1
|
Jin Z, Zhang P, Huang H, Liu J, Jiang C, Zhang H, Ren L, Sun B, Chang X, Gao T, Sun W. Food-derived skin-care ingredient as a promising strategy for skin aging: Current knowledge and future perspectives. Colloids Surf B Biointerfaces 2024; 244:114170. [PMID: 39180992 DOI: 10.1016/j.colsurfb.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Skin aging involves complex biochemical reactions and has attracted a growing concern recently. For it, there is a great desire to replace the hazardous and easy-recurring "therapy means" with "daily care" based on some natural and healthy ingredients. According to a novel theory called "homology of cosmetic and food", the safety, efficacy and accessibility of food-derived skin-care ingredients offer an attractive option for combating skin aging, which will be an inevitable trend of dermatology in the future. Ultraviolet (UV) radiation is a major trigger of skin aging. It acts on the skin and generates reactive oxygen species, which causing oxidative stress. More, matrix metalloproteinase and melanin levels are also upregulated by the UV-activated mitogen-activated protein kinase (MAPK) pathway and tyrosinase, respectively, resulting in collagen degradation and melanin deposition in the extracellular matrix. Through the existing studies, the relevant key biomarkers and biochemical pathways can be effectively controlled by skin-care ingredients from animal-derived and plant-derived foods as well as traditional herbs, thus preserving human skin from UV-induced aging in terms of antioxidant, collagen protection and melanin inhibition. To extend their application potential, some carriers represented by nanoliposomes can facilitate the transdermal absorption of food-derived skin-care ingredients by the variation of molecular weight and lipid solubility. The present review will provide an overview of the trigger mechanisms of skin aging, and focus on the molecular biology aspects of food-derived skin-care ingredients in skin matrix and the critical summarize of their research state.
Collapse
Affiliation(s)
- Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jialin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Ren
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bingkun Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianghan Chang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Tingyue Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
2
|
Joy JM, Padmaprakashan A, Pradeep A, Paul PT, Mannuthy RJ, Mathew S. A Review on Fish Skin-Derived Gelatin: Elucidating the Gelatin Peptides-Preparation, Bioactivity, Mechanistic Insights, and Strategies for Stability Improvement. Foods 2024; 13:2793. [PMID: 39272559 PMCID: PMC11394984 DOI: 10.3390/foods13172793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fish skin-derived gelatin has garnered significant attention recently due to its abundant availability and promising bioactive properties. This comprehensive review elucidates various intricacies concerning fish skin-derived gelatin peptides, including their preparation techniques, bioactive profiles, underlying mechanisms, and methods for stability enhancement. The review investigates diverse extraction methods and processing approaches for acquiring gelatin peptides from fish skin, emphasizing their impact on the peptide composition and functional characteristics. Furthermore, the review examines the manifold bioactivities demonstrated by fish skin-derived gelatin peptides, encompassing antioxidant, antimicrobial, anti-inflammatory, and anticancer properties, elucidating their potential roles in functional food products, pharmaceuticals, and nutraceuticals. Further, mechanistic insights into the functioning of gelatin peptides are explored, shedding light on their interactions with biological targets and pathways. Additionally, strategies aimed at improving the stability of gelatin peptides, such as encapsulation, modification, and integration into delivery systems, are discussed to extend the shelf life and preserve the bioactivity. Overall, this comprehensive review offers valuable insights into using fish skin-derived gelatin peptides as functional ingredients, providing perspectives for future research endeavors and industrial applications within food science, health, and biotechnology.
Collapse
Affiliation(s)
- Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
- Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - Amruth Padmaprakashan
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
- Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay Pradeep
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Preethy Treesa Paul
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob Mannuthy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| |
Collapse
|
3
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
4
|
Yu A, Ji Y, Ma G, Xu J, Hu Q. Identification and preparation of selenium-containing peptides from selenium-enriched Pleurotus eryngii and their protective effect on lead-induced oxidative damage in NCTC1469 hepatocytes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4522-4534. [PMID: 36851873 DOI: 10.1002/jsfa.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Lead (Pb) is a highly toxic and persistent substance that easily accumulates in living organisms, eliciting cellular toxicity and oxidative stress. Some selenium-containing proteins and peptides prepared from plant extracts are beneficial for protecting the body's health and resisting external disturbances. In the present study, selenium-containing peptide species were prepared from selenium-enriched Pleurotus eryngii protein hydrolysates and to evaluate the benefits of selenium-containing peptides on Pb-induced oxidative stress in NCTC1469 hepatocytes. RESULTS Trypsin was selected as primary enzyme to hydrolyze the selenium-enriched protein (SPH). The optimal hydrolysis conditions were: hydrolysis time, 1.5 h; initial pH 8.0. The SPH was digested by trypsin and then purified by ultrafiltration, gel filtration chromatography and reversed-phase HPLC to obtain the selenium-containing peptides SPH-I-2. Furthermore, SPH-I-2 was analyzed and a number of total 12 selenium-containing peptides were identified by liquid chromatography-tandem mass spectroscopy. The NCTC1469 cell culture study showed that selenium-containing peptides were capable of reducing reactive oxygen species levels and regulating the Keap1/Nrf2 pathway by upregulating Nrf2, HO-1, GCLC, GCLM and NQO1 genes and downregulating Keap1 genes. Moreover, selenium-containing peptides were also able to suppress Pb-induced elevated levels of nitric oxide (NO), lactate dehydrogenase (LDH), malondialdehyde (MDA), increase antioxidant enzyme activity and alleviate cell apoptosis. CONCLUSION The present study indicated that the selenium-containing peptides could protect cells from Pb2+ -induced oxidative stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
5
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
6
|
Li N, Wen L, Wang F, Wang T, Li T, Qiao M, Song L, Bukyei E, Huang X. Mechanism of mitigating effect of wheat germ peptides on lead-induced oxidative damage in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114190. [PMID: 36252511 DOI: 10.1016/j.ecoenv.2022.114190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is well known that lead-induced neurotoxicity is closely related to oxidative stress. According to previous reports, wheat germ peptides (WGPs) isolated from wheat germ have been shown to have potent antioxidant capacity. This study hypothesized that WGPs could protect PC12 cells from lead-induced oxidative stress. Here, the protecting-efficacies of WGPs were investigated in PC12 cells that were pretreated with WGPs (200 μM, 4 h) and exposed to lead (10 μM, 24 h). The antioxidant capacity was assessed by cell viability, ROS, MDA, SOD, CAT, GR, GPx, GSH, and GSSG. The experimental results showed that WGP3, WGP8, and WGP9 could reverse the reduction of cell viability caused by lead exposure. Lead exposure causes oxidative stress by increasing the levels of ROS and MDA. Moreover, the decrease in the levels of SOD, CAT, GPx, GR, and GSH/GSSG could be observed. However, WGP3, WGP8, and WGP9 can protect PC12 cells against lead-induced oxidative stress by reversing these phenomena. The protein expression of TXNIP, Keap1, and Nrf2 was characterized by western blotting, and the results illustrated that lead exposure up-regulated the expression of TXNIP and Keap1 and down-regulated the expression of Nrf2, and WGP3, WGP8, and WGP9 could improve the antioxidant capacity of PC12 cells by reversing this phenomenon. Therefore, the present study demonstrated that WGP3, WGP8, and WGP9 may protect against lead-induced oxidative stress in PC12 cells by regulating the TXNIP/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, 450002 Zhengzhou, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Erkigul Bukyei
- Department for Food Engineering and Hydromechanics, School of Engineering and Technology, Mongolian State University of Life Sciences, Zaisan-53, Ulaanbaatar 17024, Mongolia
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China.
| |
Collapse
|
7
|
Protective effect and mechanism of SeMet-Pro-Ser on K2Cr2O7-induced toxicity in L-02 hepatocytes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Zhang ZH, Liao TT, Deng CM, Li B, Okeke ES, Feng WW, Chen Y, Zhao T, Mao GH, Wu XY. Purification and characterization of Se-enriched Grifola frondosa glycoprotein, and evaluating its amelioration effect on As 3+ -induced immune toxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2526-2537. [PMID: 34676564 DOI: 10.1002/jsfa.11594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Selenium (Se)-enriched glycoproteins have been a research highlight for the role of both Se and glycoproteins in immunoregulation. Arsenic (As) is a toxicant that is potentially toxic to the immune function and consequently to human health. Several reports suggested that Se could reduce the toxicity of heavy metals. Moreover, more and more nutrients in food had been applied to relieve As-induced toxicity. Hence glycoproteins were isolated and purified from Se-enriched Grifola frondosa, and their preliminary characteristics as well as amelioration effect and mechanism on As3+ -induced immune toxicity were evaluated. RESULTS Four factions, namely Se-GPr11 (electrophoresis analysis exhibited one band: 14.32 kDa), Se-GPr22 (two bands: 20.57 and 31.12 kDa), Se-GPr33 (three bands: 15.08, 20.57 and 32.78 kDa) and Se-GPr44 (three bands: 16.73, 32.78 and 42.46 kDa), were obtained from Se-enriched G. frondosa via DEAE-52 and Sephacryl S-400 column. In addition, Se-GPr11 and Se-GPr44 are ideal proteins that contain high amounts of almost all essential amino acids. Thereafter, the RAW264.7 macrophage model was adopted to estimate the effect of Se-GPr11 and Se-GPr44 on As3+ -induced immune toxicity. The results showed that the pre-intervention method was the best consequent and the potential mechanisms were, first, by improving the oxidative stress state (enhancing the activity of superoxide dismutase and glutathione peroxidase, decreasing the levels of reactive oxygen species and malondialdehyde); secondly, through nuclear factor-κB and mitogen-activated protein kinase-mediated upregulation cytokines (interleukin-2 and interferon-γ) secretion induced by As3+ . CONCLUSION The results suggested Se-enriched G. frondosa may be a feasible supplement to improve health level of the As3+ pollution population. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe-Han Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tao-Tao Liao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Meng Deng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Baorui Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Wei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Guang-Hua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang-Yang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Xie L, Huang Z, Qin L, Yu Q, Chen Y, Zhu H, Xie J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int J Biol Macromol 2022; 204:103-115. [PMID: 35144010 DOI: 10.1016/j.ijbiomac.2022.01.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
The Cyclocarya paliurus polysaccharide (CP) was chemically modified to produce sulfated derivatives (S-CP) and carboxymethylated derivatives (CM-CP). Subsequently, the antioxidant activity, cytoprotective effect and antitumor activity of these derivatives were investigated to establish the relationship between their structure and functional activity. The results found that chemical modifications resulted in remarkable variations in the chemical compositions and apparent structures of CP. S-CP with the highest amount of glucose had the strongest antioxidant capacity to scavenge DPPH• and HO•, but CM-CP was lower than CP in terms of HO• scavenging. More importantly, S-CP and CM-CP more effectively protected RAW264.7 from H2O2-induced damage compared to CP by reducing the secretion of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), enhancing phagocytosis and superoxide dismutase (SOD) levels, and suppressing abnormal apoptosis. Further experiments showed that the anti-apoptotic effect of S-CP and CM-CP was in intimate association with down-regulation of Caspase-9/3 activities and alleviation of cell cycle arrest in the S phase. In addition, S-CP and CM-CP decreased the cell viability of tumor cells. These findings suggest that the type of functional group plays important roles in the biological function of the derivatives and provide a theoretical basis for the development of novel natural anti-oxidants or low-toxicity anti-tumor drugs.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Haibing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Luo X, Fan F, Sun X, Li P, Xu T, Ding J, Fang Y. Effect of ultrasonic treatment on the stability and release of selenium-containing peptide TSeMMM-encapsulated nanoparticles in vitro and in vivo. ULTRASONICS SONOCHEMISTRY 2022; 83:105923. [PMID: 35093739 PMCID: PMC8802843 DOI: 10.1016/j.ultsonch.2022.105923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
Rice selenium-containing peptide TSeMMM (T) with immunomodulatory functions was isolated from selenium-enriched rice protein hydrolysates. However, its biological activity is difficult to be protected in complex digestive environments. In this study, T was encapsulated within zein and gum arabian (GA) through ultrasound treatment to improve its bioactivity and bioavailability. The zein@T/GA nanoparticles were formed using ultrasonic treatment at 360 W for 5 min with a 59.9% T-encapsulation efficiency. In vitro digestion showed that the cumulative release rate of zein@T/GA nanoparticles reached a maximum of 80.69% after 6 h. In addition, short-term animal studies revealed that the nanoparticles had an effect on the levels of tissue glutathione and improved peptides' oral bioavailability. Conclusively, these findings suggest that the ultrasonicated polysaccharide/protein system is suitable for encapsulating active small molecular peptides. Furthermore, it provides a novel foundation for studying the bioavailability of active substances in functional foods.
Collapse
Affiliation(s)
- Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tong Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
11
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Bio/multi-functional peptides derived from fish gelatin hydrolysates: Technological and functional properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
He K, Zeng Y, Tian H, Zhang Z, Zhang H, Huang F, Yu F. Macrophage immunomodulatory effects of low molecular weight peptides from Mytilus coruscus via NF-κB/MAPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Xie M, Sun X, Li P, Shen X, Fang Y. Selenium in cereals: Insight into species of the element from total amount. Compr Rev Food Sci Food Saf 2021; 20:2914-2940. [PMID: 33836112 DOI: 10.1111/1541-4337.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.
Collapse
Affiliation(s)
- Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.,Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
15
|
Zhang J, Zhou H, Li H, Ying Z, Liu X. Research progress on separation of selenoproteins/Se-enriched peptides and their physiological activities. Food Funct 2021; 12:1390-1401. [PMID: 33464257 DOI: 10.1039/d0fo02236e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selenium (Se) is an essential nutrient associated with several physiological processes in humans and has raised interest because of its antioxidant and immune properties. Se deficiency is related to a variety of diseases and dysfunctions in humans. Due to its higher bioavailability and lower toxicity, organic Se is more recommendable than inorganic Se in the frame of a balanced diet. Se is present in 25 identified selenoproteins that commonly occur in human organisms. As part of selenocysteine (SeC), Se becomes co-translationally incorporated into the polypeptide chain and involved in the regulation of oxidative stress, redox mechanisms, and other crucial cellular processes responsible for innate and adaptive immune responses. This review presents the current information regarding the presence of selenoproteins in the human body, and the separation of selenoproteins and selenopeptides from various plants and their physiological roles in the immune and oxidation systems of humans. In general, the application of selenoproteins and Se-enriched peptides are practically important for the clinical arena, whereby it can be used for exploring new healthy foods.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Haochun Zhou
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, Peoples' Republic of China.
| |
Collapse
|
16
|
Inhibition of immunotoxicity of Pb2+-induced RAW264.7 macrophages by selenium species in selenium-enriched rice. Food Chem Toxicol 2021; 148:111943. [DOI: 10.1016/j.fct.2020.111943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
|
17
|
Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Zhang X, He H, Xiang J, Yin H, Hou T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15061-15073. [PMID: 33315396 DOI: 10.1021/acs.jafc.0c05594] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selenium is an essential microelement required for biological processes. Traditional selenium supplements (selenite and selenomethionine mainly) remain concerns due to toxicity and bioavailability. In recent decades, biofortification strategies have been applied to produce selenium-enriched edible plants to address the challenges of superior nutritional quality requirements. Plant-derived selenium-containing proteins/peptides offer potential health benefits beyond the basic nutritional requirements of Se. Highly nucleophilic seleno-amino acids, special peptide sequences, and favorable bioavailability contribute to the biological activities of selenium-containing proteins/peptides, such as antioxidant, antihypertensive, anti-inflammatory, and immunomodulatory effects. However, their applications on a commercial scale are insufficient owing to the complexity of purification and identification techniques and the sparse information on bioavailability and metabolism. In this review, selenium status, structural features, bioactivities, structure-activity relationships, and bioavailability, as well as the mechanisms underlying the bioactivities and metabolism of plant-derived selenium-containing proteins/peptides, are summarized and discussed for their nutraceutical use.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Hongqing Yin
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Zheng J, Tian X, Xu B, Yuan F, Gong J, Yang Z. Collagen Peptides from Swim Bladders of Giant Croaker ( Nibea japonica) and Their Protective Effects against H 2O 2-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells. Mar Drugs 2020; 18:E430. [PMID: 32824671 PMCID: PMC7460321 DOI: 10.3390/md18080430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022] Open
Abstract
Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Xiaoxiao Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Baogui Xu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Falei Yuan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Jianfang Gong
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| |
Collapse
|
20
|
Liu X, Fan F, Liu M, Long W, Yu Y, Yuan H, Pan G, Li N, Li S, Liu J. Quantitative Trait Loci Mapping of Mineral Element Contents in Brown Rice Using Backcross Inbred Lines Derived From Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2020; 11:1229. [PMID: 32903403 PMCID: PMC7434966 DOI: 10.3389/fpls.2020.01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Mineral elements play an extremely important role in human health, and are worthy of study in rice grain. Wild rice is an important gene pool for rice improvement including grain yield, disease, and pest resistance as well as mineral elements. In this study, we identified 33 quantitative trait loci (QTL) for Fe, Zn, Se, Cd, Hg, and As contents in wild rice Oryza longistaminata. Of which, 29 QTLs were the first report, and 12 QTLs were overlapped to form five clusters as qSe1/qCd1 on chromosome 1, qCd4.2/qHg4 on chromosome 4, qFe5.2/qZn5.2 on chromosome 5, qFe9/qHg9.2/qAs9.2 on chromosome 9, and qCd10/qHg10 on chromosome 10. Importantly, qSe1/qCd1, can significantly improve the Se content while reduce the Cd content, and qFe5.2/qZn5.2 can significantly improve both the Fe and Zn contents, they were delimited to an interval about 53.8 Kb and 26.2 Kb, respectively. These QTLs detected from Oryza longistaminata not only establish the basis for subsequent gene cloning to decipher the genetic mechanism of mineral element accumulation, but also provide new genetic resource for rice quality improvement.
Collapse
Affiliation(s)
- Xingdan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Manman Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Yajie Yu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Guojing Pan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Jianfeng Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Zhu Y, Ding J, Shi Y, Fang Y, Li P, Fan F, Wu J, Hu Q. Deciphering the role of selenium‐enriched rice protein hydrolysates in the regulation of Pb
2+
‐induced cytotoxicity: an
in vitro
Caco‐2 cell model study. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Ding
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yi Shi
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yong Fang
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Peng Li
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Fengjiao Fan
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Wu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Qiuhui Hu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| |
Collapse
|
22
|
Liu K, Du R, Chen F. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chem 2020; 319:126540. [DOI: 10.1016/j.foodchem.2020.126540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
23
|
Wu J, Li P, Shi Y, Fang Y, Zhu Y, Fan F, Pei F, Xia J, Xie M, Hu Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem Toxicol 2020; 135:110932. [DOI: 10.1016/j.fct.2019.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
|
24
|
Liang Y, Su Y, Li L, Huang X, Panhwar FH, Zheng T, Tang Z, Ei HH, Farooq MU, Zeng R, Zhang Y, Ye X, Jia X, Zheng L, Zhu J. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC PLANT BIOLOGY 2019; 19:559. [PMID: 31847801 PMCID: PMC6918634 DOI: 10.1186/s12870-019-2163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/26/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food. Increasing the accumulation of Se in rice grain is an approach matched to these nutrient demands. Nonetheless, Se is shown to be essential but also toxic to plants, with a narrow margin between deficiency and toxicity. Notably, the regulatory mechanism balancing the accumulation and tolerance of Se in Se-rich rice plants remains unknown. RESULTS In this study, we investigated the phenotypical, physiological, and biochemical alterations of Se-rich rice in the exposure to a variety of Se applications. Results showed that the Se-rich rice was able to accumulate more abundance of Se from the root under a low Se environment comparing to the Se-free rice. Besides, excessive Se led to phytotoxic effects on Se-rich rice plants by inducing chlorosis and dwarfness, decreasing the contents of antioxidant, and exacerbating oxidative stresses. Furthermore, both phosphate transporter OsPT2 and sulfate transporters OsSultr1;2 may contribute to the uptake of selenate in rice. CONCLUSIONS Se-rich red rice is more sensitive to exogenous application of Se, while and the most effective application of Se in roots of Se-rich rice was reached in 20 μM. Our findings present a direct way to evaluate the toxic effects of Se-rich rice in the Se contaminated field. Conclusively, some long-term field trial strategies are suggested to be included in the evaluation of risks and benefits within various field managements.
Collapse
Affiliation(s)
- Yuanke Liang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Su
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Li
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xin Huang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faiz Hussain Panhwar
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tengda Zheng
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichen Tang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hla Hla Ei
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Muhammad Umer Farooq
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Rui Zeng
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan, 611830, Sichuan, China
| | - Yujie Zhang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoying Ye
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaomei Jia
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jianqing Zhu
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
25
|
Li Y, Li J, Lin SJ, Yang ZS, Jin HX. Preparation of Antioxidant Peptide by Microwave- Assisted Hydrolysis of Collagen and Its Protective Effect Against H 2O 2-Induced Damage of RAW264.7 Cells. Mar Drugs 2019; 17:md17110642. [PMID: 31739542 PMCID: PMC6891724 DOI: 10.3390/md17110642] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Antioxidant peptides have elicited interest for the versatility of their use in the food and pharmaceutical industry. In the current study, antioxidant peptides were prepared by microwave-assisted alkaline protease hydrolysis of collagen from sea cucumber (Acaudina molpadioides). The results showed that microwave irradiation significantly improved the degree of hydrolysis of collagen and the hydroxyl radical (OH⋅) scavenging activity of hydrolysate. The content and OH⋅ scavenging activity of collagen peptides with molecular weight ≤ 1 kDa (CPS) in the hydrolysate obtained at 250 W increased significantly compared with the non-microwave-assisted control. CPS could scavenge OH⋅ and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in a dose-dependent manner. The scavenging activity of OH⋅ and DPPH radical was 93.1% and 41.2%, respectively, at CPS concentration of 1 mg/mL. CPS could significantly promote RAW264.7 cell proliferation and reduce the Reactive Oxygen Species (ROS) level of H2O2-induced damage in RAW264.7 cells in a dose-dependent manner. Furthermore, all CPS-treated groups exhibited an increase in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and a decrease in malondialdehyde (MDA) level compared with the control. These results showed that CPS could effectively protect RAW264.7 cells from H2O2-induced damage, implying the potential utilization of CPS as a natural antioxidant for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.L.); (J.L.); (Z.-S.Y.)
| | - Jie Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.L.); (J.L.); (Z.-S.Y.)
| | - Sai-Jun Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou 310052, China;
| | - Zui-Su Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.L.); (J.L.); (Z.-S.Y.)
| | - Huo-Xi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.L.); (J.L.); (Z.-S.Y.)
- Correspondence: ; Tel.: +86-580-255-2395
| |
Collapse
|
26
|
Zhang Q, Wu C, Sun Y, Li T, Fan G. Cytoprotective Effect of Morchella esculenta Protein Hydrolysate and Its Derivative Against H2O2-Induced Oxidative Stress. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/110134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Wu D, Sun N, Ding J, Zhu B, Lin S. Evaluation and structure-activity relationship analysis of antioxidant shrimp peptides. Food Funct 2019; 10:5605-5615. [PMID: 31432849 DOI: 10.1039/c9fo01280j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of amino acids Gln and Lys on the antioxidant ability of peptides were investigated in this study. The identified peptides Lys-Met-Asp-Asp-Lys (KMDDK), Lys-Met-Asp-Asp-Gln (KMDDQ), Gln-Met-Asp-Asp-Lys (QMDDK), and Gln-Met-Asp-Asp-Gln (QMDDQ) were used to investigate their antioxidant activity and the structure-activity relationship by using UPLC-Q-TOF-MS, flow cytometry, laser scanning confocal microscopy and 1H NMR spectroscopy. The results indicated that the four pentapeptides significantly increased the viability of PC12 cells and inhibited cell apoptosis and that QMDDQ possessed a stronger survival activity than the others in cell apoptosis. Moreover, the four peptides significantly decreased the scopolamine-induced ROS and LDH content in PC12 cells, and upregulated the SOD activity to the level of the scopolamine group. The DPPH and hydroxyl radical scavenging of QMDDQ were higher than those of the other peptides at 0.5 mg mL-1 and 1.0 mg mL-1 (P < 0.05). 1H NMR spectra revealed that the prominent antioxidant ability of QMDDQ might be attributed to more active hydrogen sites and functional groups. The carboxyl active hydrogen atoms and amino active hydrogen atoms as active sites play a critical role in the antioxidant capacity.
Collapse
Affiliation(s)
- Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China and National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - BeiWei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China and National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| |
Collapse
|
28
|
Zhang Z, Hu X, Lin L, Ding G, Yu F. Immunomodulatory Activity of Low Molecular-Weight Peptides from Nibea japonica in RAW264.7 Cells via NF-κB Pathway. Mar Drugs 2019; 17:E404. [PMID: 31288466 PMCID: PMC6669675 DOI: 10.3390/md17070404] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, a low molecular-weight (Mw) peptide named NJP (<1 kDa), was purified from a protein hydrolysate of Nibea japonica by ultrafiltration, and its immunomodulatory effect on RAW264.7 cells was evaluated. The lactate dehydrogenase (LDH) and MTT assays were performed to explore the cytotoxicity of NJP. The results showed that NJP promoted cell proliferation and had no significant toxic effects on RAW264.7 cells. Moreover, the cells formed multiple pseudopodia indicating that they were in activated state. Further tests showed that NJP significantly promoted phagocytic capacity, and the secretion of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). It also increased the synthesis of nitric oxide (NO) by upregulating inducible nitric oxide synthase (iNOS) protein level. Flow cytometry revealed that NJP promoted cell cycle progression and increased the percentage of cells in G0/G1 phase. NJP promoted IκBα degradation, p65 and nuclear factor (NF)-κB activation and translocation by up-regulating IKKα/β protein expression. In conclusion, these results indicated that NJP exerts immunomodulatory effects on RAW264.7 cells through the NF-κB signaling pathway. Therefore, NJP can be incorporated in the production of functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuyang Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lin Lin
- ZhouShan Academy of Agriculture and Forestry Sciences, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
29
|
Fang Y, Pan X, Zhao E, Shi Y, Shen X, Wu J, Pei F, Hu Q, Qiu W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem 2019; 275:696-702. [DOI: 10.1016/j.foodchem.2018.09.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
|
30
|
Xia J, Fang Y, Shi Y, Shen X, Wu J, Xie M, Li P, Pei F, Hu Q. Effect of food matrices on the in vitro bioavailability and oxidative damage in PC12 cells of lead. Food Chem 2018; 266:397-404. [PMID: 30381204 DOI: 10.1016/j.foodchem.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023]
Abstract
The bioavailability and oxidative damage toxicity of lead (Pb) in seven food matrices, including rice, milk, tomato, garlic, apple, kelp and pork, were determined using an in vitro digestion/Caco-2 cell model and a rat pheochromocytoma (PC12) oxidative damage model. Results showed that Pb bioaccessibility and bioavailability in the apple and kelp groups were significantly lower than other food matrix groups, with corresponding values of 11.05-28.31% and 1.57-8.81%, respectively. Oxidative damage assays showed that digestion products of apple polyphenol extract, which was selected from seven food matrices, could increase the oxidation resistance and the levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and acetyl cholinesterase (AChE) by 32.23%, 39.02%, 27.14% and 30.90%, respectively. Additionally, malondialdehyde (MDA) and reactive oxygen species (ROS) levels could be decreased by 59.66% and 40.21%, respectively. In conclusion, phenolics were an important food matrix that could decrease the bioavailability and oxidative damage of Pb.
Collapse
Affiliation(s)
- Ji Xia
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China.
| | - Yi Shi
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Jian Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
31
|
Li Q, Zhang P, Yu X, Zhao Y, Li Q, Zhang Y, Yang Z, Xie Y, Xue P, Sun S, Jia X, Zhou Z, He M, Zhang Y. Lead Transiently Promotes Granulocyte-Macrophage Progenitor Differentiation and Subsequently Suppresses Common Myeloid Progenitor Differentiation. Toxicol Sci 2017; 160:268-283. [DOI: 10.1093/toxsci/kfx176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Qian Li
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Zhejiang 313000, China
| | - Xinchun Yu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control and Prevention, Shanghai 200062, China
| | - Yandong Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Zhengli Yang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yunli Xie
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Shuhui Sun
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaodong Jia
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Extraction and isolation of potential anti-stroke compounds from flowers of Pueraria lobata guided by in vitro PC12 cell model. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:111-120. [DOI: 10.1016/j.jchromb.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
|
33
|
Wang ZJ, Xie JH, Nie SP, Xie MY. Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food Funct 2017; 8:915-926. [DOI: 10.1039/c6fo01315e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Owing to various health functions, natural polysaccharides are becoming a kind of popular dietary nutritional supplement.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Jian-Hua Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
34
|
Fang Y, Xu Z, Shi Y, Pei F, Yang W, Ma N, Kimatu BM, Liu K, Qiu W, Hu Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb 2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem 2016; 219:391-398. [PMID: 27765242 DOI: 10.1016/j.foodchem.2016.09.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the protection mechanism of Se-containing protein hydrolysates (SPH) from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Results showed that SPHs could alleviate Pb2+-induced morphological changes of apoptosis and the loss of mitochondrial transmembrane potential in both cell types. Besides this, SPHs could significantly reduce the activation of caspase-3, -8, -9 induced by Pb2+, reverse the Pb2+-induced upregulation of Bax and release of cytochrome C, and downregulate Bcl-2 in cells. HPLC-ICP-MS and SEC-HPLC assays showed that SPHs were low molecular weight peptides (229.4-534.9Da), and the major Se species found in SPHs was SeMet. Taken together, these findings suggested that SPHs could possibly protect the cells against Pb2+-induced apoptosis via a caspase-dependent mitochondrial pathway, and the primary effective constituents in SPHs were SeMet and Se-containing peptides, suggesting that SPHs might be a novel potential candidate to improve the health of people with Se deficiency or in Pb-contaminated areas.
Collapse
Affiliation(s)
- Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Zi Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Yi Shi
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Ning Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|