (AG50) with bovine serum albumin (BSA) by fluorescence, UV-vis absorption and FTIR spectra. The results implied that the quenching mechanism of BSA-AR1/AG50 system was a static quenching, electrostatic force dominated the formation of BSA-AR1/AG50 complex, and the binding affinity of AR1 was greater than that of AG50 on the subdomain IIA of BSA. Moreover, their true thermodynamic binding constant (Keq), true free energy change (ΔG(0)I→0), and effective charge (ZP) in the anion receptor pocket of BSA were calculated using Debye-Hückel limiting law. The local charge bound by AR1/AG50 rather than the overall or surface charge of BSA played a key role in determining their interaction strength. Besides, the thermal and structural stabilization of BSA was discussed by analyzing the changes of Tm and Hurea without/with the addition of AR1/AG50, respectively.
Collapse
Affiliation(s)
- Tian Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China.
| | - Lijun Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
24
|
Li T, Cheng Z, Cao L, Jiang X, Fan L. Data of fluorescence, UV-vis absorption and FTIR spectra for the study of interaction between two food colourants and BSA. Data Brief 2016; 8:755-83. [PMID: 27508228 PMCID: PMC4950182 DOI: 10.1016/j.dib.2016.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
In this data article, the fluorescence, UV–vis absorption and FTIR spectra data of BSA-AR1/AG50 system were presented, which were used for obtaining the binding characterization (such as binding constant, binding distance, binding site, thermodynamics, and structural stability of protein) between BSA and AR1/AG50.
Collapse
Affiliation(s)
- Tian Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Lijun Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, PR China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| |
Collapse
|
25
|
Bortolotti A, Wong YH, Korsholm SS, Bahring NHB, Bobone S, Tayyab S, van de Weert M, Stella L. On the purported “backbone fluorescence” in protein three-dimensional fluorescence spectra. RSC Adv 2016. [DOI: 10.1039/c6ra23426g] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A peak in 3D-fluorescence spectra of proteins, often assigned to backbone emission, is shown to be due to aromatic residues.
Collapse
Affiliation(s)
- Annalisa Bortolotti
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Yin How Wong
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Stine S. Korsholm
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Noor Hafizan B. Bahring
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Saad Tayyab
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Marco van de Weert
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| |
Collapse
|