1
|
Di Y, Na R, Xia H, Wang Y, Li F. Irradiation effects on characteristics and ethanol fermentation of maize starch. Int J Biol Macromol 2023; 246:125602. [PMID: 37391000 DOI: 10.1016/j.ijbiomac.2023.125602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Maize starch was irradiated by a Co60 irradiator with different doses. The morphology and physicochemical properties of native and irradiated starches were investigated. Scanning electron microscopy showed that the shape and size of starch granules did not change after irradiation. However, the irradiated starch granules were easily destroyed by dissolution. Irradiation also caused the change of starch color, the decrease in the pH value, light transmittance, stability index, degree of polymerization, total sugar content, and the increase in the swelling index and the reducing sugar content. In this study, irradiated maize starch was also used as material for ethanol fermentation to investigate its potential as a pretreatment method. Results showed that the ethanol yield of cooked and raw starch fermentation using irradiated starch increased by 20.41 % and 5.18 %, respectively, and the ethanol concentration increased by 3 % and 2 %. This finding indicated that irradiation effectively improved the utilization rate of maize starch, making it an effective pretreatment method for ethanol fermentation.
Collapse
Affiliation(s)
- Yao Di
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ren Na
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hongmei Xia
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yang Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Fan Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
3
|
A Gomes A, da Silva GF, Lakkaraju SK, Guimarães BG, MacKerell AD, Magalhães MDLB. Insights into Glucose-6-phosphate Allosteric Activation of β-Glucosidase A. J Chem Inf Model 2021; 61:1931-1941. [PMID: 33819021 DOI: 10.1021/acs.jcim.0c01450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Second-generation ethanol production involves the use of agricultural and forestry waste as feedstock, being an alternative to the first-generation technology as it relies on low-cost abundant residues and does not affect food agriculture. However, the success of second-generation biorefineries relies on energetically efficient processes and effective enzyme cocktails to convert cellulose into fermentable sugars. β-glucosidases catalyze the last step on the enzymatic hydrolysis of cellulose; however, they are often inhibited by glucose. Previous studies demonstrated that glucose-6-phosphate (G6P) is a positive allosteric modulator of Bacillus polymyxa β-glucosidase A, improving enzymatic efficiency, providing thermoresistance, and imparting glucose tolerance. However, the precise molecular details of G6P-β-glucosidase A interactions have not yet been described so far. We investigated the molecular details of G6P binding into B. polymyxa β-glucosidase A through in silico docking using the site identification by ligand competitive saturation technology followed by site-directed mutagenesis studies, from which an allosteric binding site for G6P was identified. In addition, a mechanistic shift toward the transglycosylation reaction as opposed to hydrolysis was observed in the presence of G6P, suggesting a new role of G6P allosteric modulation of the catalytic activity of β-glucosidase A.
Collapse
Affiliation(s)
- Anderson A Gomes
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Gustavo F da Silva
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Sirish K Lakkaraju
- Small Molecule Drug Discovery, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Beatriz Gomes Guimarães
- Laboratory of Structural Biology and Protein Engineering, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Parana 81350-010, Brazil
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Maria de Lourdes B Magalhães
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| |
Collapse
|
4
|
Jones DR, Xing X, Tingley JP, Klassen L, King ML, Alexander TW, Abbott DW. Analysis of Active Site Architecture and Reaction Product Linkage Chemistry Reveals a Conserved Cleavage Substrate for an Endo-alpha-mannanase within Diverse Yeast Mannans. J Mol Biol 2020; 432:1083-1097. [PMID: 31945375 DOI: 10.1016/j.jmb.2019.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
Yeast α-mannan (YM) is a densely branched N-linked glycan that decorates the surface of yeast cell walls. Owing to the high degree of branching, cleavage of the backbone of YM appears to rely on the coupled action of side-chain-cleaving enzymes. Upon examining the genome sequences of bovine-adapted Bacteroides thetaiotaomicron strains, isolated for their ability to degrade YM, we have identified a tandem pair of genes inserted into an orphan pathway predicted to be involved in YM metabolism. Here, we investigated the activity of one of these enzymes, a predicted endo-mannanase from glycoside hydrolase (GH) family 76 (BtGH76-MD40). Purified recombinant BtGH76-MD40 displayed activity on structurally distinct YMs from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Linkage analysis of released oligosaccharide products from S. cerevisiae and S. pombe mannan determined BtGH76-MD40 targets a specific linkage that is conserved in structurally diverse YM substrates. In addition, using two differential derivatization methods, we have shown that there is an absolute requirement for undecorated d-mannopyranose in the -1 subsite. Determination of the BtGH76-MD40 X-ray crystal structure and structural superimposition and molecular docking of a branched alpha-mannopentatose substrate supported these findings. In contrast, BtGH76-MD40 can accommodate extended side chains in the +1 and -2 subsites, highlighting that a single alpha-1,6-mannosyl residue is a prerequisite for activity, and cleavage occurs at the reducing end of the undecorated monosaccharide. Collectively these results demonstrate how acquisition of new enzymes within extant pathways contributes to the functional abilities of saccharolytic bacteria persisting in complex digestive ecosystems.
Collapse
Affiliation(s)
- Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
5
|
Rezaei M, Wall H, Tarshan M, Ivarsson E. Evaluation of broiler chickens' digestibility of Neurospora intermedia biomass. Poult Sci 2019; 98:5017-5022. [PMID: 30980081 DOI: 10.3382/ps/pez174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/15/2019] [Indexed: 11/20/2022] Open
Abstract
A total of 70 broiler chickens were used to evaluate the apparent ileal digestibility coefficient (AIDC) of protein and amino acids, and apparent digestibility coefficient (ADC) of energy in the protein rich Fungal Biomass of Neurospora intermedia (FBN) obtained from bioethanol production. The chickens were housed in 10 pens with seven chickens per pen and fed one of two experimental diets between day 28 and 35 of age. The experimental diets were wheat-soybean meal-based control diet and a diet composed of 70% control diet and 30% of FBN. There were no difference (P > 0.05) between the control and FBN diet on chick feed intake and body weight at day 35. However, the AIDCs of crude protein and amino acids were significantly (P < 0.01) higher in control diet than in the FBN diet except for proline and phenylalanine. The AIDC of CP (0.74), cysteine (0.68), methionine (0.70), AME (15.6), and threonine (0.69) in FBN were comparable to the corresponding values in other protein-rich feedstuffs such as soybean meal and fish meal. The results from this study show that FBN may be an alternative protein source for poultry.
Collapse
Affiliation(s)
- Mehdi Rezaei
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences (SLU), PO Box 7024, 750 07, Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences (SLU), PO Box 7024, 750 07, Uppsala, Sweden
| | - Muhammad Tarshan
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences (SLU), PO Box 7024, 750 07, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences (SLU), PO Box 7024, 750 07, Uppsala, Sweden
| |
Collapse
|
6
|
Tamayo Tenorio A, Kyriakopoulou KE, Suarez-Garcia E, van den Berg C, van der Goot AJ. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass - Consequences for industrial use. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Kaur S, Zhang X, Mohan A, Dong H, Vikram P, Singh S, Zhang Z, Gill KS, Dhugga KS, Singh J. Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat ( Triticum aestivum, L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1913. [PMID: 29163625 PMCID: PMC5681534 DOI: 10.3389/fpls.2017.01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/23/2017] [Indexed: 05/30/2023]
Abstract
Plant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic biofuel industry. To reduce culm lodging in wheat and for improved ethanol production, delineation of the variation for stem cellulose content could prove useful. We present results on the analysis of the stem cellulose content of 288 diverse wheat accessions and its genome-wide association study (GWAS). Cellulose concentration ranged from 35 to 52% (w/w). Cellulose content was normally distributed in the accessions around a mean and median of 45% (w/w). Genome-wide marker-trait association study using 21,073 SNPs helped identify nine SNPs that were associated (p < 1E-05) with cellulose content. Four strongly associated (p < 8.17E-05) SNP markers were linked to wheat unigenes, which included β-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane protein of unknown function. These genes may be directly or indirectly involved in the formation of cellulose in wheat culms. GWAS results from this study have the potential for genetic manipulation of cellulose content in bread wheat and other small grain cereals to enhance culm strength and improve biofuel production.
Collapse
Affiliation(s)
- Simerjeet Kaur
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Xu Zhang
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Amita Mohan
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Haixiao Dong
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Zhiwu Zhang
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Kulvinder S. Gill
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Kanwarpal S. Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
8
|
A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00662-17. [PMID: 28476770 DOI: 10.1128/aem.00662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.
Collapse
|
9
|
Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol 2017; 99:308-318. [PMID: 28254573 DOI: 10.1016/j.ijbiomac.2017.02.097] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research.
Collapse
Affiliation(s)
- Alejandra Arevalo-Gallegos
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Zanib Ahmad
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Roberto Parra-Saldivar
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|