1
|
da Silva YCR, Alves RM, Benato EA, Usberti FCS. Gaseous ozone and ozonized mist in the control of Escherichia coli on 'Rama Forte' persimmon. Braz J Microbiol 2024; 55:1715-1722. [PMID: 38561500 PMCID: PMC11153475 DOI: 10.1007/s42770-024-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to evaluate the effectiveness of using two ozone applications (gaseous and mist) as a disinfection method for fresh persimmon. To test these sanitizers, in vitro and in vivo assays were performed, and the Escherichia coli was selected because it is a pathogen that causes foodborne diseases in humans. For in vitro experiments, a plate was inoculated with Escherichia coli strain ATCC 25922 and treated. For in vivo assays, persimmon fruit surface was inoculated with the bacteria and treated. For both assays, it was used 10,15,20,30,40 and 50 μL L-1 of gaseous ozone or ozonized mist for five minutes. The results demonstrated that the gas ozone application significantly reduced the growth of E. coli on the plate surface in vitro at doses of 30, 40 and 50 μL L-1 (with 0.83, 0.89 and 0.95 log CFU mL-1, respectively). The application of ozonized mist showed a significant reduction for 50 μL L-1 (with 1.28 log CFU g-1). And, for the in vivo assays, ozonized mist significantly reduced the number of bacteria on the persimmon surface, with a 1.57 log reduction, which was the largest for 40 μL L-1. Therefore, it is possible to conclude that the ozone application can contribute to the control of microorganisms present on fruit surfaces.
Collapse
Affiliation(s)
| | - Raysa Maduro Alves
- Agricultural Engineering College, Laboratory of Postharvest Technology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Eliane Aparecida Benato
- Center for Research and Development of Agricultural Biosystems and Postharvest, Agronomic Institute, Campinas, SP, Brazil
| | - Franciane Colares Souza Usberti
- Agricultural Engineering College, Laboratory of Postharvest Technology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
2
|
Kurabetta LK, Masti SP, Eelager MP, Gunaki MN, Madihalli S, Hunashyal AA, Chougale RB, Kumar S K P, Kadapure AJ. Physicochemical and antioxidant properties of tannic acid crosslinked cationic starch/chitosan based active films for ladyfinger packaging application. Int J Biol Macromol 2023; 253:127552. [PMID: 37865373 DOI: 10.1016/j.ijbiomac.2023.127552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix. CSCT-3 active film displayed tensile strength of 26.99±1.91 MPa, which is more substantial than commercially available polyethylene (PE) (12-16 MPa) films. The active films exhibited excellent barrier properties against moisture and water, supported by increased water contact angle values (86.97±0.29°). Overall migration rate of active films was found to be below the permitted limit of 10mg/dm2. The active films showed around 56% of degradation in soil within 15 days. Besides, the active films showed concurring impact against food borne pathogens like E. coli, S. aureus and C. albicans. The CSCT-3 active film presented 90.83% of antioxidant capacity, demonstrating the effective prevention of food oxidation related deterioration. Ladyfinger packaging was inspected to examine the ability of active films as packaging material resulted in effectively resisting deterioration and extending shelf life in comparison with traditional PE packaging.
Collapse
Affiliation(s)
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India.
| | | | | | - Suhasini Madihalli
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India
| | | | - Ravindra B Chougale
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Praveen Kumar S K
- Department of Biochemistry, Karnatak University, Dharwad 580 003, India
| | | |
Collapse
|
3
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
4
|
Tiamiyu QO, Adebayo SE, Ibrahim N. Recent advances on postharvest technologies of bell pepper: A review. Heliyon 2023; 9:e15302. [PMID: 37151666 PMCID: PMC10161617 DOI: 10.1016/j.heliyon.2023.e15302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
The bell pepper (Capsicum annuum L.) is a commercially important horticultural crop grown in tropical and sub-tropical areas across the world. Despite this importance, it is a perishable vegetable with a limited shelf life and high disease susceptibility. Bell pepper output has expanded significantly in recent years. However, this crop is still experiencing close to 40% postharvest losses annually. Chemical fumigation for postharvest disease control of bell pepper has been shown to be efficient against fungal infections, but environmental impact and consumption hazards limit its full use. Recently, non-chemical techniques including biological and botanical methods, non-destructive technologies and Artificial intelligence have been demonstrated to be effective as postharvest management of bell pepper. The paper provides exciting information on recent and emerging techniques for curtailing these losses in bell pepper, alongside their mechanism and existing benefits. The current limitations of these techniques as well as recommendations for potential applications are also addressed.
Collapse
Affiliation(s)
- Quazeem Omotoyosi Tiamiyu
- Department of Agricultural and Bioresources Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria
| | - Segun Emmanuel Adebayo
- Department of Agricultural and Bioresources Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria
| | - Nimat Ibrahim
- Department of Crop Production, School of Agriculture & Agricultural Technology, Federal University of Technology Minna, Niger State, Nigeria
| |
Collapse
|
5
|
Eelager MP, Masti SP, Chougale RB, Hiremani VD, Narasgoudar SS, Dalbanjan NP, S K PK. Evaluation of mechanical, antimicrobial, and antioxidant properties of vanillic acid induced chitosan/poly (vinyl alcohol) active films to prolong the shelf life of green chilli. Int J Biol Macromol 2023; 232:123499. [PMID: 36736522 DOI: 10.1016/j.ijbiomac.2023.123499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.
Collapse
Affiliation(s)
- Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Vishram D Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi 587301, Karnataka, India
| | | | | | - Praveen Kumar S K
- PG Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
6
|
Mi S, Li T, Shi Q, Zhu W, Wang X. Cold shock precooling improves the firmness of chili pepper during postharvest storage and the molecular mechanisms related to pectin. Food Chem 2023; 419:136052. [PMID: 37015167 DOI: 10.1016/j.foodchem.2023.136052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
This research was conducted to explore the influence of cold shock on the firmness, a quality marker in chili pepper during 0-21 d storage and determine mechanism by cold shock impacted pectin. Chili peppers were exposed to cold shock precooling (0 ± 2 °C water/ice mixture) for 0-, 30-, 90- and 150-min, respectively. Results showed that cold shock alleviated loss of firmness throughout storage. Firmness was positively associated with sodium carbonate-soluble pectin content (r = 0.44), methylation degree of CDTA-soluble pectin (r = 0.82) and water-soluble pectin (WSP, r = 0.87), but negatively associated with WSP content (r = -0.76), and the activities of β-galactosidase (r = -0.72) and pectinlyase (r = -0.74). Cold shock for 90 min was determined to be optimal. This study confirms the applicability of cold shock precooling to maintain firmness and thereby to extend the shelf life of chili pepper.
Collapse
Affiliation(s)
- Si Mi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Tong Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Quanying Shi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenxuan Zhu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
7
|
Li X, Liu C, Liu F, Zhang X, Peng Q, Wu G, Lin J, Zhao Z. Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chem 2023; 403:134386. [DOI: 10.1016/j.foodchem.2022.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
8
|
Development of Composite Edible Coating from Gelatin-Pectin Incorporated Garlic Essential Oil on Physicochemical Characteristics of Red Chili ( Capsicum annnum L.). Gels 2023; 9:gels9010049. [PMID: 36661815 PMCID: PMC9857672 DOI: 10.3390/gels9010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Red chili is a climacteric fruit that still undergoes respiration after harvest. During storage, it is susceptible to mechanical, physical, and physiological damage and decay incidence, therefore a method is needed to protect it so that the quality losses can be minimized. One way this can be achieved is by applying edible coatings that can be made from hydrocolloids, lipids, or composites of both, in addition to antimicrobial agents that can also be added to inhibit microbial growth. In this study, we detail the application of an edible coating made of gelatin composite from tilapia fish skin, which has a transparent color and good barrier properties against O2, CO2, and lipids. To increase its physicochemical and functional qualities, it must be modified by adding composite elements such as pectin as well as hydrophobic ingredients such as garlic essential oil. This study was conducted to determine the effect of a gelatin-pectin composite edible coating (75:25, 50:50, 25:75), which was incorporated with garlic essential oil (2% and 3%) on the physicochemical properties of red chili at room temperature (±29 °C), RH ± 69%) for 14 days. The best treatment was the 50-50% pectin-gelatin composite, which was incorporated with garlic essential oil with a concentration of 2 and 3%. This treatment provided a protective effect against changes in several physicochemical properties: inhibiting weight loss of 36.36 and 37.03%, softening of texture by 0.547 and 0.539 kg/84 mm2, maintaining acidity of 0.0087 and 0.0081%, maintaining vitamin C content of 2.237 and 2.349 mg/gr, anti-oxidant activity (IC50) 546.587 and 524.907; it also provided a protective effect on chili colors changing to red, and retains better total dissolved solid values.
Collapse
|
9
|
LIN F, Kaiyu LV, MA S, WANG F, LI J, WANG L. Effects of ozone treatment on storage quality and antioxidant capacity of fresh-cut water fennel [Oenanthe javanica]. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Jiangkuo LI
- Tianjin Academy of Agricultural Sciences, China
| | | |
Collapse
|
10
|
Gaseous ozone treatment prolongs the shelf-life of fresh-cut kiwifruit by maintaining its ascorbic acid content. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Exogenous Application of Melatonin to Green Horn Pepper Fruit Reduces Chilling Injury during Postharvest Cold Storage by Regulating Enzymatic Activities in the Antioxidant System. PLANTS 2022; 11:plants11182367. [PMID: 36145768 PMCID: PMC9505764 DOI: 10.3390/plants11182367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Chilling injury (CI) caused by exposure to low temperatures is a serious problem in the postharvest cold storage of pepper fruit. Melatonin (MT) has been reported to minimize CI in several plants. To evaluate the effectiveness of MT to minimize CI in green horn pepper and the possible mechanism involved, freshly picked green horn peppers were treated with MT solution at 100 μmol L−1 or water and then stored at 4 °C for 25 d. Results showed that MT treatment reduced CI in green horn pepper fruit, as evidenced by lower CI rate and CI index. MT treatment maintained lower postharvest metabolism rate and higher fruit quality of green horn peppers, as shown by reduced weight loss and respiratory rate, maintened fruit firmness and higher contents of chlorophyll, total phenols, flavonoids, total soluble solids and ATP. Additionally, the contents of hydrogen peroxide, superoxide radical, and malondialdehyde were kept low in the MT-treated fruit, and the activities of the enzymes peroxidase, superoxide dismutase, and catalase were significantly elevated. Similarly, the ascorbate–glutathione cycle was enhanced by elevating the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, to increase the regeneration of ascorbic acid and glutathione. Our results show that MT treatment protected green horn pepper fruit from CI and maintained high fruit quality during cold storage by triggering the antioxidant system
Collapse
|
12
|
Ozone reduces the fruit decay of postharvest winter jujube by altering the microbial community structure on fruit surface. Microbiol Res 2022; 262:127110. [DOI: 10.1016/j.micres.2022.127110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
13
|
Siddique Z, Malik AU. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): A comparative review. J Food Saf 2022. [DOI: 10.1111/jfs.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| |
Collapse
|
14
|
Liu R, Wang H, Yang H, Zhang H, Chen J, Gao H, Chen H. Effect of ozone treatment on lignification and postharvest quality of water bamboo shoots. EFOOD 2022. [DOI: 10.1002/efd2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Huizhi Wang
- Zhejiang Agricultural and Rural Big Data Development Center Hangzhou China
| | - Hailong Yang
- School of Life and Environmental Sciences Wenzhou University Wenzhou China
| | - Hanqing Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Jisuan Chen
- Ningbo Haitong Food Group Co., Ltd. Ningbo China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| |
Collapse
|
15
|
Duarte-Sierra A, Forney CF, Thomas M, Angers P, Arul J. Phytochemical Enhancement in Broccoli Florets after Harvest by Controlled Doses of Ozone. Foods 2022; 11:foods11152195. [PMID: 35892781 PMCID: PMC9329930 DOI: 10.3390/foods11152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this work was to examine the effect of controlled doses of O3 (0, 5 µL L−1 of O3 for 60 min, and 5 µL L−1 of O3 for 720 min) on the quality and phytochemical content of broccoli florets during postharvest storage. The optimal dose was found at 5 µL L−1 of O3 for 60 min, from the color retention of broccoli florets exposed to the gas treatment. Overall, the antioxidant capacity of the florets was significantly affected by both doses of O3 compared to the non-exposed florets. The profile of glucosinolates was determined for up to 14 days in broccoli florets stored at 4 °C by LC-MS. The amount of total glucobrassicins and total hydroxy-cinnamates in florets significantly (p ≤ 0.05) improved by the application of 5 µL L−1 of O3 for 60 min compared to non-treated florets. The up-regulation of genes of the tryptophan-derived glucosinolate pathway was observed immediately after both treatments. The gene expression of CYP79A2 and CYP79B3 in broccoli was significantly higher in broccoli florets exposed to 5 µL L−1 of O3 for 720 min compared to non-exposed florets. Although enhancement of secondary metabolites can be achieved by the fumigation of broccoli florets with low doses of ozone, quality parameters, particularly weight loss, can be compromised.
Collapse
Affiliation(s)
- Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| | - Charles F. Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main Street, Kentville, NS B4N 1J5, Canada;
| | - Minty Thomas
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
| | - Paul Angers
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada
| | - Joseph Arul
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
| |
Collapse
|
16
|
Ling Y, Zhou M, Qiao Y, Xiong G, Wei L, Wang L, Wu W, Shi L, Ding A, Li X. Effects of Ozone Water Combined With Ultra-High Pressure on Quality and Microorganism of Catfish Fillets ( Lctalurus punctatus) During Refrigeration. Front Nutr 2022; 9:880370. [PMID: 35873429 PMCID: PMC9298495 DOI: 10.3389/fnut.2022.880370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study described the quality and microbial influence on ozone water (OW) and ultra-high pressure (UHP) processing alone or in combination with refrigerated catfish fillets. The analysis parameters included total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARs), chromaticity, microbial enumeration, 16S rRNA gene sequencing, electronic nose (E-nose), and sensory score. The study found that compared with the control (CK), ozone water combined with ultra-high pressure (OCU) delayed the accumulation of TVBN and TBARs. The results of sensory evaluation illustrated that OCU obtained a satisfactory overall sensory acceptability. The counting results suggested that compared to CK, OCU significantly (p < 0.05) delayed the stack of TVC, Enterobacteriaceae, Pseudomonas, lactic acid bacteria (LAB), and hydrogen sulfide-producing bacteria (HSPB) during the storage of catfish fillets. The sequencing results reflected that the dominant were Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria at the phylum level, and the dominant were Acinetobacter, Pseudomonas, Lelliottia, Serratia, Shewanella, Yersinia, and Aeromonas at the genus level. The dominant was Acinetobacter in initial storage, while Pseudomonas and Shewanella were in anaphase storage. Based on the TVC and TVBN, the shelf life of catfish fillets was extended by at least 3 days compared to the control. In short, the combination of ozone water and ultra-high-pressure processing is a favorable strategy to control microbial quality and delay lipid oxidation during catfish storage.
Collapse
Affiliation(s)
- Yuzhao Ling
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mingzhu Zhou
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lingyun Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liu Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Anzi Ding
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xin Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Alexandre ACS, Ferreira Gomes BA, Duarte GN, Piva SF, Zauza SB, Vilas Boas EVDB. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review – Part 1: Fundamentals and chemical methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Giulia Nayara Duarte
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Samella Fabiane Piva
- Food Science Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Stefânia Barros Zauza
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | | |
Collapse
|
18
|
Modesti M, Macaluso M, Taglieri I, Bellincontro A, Sanmartin C. Ozone and Bioactive Compounds in Grapes and Wine. Foods 2021; 10:2934. [PMID: 34945485 PMCID: PMC8701297 DOI: 10.3390/foods10122934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ozone is widely used in the agri-food and food processing industries mainly as a sanitizing agent. However, it has recently become clear that ozone exposition leads to another important benefit: in living tissues, the induced-oxidative stress triggers the antioxidant response, and, therefore, it enhances the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. The goal of the present review was to critically summarize knowledge about the possibility of improving bioactive compounds and, consequently, the health-related properties of grapes and wine, by using ozone. The greatest interest has been given not only to the pre- and post-harvest treatment of table and wine grapes, but also to the explanation of the mechanisms involved in the ozone-related response and the main secondary metabolites biosynthetic pathways. From the literature available, it is clear that the effect of ozone treatment on health-related properties and secondary metabolites accumulation depends on many factors, such as the cultivar, but also the form (water or gaseous), doses, and application method of ozone. Most of the published papers report an increase in antioxidant compounds (e.g., polyphenols) and stress-related volatiles, confirming the hypothesis that ozone could be used to improve berry and wine compositional and sensory quality.
Collapse
Affiliation(s)
- Margherita Modesti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
19
|
Zhang X, Tang N, Zhang H, Chen C, Li L, Dong C, Cheng Y. Comparative transcriptomic analysis of cantaloupe melon under cold storage with ozone treatment. Food Res Int 2021; 140:109993. [PMID: 33648227 DOI: 10.1016/j.foodres.2020.109993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Ozone treatment was found to delay the postharvest cantaloupe melon decay and improve its intrinsic quality during the cold storage. The transcriptomes of cantaloupe peel and pulp in response to ozone treatment were investigated to reveal the mechanisms using a high-throughput RNA sequencing approach. Results showed that 570 and 313 differentially expressed genes were identified in peel and pulp, respectively. According to these identified genes, the gene ontology and pathway enrichment analysis indicated that the ozone treatment could maintain the firmness of the cantaloupe by changing pectin metabolites and reduction of the ethylene production by regulating relevant genes especially in the peel. The total flavonoid content changes in peel and pulp related to the regulation of phenylalanine ammonia lyase, 4-coumarate-CoA ligase and P450 family genes which further leading to the inhibition of phenylalanine metabolic pathway in peel but promotion of secondary metabolism in pulp. The qRT-PCR results were in accordance with our RNA sequencing results which validated the conclusions. The present study for the first time reveals the mechanism of cantaloupe in response to ozone treatment at a transcriptome level which is of importance for cantaloupe storage.
Collapse
Affiliation(s)
- Xiaojun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Ning Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Huijie Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cunkun Chen
- National Engineering Technology Research Center for Preservation of Agriculture Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chenghu Dong
- National Engineering Technology Research Center for Preservation of Agriculture Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Yongqiang Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
20
|
Mencarelli F, Bellincontro A. Recent advances in postharvest technology of the wine grape to improve the wine aroma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5046-5055. [PMID: 29369355 DOI: 10.1002/jsfa.8910] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 05/27/2023]
Abstract
Postharvest techniques are widely used for the handling and storage of fresh horticultural crops. Some of these techniques are interesting for use with wine grapes to improve the quality of wine. In this review, we consider the postharvest techniques that are already commercially used in the wine sector and others that may be significant in inducing or extracting the aroma from grapes to produce high-quality wines. Precooling consists of rapidly lowering the grape temperature, which allows the preservation/increase of volatile organic compounds (VOCs). We also discuss sustainability. Partial dehydration consists of the partial removal of water from grapes, and if a suitable environment is adopted it can be used to produce and extract berry VOCs. As a solid, carbon dioxide is used in wine processing for the rapid cooling of grapes and, as a gas, it is used for carbonic maceration. Ozone has been used for sanitation purposes in wineries for a long time, but more recently it has been used to produce wine without sulfite addition and to increase the aromatic quality of wine grapes. Ethylene application is not used commercially for wine grapes, but promising results in terms of phenolic extraction and aromatic changes in grapes are discussed. A comparison among the proposed techniques is reported in terms of grape aromatic quality and process features. The proposed techniques could help a winemaker to maintain or induce aromatic compounds in grape berries before the vinification process. The choice depends on the desired wine and economic consistency. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fabio Mencarelli
- Department for Innovation in Biological, Agro-food, and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-food, and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
21
|
Baia GM, Freitas-Silva O, Junior MF. Understanding the Role of Chlorine and Ozone to Control Postharvest Diseases in Fruit and Vegetables: A Review. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190212161209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fruits and vegetables are foods that come into contact with various types of microorganisms
from planting to their consumption. A lack or poor sanitation of these products after harvest can
cause high losses due to deterioration and/ or pathogenic microorganisms. There are practically no
post-harvest fungicides or bactericides with a broad spectrum of action that have no toxic residual effects
and are safe. However, to minimize such problems, the use of sanitizers is an efficient device
against these microorganisms. Chlorine is the most prevalent sanitizing agent because of its broad
spectrum, low cost and well-established practices. However, the inevitable formation of disinfection
by-products, such as trihalomethanes (THMs) and haloacetic acids (HAAs), is considered one of the
main threats to food safety. Alternative sanitizers, such as chlorine dioxide (ClO2) and ozone, are becoming
popular as a substitute for traditional post-harvest treatments. Thus, this review addresses the
use of chlorine, chlorine dioxide and ozone emphasizing aspects, such as usage, safe application,
spectrum of action and legislation. In order to ensure the quality and safety of final products, the
adoption of well-prepared sanitation and sanitation programs for post-harvest fruits and vegetables is
essential.
Collapse
Affiliation(s)
- Gabriela M. Baia
- Departamento de Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropedica, Rio de Janeiro, RJ, Brazil
| | - Otniel Freitas-Silva
- The Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Avenida das Americas, 29501, Rio de Janeiro, RJ, Brazil
| | - Murillo F. Junior
- The Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Avenida das Americas, 29501, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Liu J, Chang M, Meng J, Liu J, Cheng Y, Feng C. Effect of ozone treatment on the quality and enzyme activity of
Lentinus edodes
during cold storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jing Liu
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Ming‐chang Chang
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
- Shanxi Research Station for Engineering Technology of Edible Fungi Taigu PR China
| | - Jun‐long Meng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Jing‐yu Liu
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Yan‐Feng Cheng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Cui‐ping Feng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| |
Collapse
|
23
|
Sachadyn-Król M, Agriopoulou S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products-A Review. Molecules 2020; 25:E2416. [PMID: 32455899 PMCID: PMC7288181 DOI: 10.3390/molecules25102416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
In this review, the primary objective was to systematize knowledge about the possibility of improving the health-promoting properties of raw plant products, defined as an increase in the content of bioactive compounds, by using ozone. The greatest attention has been paid to the postharvest treatment of plant raw materials with ozone because of its widespread use. The effect of this treatment on the health-promoting properties depends on the following different factors: type and variety of the fruit or vegetable, form and method of ozone treatment, and dosage of ozone. It seems that ozone applied in the form of ozonated water works more gently than in gaseous form. Relatively high concentration and long contact time used simultaneously might result in increased oxidative stress which leads to the degradation of quality. The majority of the literature demonstrates the degradation of vitamin C and deterioration of color after treatment with ozone. Unfortunately, it is not clear if ozone can be used as an elicitor to improve the quality of the raw material. Most sources prove that the best results in increasing the content of bioactive components can be obtained by applying ozone at a relatively low concentration for a short time immediately after harvest.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| |
Collapse
|
24
|
Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09204-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Onopiuk A, Półtorak A, Wojtasik‐Kalinowska I, Szpicer A, Marcinkowska‐Lesiak M, Pogorzelski G, Wierzbicka A. Impact of the storage atmosphere enriched with ozone on the quality of
Lycopersicon esculentum
tomatoes. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Onopiuk
- Department of Technique and Food Development Warsaw University of Life Sciences Warsaw Poland
| | - Andrzej Półtorak
- Department of Technique and Food Development Warsaw University of Life Sciences Warsaw Poland
| | | | - Arkadiusz Szpicer
- Department of Technique and Food Development Warsaw University of Life Sciences Warsaw Poland
| | | | - Grzegorz Pogorzelski
- Department of Technique and Food Development Warsaw University of Life Sciences Warsaw Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development Warsaw University of Life Sciences Warsaw Poland
| |
Collapse
|
26
|
Sachadyn-Król M, Materska M, Chilczuk B. Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents. Antioxidants (Basel) 2019; 8:antiox8090356. [PMID: 31480596 PMCID: PMC6769928 DOI: 10.3390/antiox8090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022] Open
Abstract
The effect of treatment of pepper fruits with gaseous ozone and storage time following the ozonation process on changes in the content of lipophilic fraction is analyzed for the first time in this paper. The aim of the present study was to assess the impact of ozone treatment on the composition of lipophilic compound fraction and its antioxidant activity (AA). Pepper fruits of cv. Cyklon were ozonated for 1 and 3 h immediately after harvesting. Then, the fruits were stored for 30 days under refrigeration conditions. The total content of phenolic compounds and the AA of the lipophilic fraction isolated from the pericarp and placenta of the fruits were investigated after 10, 20, and 30 days of storage. Additionally, quantitative high-performance liquid chromatography diode array detection analysis of individual phenolic compounds was performed. The results revealed that the content and activity of secondary metabolites varied during storage, with the highest values recorded on the 20th day after harvest, both in control and ozonated fruits, regardless of the ozone dosage used. Treatment of the fruits with ozone for 3 h, but not for 1 h, exhibited a positive effect on the phenolic composition and AA during the prolonged storage of pepper fruits. Three hours of ozonation seems to be the appropriate time to increase the persistence of pepper fruits during storage.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| | - Małgorzata Materska
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Barbara Chilczuk
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
27
|
Wu Q, Zhang Z, Zhu H, Li T, Zhu X, Gao H, Yun Z, Jiang Y. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2610-2621. [PMID: 30417566 DOI: 10.1002/jsfa.9479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ozone treatment can effectively inhibit fruit decay in many fruits during postharvest storage. However, little information is available for pitaya fruit. RESULTS Ozone treatment significantly reduced the decay rate and induced the enzyme activities of peroxidase and polyphenol oxidase, and also reduced the levels of reactive oxygen species. In total, 103 metabolites were detected and changed the content after ozone treatment, including 54 primary metabolites and 49 aromatic compounds. After significance and importance analysis, 37 metabolites were important. Some metabolites were induced by peel senescence to respond to senescence stress, including d-fructose, d-glucose, mannose, inositol, galactonic acid, ethanedioic acid and stearic acid. Some metabolic products of peel senescence were reduced by ozone treatment, including d-arabinose, glucaric acid, galacturonic acid, 1-hexanol, 4-ethylcyclohexanol, β-linalool, palmitoleic acid and 2-hydroxy-cyclopentadecanone. Some metabolites induced by ozone treatment might play a vital role in delaying the senescence and decay, including malic acid, succinic acid, pentenoic acid, eicosanoic acid, 2-hexenal, hexanal, 2-heptenal, 4-heptenal, 2-octenal and nitro m-xylene. CONCLUSION Ozone treatment significantly reduced decay and prolonged shelf-life without reducing fruit quality. In total, 37 metabolites might play an important role in ozone delayed fruit decay. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qixian Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China
| | - Zhengke Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
- College of Food Science and Technology, Hainan University, No.58 Haidiandao Renmin Street, Haikou, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
| | - Xiangrong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, No. 80 Dafeng Two Street, Tianhe District, Guangzhou, China
| | - Ze Yun
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou, China
| |
Collapse
|
28
|
Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:61-74. [PMID: 30172135 DOI: 10.1016/j.scitotenv.2018.08.264] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
UNLABELLED The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. CAPSULE The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593 Stuttgart, Germany.
| | - Vicent Calatayud
- Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome 00123, Italy.
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex 06904, France.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
29
|
Fundo JF, Miller FA, Tremarin A, Garcia E, Brandão TR, Silva CL. Quality assessment of Cantaloupe melon juice under ozone processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wani SM, Amin S, Javaid I, Masoodi FA, Mir SA, Ganai SA, Yildiz F. Minimal Processing of Tropical and Subtropical Fruits, Vegetables, Nuts, and Seeds. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7018-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Ribeiro PH, Faroni LRD, Finger FL, Cecon PR, Heleno FF, Santos RR. Ozônio como agente fitossanitário na conservação pós-colheita da batata-baroa. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Resumo Raízes de batata-baroa (Arracacia xanthorrhiza Bancroft) foram imersas em água borbulhada com ozônio, para avaliar o controle de bactérias do gênero Erwinia. Além de análise visual das raízes, avaliaram-se a atividade das enzimas pectinolíticas pectinametilesterase e poligalacturonase, e as características físico-químicas (perda de massa, variação de cor, teores de açúcares e amido), durante o armazenamento. As raízes foram imersas em água ozonizada (1,52 mg L-1), por períodos de até 30 min. Em seguida, foram acondicionadas em câmara climática e avaliadas durante 10 dias. Não houve diferença visual aparente entre os tratamentos. Entretanto, raízes tratadas com ozônio por 30 min apresentaram menor atividade específica das enzimas pectinametilesterase. Houve efeito linear para açúcares solúveis totais e perda de massa, e efeito quadrático para açúcares redutores e não redutores, significativos apenas para o período de armazenamento. A imersão de raízes de batata-baroa em água borbulhada com ozônio por até 30 min não foi suficiente para o controle de bactérias do gênero Erwinia. Nas condições adotadas no trabalho, a ozonização não provoca alteração na perda de massa, no teor de amido, açúcares solúveis totais, açúcares redutores e açúcares não redutores, e na variação de cor das raízes de batata-baroa.
Collapse
|
32
|
Glowacz M, Rees D. The practicality of using ozone with fruit and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4637-4643. [PMID: 27097728 DOI: 10.1002/jsfa.7763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
The fresh produce industry is constantly growing as a result of increasing consumer demand. Food quality and safety management are still major issues for the supply chain. The use of ozone has been identified as a feasible solution to reduce microorganisms present in food, in this way extending the shelf-life of fresh produce. A number of factors that may affect the efficiency of ozone treatment have been identified, e.g. microbial populations, ozone concentration and time of exposure, type of produce, temperature, relative humidity and packaging material, and they are briefly discussed. Furthermore, practical information derived from studies with ozone conducted by the authors and from their knowledge of the subject directs the reader's attention to the key aspects of ozone use under commercial conditions, i.e. from the practical point of view. Finally, one possible direction for future research with the postharvest use of ozone, i.e. the important role of fruit cuticle in response to this postharvest treatment, is indicated. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcin Glowacz
- Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK.
| | - Deborah Rees
- Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK
| |
Collapse
|