1
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Begum M, Choubey M, Tirumalasetty MB, Arbee S, Mohib MM, Wahiduzzaman M, Mamun MA, Uddin MB, Mohiuddin MS. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life (Basel) 2023; 13:2213. [PMID: 38004353 PMCID: PMC10672343 DOI: 10.3390/life13112213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder characterized by hyperglycemia, presents a formidable global health challenge with its associated complications. Adiponectin, an adipocyte-derived hormone, has emerged as a significant player in glucose metabolism and insulin sensitivity. Beyond its metabolic effects, adiponectin exerts anti-inflammatory, anti-oxidative, and vasoprotective properties, making it an appealing therapeutic target for mitigating diabetic complications. The molecular mechanisms by which adiponectin impacts critical pathways implicated in diabetic nephropathy, retinopathy, neuropathy, and cardiovascular problems are thoroughly examined in this study. In addition, we explore possible treatment options for increasing adiponectin levels or improving its downstream signaling. The multifaceted protective roles of adiponectin in diabetic complications suggest its potential as a novel therapeutic avenue. However, further translational studies and clinical trials are warranted to fully harness the therapeutic potential of adiponectin in the management of diabetic complications. This review highlights adiponectin as a promising target for the treatment of diverse diabetic complications and encourages continued research in this pivotal area of diabetes therapeutics.
Collapse
Affiliation(s)
- Mahmuda Begum
- Department of Internal Medicine, HCA-St David’s Medical Center, 919 E 32nd St, Austin, TX 78705, USA;
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Munichandra Babu Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Shahida Arbee
- Institute for Molecular Medicine, Aichi Medical University, 1-Yazako, Karimata, Aichi, Nagakute 480-1103, Japan;
| | - Mohammad Mohabbulla Mohib
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany;
| | - Md Wahiduzzaman
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Mohammed A. Mamun
- CHINTA Research Bangladesh, Savar 1342, Bangladesh;
- Department of Public Health and Informatics, Jahangirnagar University, Savar 1342, Bangladesh
| | - Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh;
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| |
Collapse
|
3
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
4
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
6
|
Kowalska K, Olejnik A, Zielińska-Wasielica J, Olkowicz M. Inhibitory effects of lingonberry (Vaccinium vitis-idaea L.) fruit extract on obesity-induced inflammation in 3T3-L1 adipocytes and RAW 264.7 macrophages. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Maslov LN, Naryzhnaya NV, Boshchenko AA, Popov SV, Ivanov VV, Oeltgen PR. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 15:1-5. [PMID: 30479968 PMCID: PMC6240632 DOI: 10.1016/j.jcte.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
Abstract
Metabolic syndrome is accompanied by oxidative stress in animals and humans. The main source of ROS in experimental metabolic syndrome is NADPH oxidase and possibly adipocyte mitochondria. It is now documented that oxidative stress induces insulin resistance of adipocytes and increases secretion of leptin, MCP-1, IL-6, and TNF-α by adipocytes. It was established that oxidative stress induces a decrease in adiponectin production by adipocytes. It has also been shown that obesity itself can induce oxidative stress. Oxidative stress can cause an alteration of intracellular signaling in adipocytes that apparently leads to the formation of insulin resistance of adipocytes. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α also play an important role in the pathogenesis of oxidative stress of adipocytes. Oxidative stress is not only a consequence of metabolic syndrome, but also a reason and a foundational link in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
8
|
Li KK, Peng JM, Zhu W, Cheng BH, Li CM. Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Kowalska K, Olejnik A. Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Curr Opin Clin Nutr Metab Care 2016; 19:446-452. [PMID: 27583706 DOI: 10.1097/mco.0000000000000322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Berries belong to the best dietary sources of bioactive compounds, which exert a synergistic and cumulative effect on promotion of human health and prevention of diseases. The present review presents the most recent findings of animal and human studies regarding the health benefits of berries in terms of prevention and treatment of obesity, hypertension, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. RECENT FINDINGS In the last years, there was a growing number of evidence from human epidemiological and interventional studies, which emphasized the role of berries in the management of metabolic diseases. Based on the results from recent clinical trials, it can be established that a berry diet rich in antioxidants and bioactive phytochemicals has beneficial effects on hepatic function, increase of insulin sensitivity and high-density lipoprotein-cholesterol, decrease of serum glucose and low-density lipoprotein-cholesterol, and finally is inversely associated with the incidence of type 2 diabetes. SUMMARY Numerous recent studies have shown that berries provide great benefits in preventing or mitigating metabolic disorders. The results of this review indicate that regular long-term consumption of different berries could potentially delay the progression of metabolic syndrome and comorbidities.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
10
|
Kowalska K, Olejnik A. Beneficial effects of cranberry in the prevention of obesity and related complications: Metabolic syndrome and diabetes – A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|