1
|
Grassi G, Di Gregorio P, Rando A, Perna AM. Quality and sensorial evaluation of beef burgers added with Sicilian sumac ( Rhus coriaria L). Heliyon 2024; 10:e26848. [PMID: 38439886 PMCID: PMC10909727 DOI: 10.1016/j.heliyon.2024.e26848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
The Sicilian sumac (Rhus coriaria L.) is considered an excellent source of natural polyphenols whose antioxidant activity is able to affect specific technological functions. The effect of the Rhus coriaria addition on the quality of beef burgers before and after cooking was evaluated, by pH, colour, protein (-SH) and lipid oxidation, total phenol content and antioxidant activity (ABTS assay). The sumac in burgers (THs) resulted in a significant increase in all dry matter components (P < 0.05), while water content and pH value decreased. Furthermore, THs, compared with control burgers (CHs), were characterised by lower L* and peroxidation values and higher a* and b* values (p < 0.05). The Rhus added in the burgers positively influenced the total phenolic content and antioxidant activity values. Cooking reduced content of phenols, -SH groups and antioxidant activity. However, in THs the reduction of -SH, phenols and antioxidant activity was more limited than in CHs (p < 0.05). Sensory analysis showed a higher appreciation for THs by consumers for all the considered attributes. The ground meat incorporated with sumac could be a valid strategy to improve its quality and sensorial evaluation.
Collapse
Affiliation(s)
- Giulia Grassi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100, Potenza, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100, Potenza, Italy
| | - Andrea Rando
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Maria Perna
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
2
|
Grassi G, Capasso G, Rando A, Perna AM. Antioxidant Activity of Beef, Pork and Chicken Burgers before and after Cooking and after In Vitro Intestinal Digestion. Foods 2023; 12:4100. [PMID: 38002158 PMCID: PMC10670588 DOI: 10.3390/foods12224100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the present work was to evaluate and compare in vitro the antioxidant activity of raw, cooked and cooked-digested pork, beef and chicken burgers. The cooking process influenced the antioxidant capacity of the meat by decreasing the values of ABTS, FRAP and the content of free thiols. Conversely, a positive effect was observed after in vitro gastrointestinal digestion which increased the biological activity of the meat, characterised by greater antioxidant activity. The type of meat influenced the chemical composition and biological capacity of the burgers. In fact, both before and after the cooking process, beef burgers showed higher thiol content and, consequently, a higher oxidative stability of proteins than chicken and pork burgers. In vitro gastrointestinal digestion also improved the nutraceutical quality of beef burgers, which showed higher ABTS values and thiol content than pork burgers, which showed higher FRAP values. This work aims to support the potential of meat constituents as a natural antioxidant component that is essential to counteract the oxidative stress responsible for imbalances in the human organism and several cardiovascular diseases.
Collapse
Affiliation(s)
- Giulia Grassi
- Department of Agriculture, Environment and Food, University of Molise, Via De Sanctis 1, 86100 Campobasso, Italy
| | - Giambattista Capasso
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.C.); (A.R.); (A.M.P.)
| | - Andrea Rando
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.C.); (A.R.); (A.M.P.)
| | - Anna Maria Perna
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.C.); (A.R.); (A.M.P.)
| |
Collapse
|
3
|
Zhang T, Chen T, Jiang H, Zhang M, Gong P, Liu J, Liu X. Effect of pH treatment on egg white protein digestion and the peptidomics of their in vitro digests. Food Res Int 2023; 173:113327. [PMID: 37803637 DOI: 10.1016/j.foodres.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The pH treatment significantly enhanced the functional properties of egg white protein (EWP), but little is known about the relationship between pH treatment and in vitro digestion of EWP. In this paper, we explored the effect of pH treatment (pH 2, pH 2-7, pH 12 and pH 12-7) on the digestibility of egg white protein and peptide profiling using the digestion kinetics and peptidomics methods, separately. The results implied that all pH treatment reduced the protein digestibility in gastric phase, while alkaline pH (pH 12 and pH 12-7) showed greater digestion level and more gastric peptides, and more importantly, produced a greater amount of potentially bioactive peptides than acid treated samples. Besides, the least number of potentially bioactive peptides was obtained at pH 2, but this could be improved by adjusting pH 2 back to 7. Notably, the unique bioactive peptides induced by pH were mainly relevant to DPP IV inhibitor. These differences of digestibility and peptide profiling might be attributed to the change of protein structure and the formation of molten sphere, altering cleavage sites of digestive enzymes. This work would give an enlightening insight into the digestive and nutritional characteristics of the pH-induced EWP to expand their application in the field of food and healthcare.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tingting Chen
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ping Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Yang Z, Cai J, Boateng EF, Xing L, Zhang W. Insight into Antioxidant Activity and Peptide Profile of Jinhua Ham Broth Peptides at Different Cooking Times. Antioxidants (Basel) 2023; 12:antiox12030606. [PMID: 36978854 PMCID: PMC10045146 DOI: 10.3390/antiox12030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
This present study aimed to investigate the effects of various cooking times (1 h, 1.5 h, 2 h, 2.5 h, named as JHBP-1, JHBP-1.5, JHBP-2, JHBP-2.5) on the antioxidant activity and peptide profile of Jinhua ham broth peptides (JHBP). The peptides extracted from uncooked ham were used as an uncooked group with the name of JHBP-0. The results revealed that the antioxidant efficacy in the four cooked groups changed dramatically compared to JHBP-0. After cooking, the DPPH radical scavenging activity, hydroxyl radical scavenging activity and superoxide anion radical scavenging activity decreased, except for the Fe2+ chelation and ABTS+ scavenging capacity which increased significantly. However, the cooked groups still showed a strong antioxidant capacity. In particular, the superoxide anion radical scavenging ability and the Fe2+ chelation action were significantly stronger compared to glutathione (GSH) and butylated hydroxytoluene (BHT) (p < 0.05). JHBP-1.5 also displayed stronger antioxidant capacity than the other three cooked groups, and its secondary structure and mass distribution changed significantly after cooking, specifically with an increased proportion of helix and <1 kDa peptides. Moreover, the constitution of free amino acids (FAAs) and the types of peptides released in the broth increased significantly with a longer cooking time. In total, 1306 (JHBP-0), 1352 (JHBP-1), 1431 (JHBP-1.5), 1500 (JHBP-2), and 1556 (JHBP-2.5) peptide sequences were detected using LC-MC/MC. The proportion of <1 kDa peptides also gradually increased as the cooking time extended, which is consistent with the molecular weight distribution measurements.
Collapse
Affiliation(s)
| | | | | | - Lujuan Xing
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| | - Wangang Zhang
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| |
Collapse
|
5
|
Takeda S, Ahhmed AM, Sogawa K, Mouri S, Kaneko S, Sakata R, Mizunoya W. Antioxidant activity of venison subjected to in vitro cooking and gastrointestinal digestion and isolation of its 2,2-diphenyl-1-picrylhydrazyl radical scavenging peptides. Anim Sci J 2023; 94:e13870. [PMID: 37743546 DOI: 10.1111/asj.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Venison, a type of game meat, has several health benefits because it contains not only high protein and low fat but also bioactive peptides with several physiological properties, including antioxidative and angiotensin-converting enzyme inhibitory properties. The aim of the present study was to investigate the antioxidant activity of venison treated by in vitro cooking and gastrointestinal digestion. We subjected venison along with pork and beef to in vitro cooking and digestion and assessed their antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH-RS) and hydrophilic oxygen radical absorbance capacity (H-ORAC) assays. The peptide contents of all types of cooked and digested meat samples were higher than those of the untreated and cooked samples. The DPPH-RS activities and H-ORAC of digested venison, pork, and beef were increased compared with those of untreated samples. DPPH-RS activity was significantly higher in the digested venison samples than in the digested pork and beef samples. In this study, several fractions of digested venison from the chromatography exhibited DPPH-RS activity. Peptide analysis, using liquid-chromatography with tandem mass spectrometry, unveiled two peptides DIDDLELTLAK and TQTVCNFTDGALVQHQEWDGK with high DPPH-RS activities. Thus, venison is a rich source of antioxidant peptides and potentially demonstrate an antioxidation ability by digestive enzymes in vivo.
Collapse
Affiliation(s)
- Shiro Takeda
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Abdulatef M Ahhmed
- Department of Nutritional Therapy, Graduate School of Medical Science, the Libyan Academy, Tripoli, Libya
| | - Kazuki Sogawa
- School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Saki Mouri
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Sakurako Kaneko
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryoichi Sakata
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Wataru Mizunoya
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Use of Pleurotus ostreatus to Enhance the Oxidative Stability of Pork Patties during Storage and In Vitro Gastrointestinal Digestion. Foods 2022; 11:foods11244075. [PMID: 36553817 PMCID: PMC9778142 DOI: 10.3390/foods11244075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lipid and protein oxidation are the major causes of meat quality deterioration. Edible mushrooms have been proposed as a strategy to prevent quality deterioration during cold storage. This study aimed to assess the effects of Pleurotus ostreatus powder (POP) on the oxidative stability of pork patties during cold storage and after in vitro gastrointestinal digestion (ivGD). Pork patties were subjected to four treatments: control (without antioxidant), T1 (2% POP, w/w) and T2 (5% POP, w/w), and T3 as positive control (0.02% BHT, fat basis). POP aqueous, ethanolic, and aqueous ethanol extract were subjected to phytochemical and antioxidant assays. Raw pork patties were subjected to a chemical proximate composition evaluation. At the same time, raw and cooked pork patties were stored at 2 °C for 9 days and subjected to meat quality measurements. Furthermore, the total antioxidant activity of cooked pork patties was determined after ivGD. Results showed that POP ethanol extract showed the highest polysaccharide, phenol, and flavonoid content, as well as antiradical and reducing power properties. POP incorporation into raw and cooked pork patties enhances meat quality traits, including pH, water-holding capacity, cooking-loss weight, texture, color, lipid, and protein oxidation (p < 0.05). Furthermore, incorporating POP into cooked samples increases the phytochemical content and antioxidant activity during ivGD. In conclusion, POP has great potential as a natural antioxidant for meat products.
Collapse
|
7
|
A structural explanation for protein digestibility changes in different food matrices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Ohanenye IC, Ekezie FGC, Sarteshnizi RA, Boachie RT, Emenike CU, Sun X, Nwachukwu ID, Udenigwe CC. Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods 2022; 11:foods11152299. [PMID: 35954065 PMCID: PMC9368013 DOI: 10.3390/foods11152299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The increased consumption of legume seeds as a strategy for enhancing food security, reducing malnutrition, and improving health outcomes on a global scale remains an ongoing subject of profound research interest. Legume seed proteins are rich in their dietary protein contents. However, coexisting with these proteins in the seed matrix are other components that inhibit protein digestibility. Thus, improving access to legume proteins often depends on the neutralisation of these inhibitors, which are collectively described as antinutrients or antinutritional factors. The determination of protein quality, which typically involves evaluating protein digestibility and essential amino acid content, is assessed using various methods, such as in vitro simulated gastrointestinal digestibility, protein digestibility-corrected amino acid score (IV-PDCAAS), and digestible indispensable amino acid score (DIAAS). Since most edible legumes are mainly available in their processed forms, an interrogation of these processing methods, which could be traditional (e.g., cooking, milling, extrusion, germination, and fermentation) or based on emerging technologies (e.g., high-pressure processing (HPP), ultrasound, irradiation, pulsed electric field (PEF), and microwave), is not only critical but also necessary given the capacity of processing methods to influence protein digestibility. Therefore, this timely and important review discusses how each of these processing methods affects legume seed digestibility, examines the potential for improvements, highlights the challenges posed by antinutritional factors, and suggests areas of focus for future research.
Collapse
Affiliation(s)
- Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Flora-Glad C. Ekezie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Roghayeh A. Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14115-336, Iran
| | - Ruth T. Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Chijioke U. Emenike
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Natural and Applied Sciences, Faculty of Science, Hezekiah University, Umudi, Nkwerre 471115, Nigeria
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ifeanyi D. Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: (I.D.N.); (C.C.U.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (I.D.N.); (C.C.U.)
| |
Collapse
|
9
|
Antioxidant stability of a novel peptide from porcine plasma hydrolysates by in vitro digestion/HepG-2 model. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu H, Li Q, Zhao D, Zhang M, Jiang S, Li C. Changes in the structure and digestibility of myoglobin treated with sodium chloride. Food Chem 2021; 363:130284. [PMID: 34120050 DOI: 10.1016/j.foodchem.2021.130284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Myoglobin is a protein not easily broken down by digestive enzymes due to its rigid structure. This study evaluated the structural characteristics of myoglobin under various sodium chloride treatments (0.4-0.8 mol/L for 5-10 h) and the impacts on its digestibility using spectroscopic and molecular dynamics simulation techniques. Myoglobin digestibility was 40% following pepsin digestion and 60% after being sequentially digested by pepsin and trypsin. The α-helix content of myoglobin did not change significantly following sodium chloride treatment but hydrophobic amino acids were exposed and the binding of phenylalanine targeted by some digestive enzymes became more stable, leading to the reduced digestibility.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Arihara K, Yokoyama I, Ohata M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Sci 2021; 180:108561. [PMID: 34034035 DOI: 10.1016/j.meatsci.2021.108561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Bioactive peptides are released from meat proteins by enzymatic hydrolysis (i.e., gastrointestinal digestion, aging/storage, fermentation, and protease treatment). Such peptides attribute physiological functions to meat and meat products and are promising food ingredients for developing functional foods. Meat by-products (e.g., blood and collagen) are also good sources for generating bioactive peptides, since they are produced in large quantities and are rich in proteins. Although protein-derived bioactive peptides are attractive ingredients, their changes by the Maillard reaction during processing, cooking, and storage should be investigated. This article briefly reviews the production of bioactive peptides from meat and meat by-products. Such diverse peptides affects circulatory, nervous, alimentary, and immune systems. Then, the bioactivities of Maillard reaction products (MRPs) generated from protein hydrolysates are discussed. Special attention is paid to bioactivities of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) inhalation. As such activities, we have evaluated the impact of DMHF on blood pressure, moods, brainwaves, and dietary intake. Our efforts for understanding various aspects and implication of peptides and MRPs from meat proteins would open new avenues in the meat and food industry.
Collapse
Affiliation(s)
- K Arihara
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan.
| | - I Yokoyama
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - M Ohata
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
12
|
Pork Quality of Two Lithuanian Breeds: Effects of Breed, Gender and Feeding Regimen. Animals (Basel) 2021; 11:ani11041103. [PMID: 33921472 PMCID: PMC8069488 DOI: 10.3390/ani11041103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A few highly selected commercial pig breeds have been developed and many different local breeds have been replaced by these modern breeds. With the aim to preserve rare local breeds, the necessity has arisen to find and create the conditions under which local breeds could be more widely used. Therefore, the performance and production qualities of local breeds should be evaluated and highlighted. As the quality of pig production is associated with breeds and effects of other different conditions, the objective of this experiment was to investigate the effects of breed, gender, and feeding level in the finishing phase on the carcass and meat quality of Lithuanian White and Lithuanian Indigenous Wattle pigs reared indoors. Feed restriction during the finishing phase and gender both affected the growth and fatness of pigs. The breed and gender appeared to have an effect on the parameters of meat quality including fatty acid composition. The breed and gender effects on fatty acid composition showed more favorable lipid indices in relation to healthy nutrition in the ham muscles of Lithuanian White pigs compared with Lithuanian Indigenous Wattle pigs and also in the ham muscle and backfat of females compared with castrated males. Abstract The diversity of breeds is an important factor influencing carcass and meat quality traits that are also associated with other different effects. The objective of this study was to investigate the effects of breed, gender, and feeding level in the finishing phase on the carcass and meat quality of Lithuanian White and Lithuanian Indigenous Wattle pigs reared indoors. After 60 kg weight, half of the animals from both breeds were fed a restricted diet of approximately 82% of average ad libitum feeding intake, and the other half of pigs were further fed ad libitum to the end of the experiment. Feed restriction during the finishing phase decreased daily gain and weight of pigs at slaughter, and backfat thickness at the tenth rib (p ˂ 0.001, p ˂ 0.01, and p ˂ 0.05, respectively). Lithuanian White pigs demonstrated higher (p ˂ 0.001) growth rate, live body weight at slaughter and carcass weight, and had a higher (p ˂ 0.01) length of carcass and loin area and lower (p ˂ 0.05) backfat thickness at the last rib and at two points at the lumbar area compared with Lithuanian Indigenous Wattle pigs. The semimembranosus muscle of Lithuanian White pigs had relatively (8.1%) lower (p ˂ 0.001) proportions of saturated and 41.2% higher (p ˂ 0.001) proportions of polyunsaturated fatty acids compared with the pigs of the Lithuanian Indigenous Wattle breed, whereas in the longissimus muscle and subcutaneous tissue, the breed only affected the n-6/n-3 ratio (p ˂ 0.01 and p ˂ 0.001, respectively). Gender showed an effect on saturated fatty acids in all the studied tissues, however, the effects on polyunsaturated fatty acids were found in the semimembranosus muscle and subcutaneous tissue (p ˂ 0.05 and p ˂ 0.001) and the effects on monounsaturated fatty acids was found only in the semimembranosus muscle (p ˂ 0.01). These differences in the fatty acid composition of the semimembranosus muscle and subcutaneous tissue of females exhibited more favorable lipid quality indices compared with castrated males (p ˂ 0.001). The semimembranosus muscle of Lithuanian White pigs also showed more favorable lipid quality indices in relation to healthy nutrition compared with Lithuanian Indigenous Wattle pigs (p ˂ 0.001). This study is one of the steps toward the development and utilization of endangered breeds. The obtained information can be used to increase choice in pork production and consumption, and provides new insights for research into the conservation of local breeds.
Collapse
|
13
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Simonetti A, Perna A, Grassi G, Gambacorta E. In vitro phenols bioaccessibility and antioxidant activity of goat milk yogurt fortified with Rhus coriaria leaf powder. J Food Sci 2021; 86:1400-1409. [PMID: 33761134 DOI: 10.1111/1750-3841.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
Goat yogurt samples fortified with 20% (w/v) Rhus coriaria leaf powder were in vitro digested in order to evaluate the total phenolic content (TPC), antioxidant activity (AA), and bioaccessibility of phenolic compounds in the digestate. After digestion, TPC and AA values of the R. coriaria-fortified yogurts increased compared to the undigested yogurts (P < 0.001). In particular, TPC has increased about twice; whereas, AA values have increased about 10 and 6 times, for ABTS and FRAP assays, respectively. The bioaccessibility index was well above the 100% for all identified phenols; except for (-)-epicatechin (82.04%), rutin (51.51%), and gallic acid (5.42%). This different behavior highlighted that the bioaccessibility was modulated by both the yogurt-polyphenol complexes and phenol stability under digestion system. These findings can contribute to elucidate the influence of in vitro digestion on antioxidant capacity and polyphenols recovery infortified yogurts, and may help in the design of dairy products with better functional quality PRACTICAL APPLICATION: Rhus coriaria L. (Sumac) is a polyphenol-rich Mediterranean plant that may be used as functional ingredient to enrich fermented food such as yogurt. However, in fortified yogurts the evaluation of bioaccessibility, that is, the compounds released from the yogurt and stable in the digestive environment, thus able to exert their biological effects on the gastrointestinal system, is more important than the content of these compounds in the corresponding food. This study highlighted the phenolic content, antioxidant activity, and bioaccessibility of phenolic compounds in goat milk yogurt fortified with R. coriaria leaf powder after simulated gastro-pancreatic digestion.
Collapse
Affiliation(s)
- Amalia Simonetti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'AteneoLucano, Potenza, 10-85100, Italy
| | - Annamaria Perna
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'AteneoLucano, Potenza, 10-85100, Italy
| | - Giulia Grassi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'AteneoLucano, Potenza, 10-85100, Italy
| | - Emilio Gambacorta
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'AteneoLucano, Potenza, 10-85100, Italy
| |
Collapse
|
15
|
Bhat ZF, Morton JD, Mason SL, Jayawardena SR, Mungure T, Bekhit AEA. Cooking does not impair the impact of pulsed electric field on the protein digestion of venison (
Cervus elaphus
) during
in vitro
gastrointestinal digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zuhaib F. Bhat
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - James D. Morton
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Susan L. Mason
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Sasika Reshan Jayawardena
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Tanyaradzwa Mungure
- Department of Food Sciences University of Otago P.O. Box 56 Dunedin9054New Zealand
| | | |
Collapse
|
16
|
Echegaray N, Munekata PES, Centeno JA, Domínguez R, Pateiro M, Carballo J, Lorenzo JM. Total Phenol Content and Antioxidant Activity of Different Celta Pig Carcass Locations as Affected by the Finishing Diet (Chestnuts or Commercial Feed). Antioxidants (Basel) 2020; 10:E5. [PMID: 33374557 PMCID: PMC7822432 DOI: 10.3390/antiox10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this research was to evaluate the total phenol content, total flavonoids, and antioxidant activity of chestnuts (Castanea sativa Mill.) and commercial feed employed in the finishing diet of the Celta pig breed and analyze the effect of the feeding (chestnuts vs. commercial feed) in the finishing diet on total phenol content and antioxidant activity of Longissimus thoracis et lumborum, Psoas major, and Biceps femoris muscles and liver of the Celta pig breed. The antioxidant activity of the feed and animal tissue was investigated using three antioxidant methods (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2-2'-Azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS) radical scavenging activity, and ferric reducing antioxidant power (FRAP) assay). The determination of the total phenol content and total flavonoids showed that chestnut had a significantly lower concentration than commercial feed in these compounds (130.00 vs. 312.89 mg gallic acid equivalents/100 g fresh weight and 8.58 vs. 32.18 mg catechin equivalents/100 g fresh weight, respectively). However, the results displayed that chestnuts had a higher antioxidant activity when compared with the commercial feed through the DPPH and ABTS methods (1152.42 vs. 957.33 µg Trolox equivalents/g fresh weight, and 9379.74 vs. 7613.44 µg Trolox equivalents/g fresh weight, for DPPH and ABTS assay, respectively), while the antioxidant activity measured by the FRAP assay turned out to show higher values for commercial feed (1777.49 and 1946.09 µmol Fe2+/100 fresh weight for chestnut and commercial feed, respectively), although significant differences were only found in the ABTS assay. On the other hand, the present study found that chestnut significantly reduces the total phenol content and declines the antioxidant activity of Longissimus thoracis et lumborum, Psoas major, and Biceps femoris muscles and liver of the Celta pig breed. Finally, it has been found that liver is the location that has the best antioxidant characteristics compared to any muscle, regardless of diet utilized.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Juan A. Centeno
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Javier Carballo
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| |
Collapse
|
17
|
Wang L, Li X, Liu W, Jia X, Wang S, Qiao X, Cheng X. Antioxidant activity of pickled sauced meat before and after cooking and in vitro gastrointestinal digestion. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Le Wang
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiang Li
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Wenying Liu
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoyun Jia
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Shouwei Wang
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoling Qiao
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoyu Cheng
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| |
Collapse
|
18
|
Xiao C, Toldrá F, Zhou F, Gallego M, Zhao M, Mora L. Effect of cooking and in vitro digestion on the peptide profile of chicken breast muscle and antioxidant and alcohol dehydrogenase stabilization activity. Food Res Int 2020; 136:109459. [DOI: 10.1016/j.foodres.2020.109459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
|
19
|
Li Q, Zhao D, Liu H, Zhang M, Jiang S, Xu X, Zhou G, Li C. "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem X 2020; 7:100094. [PMID: 32617526 PMCID: PMC7322683 DOI: 10.1016/j.fochx.2020.100094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023] Open
Abstract
Myoglobin, a critical protein responsible for meat color, has been shown insusceptible to digestion. The underlying mechanism is not clear. The present study aimed to evaluate whether the structural properties of myoglobin are associated with its insusceptibility to digestion using spectroscopic and computational techniques. Myoglobin was degraded by only 7.03% by pepsin and 33.00% by pancreatin. The structure of myoglobin still maintained α-helix after the two-step digestion, with the exposure of some aromatic residues. In addition, molecular dynamics modeling suggested that hydrophobic amino acid residues (Phe 111, Leu 10, Ala 115, Pro 116) in pepsin and polar amino acid residues (Tyr 146, Thr 95) in myoglobin were found in the proximity of binding sites, which could result in the low digestibility of myoglobin. Our findings provide a new insight into the underlying mechanisms on the difficulty in digestion of myoglobin.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Simonetti A, Perna A, Grassi G, Gambacorta E. Antioxidant activity of different cheese-honey combinations before and after in vitro gastrointestinal digestion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Takeda S, Kaneko S, Sogawa K, Ahhmed AM, Enomoto H, Kawarai S, Taira K, Mizunoya W, Minami M, Sakata R. Isolation, Evaluation, and Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides from Game Meat. Foods 2020; 9:E1168. [PMID: 32854180 PMCID: PMC7555870 DOI: 10.3390/foods9091168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 02/01/2023] Open
Abstract
Game meat has been underutilized, while it offers the potential to diversify not only the human diet but also increase food production and the nutritional value of meat products. This study aimed to determine the angiotensin I-converting enzyme (ACE) inhibitory activities of the digested game meats (venison and boar meat) compared with those of livestock meats (beef and pork). Through the sodium dodecyl sulfate polyacrylamide gel electrophoresis and size chromatography results, we found that the digested products from each meat had different molecular weights. The ACE inhibitory ratio in all tested samples had gradually increased following by the enzyme treatments. ACE inhibitory ratios and the half maximal inhibitory concentration values indicated that digested venison was the most potent inhibitor of ACE activity, followed by the digested boar meat. The level of anserine in digested venison was higher than that in the other meats, but the carnosine level was lower. Through fractionations and liquid chromatography-tandem mass spectrometry analysis, five ACE inhibitory peptides were identified from the digested venison. Of these peptides, Isoleucine-Lysine- Glutamic Acid-Valine-Threonine-Glutamic Acid-Arginine (IKEVTER) demonstrated the highest ACE inhibitory activity. Therefore, the game meat is food that is believed potentially to offer high bioactivities, particularly antihypertensive forces.
Collapse
Affiliation(s)
- Shiro Takeda
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Sakurako Kaneko
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
| | - Kazuyuki Sogawa
- School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan;
| | - Abdulatef M Ahhmed
- Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Hirofumi Enomoto
- School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan;
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| | - Shinpei Kawarai
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Kensuke Taira
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Wataru Mizunoya
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Masato Minami
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Ryoichi Sakata
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (S.K.); (S.K.); (K.T.); (W.M.); (M.M.); (R.S.)
- Japan Society for Meat Science and Technology, Ebisu 150-0013, Japan
| |
Collapse
|
22
|
Gallego M, Mauri L, Aristoy MC, Toldrá F, Mora L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103956] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Genualdo V, Rossetti C, Pauciullo A, Musilova P, Incarnato D, Perucatti A. A de novo reciprocal chromosomal translocation t(3;6)(p14;q26) in the black Lucano pig. Reprod Domest Anim 2020; 55:677-682. [PMID: 32125727 DOI: 10.1111/rda.13664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
In the past two decades, several cytogenetic screening programmes identified different chromosome rearrangements in pig, most of which represented by reciprocal translocation (rcp). This chromosome abnormality does not involve the variation in the number of chromosomes, but only the rearrangement of genetic material, resulting in phenotypically normal carriers with fertility problems. During an occasional cytogenetic screening, a new reciprocal translocation was detected in the black Lucano pig native breed. We analysed 15 animals reared by a family-run piggery in Basilicata region (Southern Italy). After karyotyping, four pigs (two boars and two sows) revealed two unpaired chromosomes. Analysis of the RBA karyotype and the dual-colour FISH technique confirmed that these pigs showed the same reciprocal translocation involving the chromosomes SSC3 and SSC6. The precise location of breakpoints was identified by RBH-FISH t(3;6)(p14;q26), whereas the analysis of the pedigree showed a case of Mendelian inheritance within a family, after the de novo occurrence of the new rcp. Considering the consequences of the rcp on the fertility, this study points out the importance of the cytogenetic screening in the native breeds for the safeguard of the genetic biodiversity and the sustainability of the rural areas.
Collapse
Affiliation(s)
- Viviana Genualdo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Cristina Rossetti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Alfredo Pauciullo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy.,Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Domenico Incarnato
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Angela Perucatti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| |
Collapse
|
24
|
Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2020; 10:6244-6266. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Livestock generates high quantities of residues, which has become a major socioeconomic issue for the meat industry. This review focuses on the identification of bioactive peptides (BPs) in animal byproducts and meat wastes. Firstly, the main bioactivities that peptides can have will be described and the methods for their evaluation will be discussed. Secondly, the various origins of these BPs will be studied. Then, the techniques and tools for the generation of BPs will be detailed in order to discuss, in the final part, how peptides could be used and assimilated. BPs possess diverse biological activities and can be strategic candidates for substituting synthetic molecules. In silico potentiality studies are a helpful tool to understand and predict BPs released from proteins and their potential activities. However, in vitro validation is often required. Although BP use is compelled by strict regulations in relation to the field of application, they are also limited by their low bioavailability and bioaccessibility. Therefore, it is important to test peptide stability during gastrointestinal digestion. Protective strategies have been discussed since their use could improve the stability and effectiveness of BPs.
Collapse
Affiliation(s)
- Julia Bechaux
- INRA, UR 370, Qualité des Produits Animaux (QuaPA), Site de Theix, 63122, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
25
|
Bechaux J, Ferraro V, Sayd T, Chambon C, Le Page JF, Drillet Y, Gatellier P, Santé-Lhoutellier V. Workflow towards the generation of bioactive hydrolysates from porcine products by combining in silico and in vitro approaches. Food Res Int 2020; 132:109123. [PMID: 32331690 DOI: 10.1016/j.foodres.2020.109123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Food-derived bioactive peptides have generated an increasing interest in the field of health and well-being research. They can act either against the metabolic syndrome, participate in regulating the oxidation balance or act on the immune system. The aim of this study is to develop a workflow to generate bioactive peptides from three porcine offals namely, heart, liver, and lung and one muscle the Longissimus Dorsi, by combining in silico and in vitro approaches. Bioinformatics tools (e.i. BIOPEP and Uniprot) permitted to orientate the choice of enzymes for generating abundant bioactive peptides from the four studied porcine products. With papain and subtilisin, the main bioactivities potentially released were ACE inhibitors, DPP4 inhibitors and antioxidant peptides. An in vitro validation study using papain and subtilisin demonstrated high DPP4 inhibitors and antioxidant bioactivities for the generation of peptides. This work allowed: i) the identification of all proteins that composed porcine heart, liver, lung and LD muscle that could be useful for the scientific community, ii) the development of a workflow to select most abundant proteins in a product while considering abundance factors and iii) the potential of porcine meat and offals to generate DPP4 inhibitors and antioxidant peptides. However, there is still a need in developing new tools in order to face limitations of mass spectrometry for the identification of peptides with less than six amino acids. Such a work may contribute to the development of the circular economy and the innovative creation of value-added products from animal production.
Collapse
Affiliation(s)
- Julia Bechaux
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France; Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Vincenza Ferraro
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Thierry Sayd
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Christophe Chambon
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Plateforme exploration du métabolisme (PFEM), Site de Theix, 63122 Saint Genès Champanelle, France
| | | | - Yoan Drillet
- Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Philippe Gatellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Véronique Santé-Lhoutellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France.
| |
Collapse
|
26
|
Câmara AKFI, Geraldi MV, Okuro PK, Maróstica MR, da Cunha RL, Pollonio MAR. Satiety and in vitro digestibility of low saturated fat Bologna sausages added of chia mucilage powder and chia mucilage-based emulsion gel. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
27
|
Bhat ZF, Morton JD, Mason SL, Jayawardena SR, Bekhit AEDA. Pulsed electric field: A new way to improve digestibility of cooked beef. Meat Sci 2019; 155:79-84. [DOI: 10.1016/j.meatsci.2019.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
|
28
|
Martini S, Conte A, Tagliazucchi D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J Proteomics 2019; 208:103500. [PMID: 31454557 DOI: 10.1016/j.jprot.2019.103500] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
This study was designed to investigate the potential contribution of bioactive peptides to the biological activities related to the consumption of pork, beef, chicken and turkey meat following in vitro gastro-intestinal digestion. After extraction of the peptidic fractions from digested samples, the bioactivities were evaluated by in vitro antioxidant activity as well as angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition assays. Pork and turkey meat appeared to be the best sources of antioxidant peptides. Pork was found to be the best source of DPP-IV-inhibitory peptides whereas chicken meat supplied peptides with the highest ACE-inhibitory activity. The comprehensive analysis of the peptidomic profile of digested samples was performed by nano-LC-ESI-QTOF MS/MS analysis. A total of 217, 214, 257 and 248 peptides were identified in digested pork, beef, chicken and turkey meat, respectively. Chicken and turkey meat showed the highest similarity in peptide sequences with 202 common peptides. Sixty-two peptides matched with sequences with previously demonstrated biological activity. In particular, 35 peptides showed ACE-inhibitory activity and 23 DPP-IV inhibitory activity. Twenty-two bioactive peptides were commonly released from the different types of meat. The relative amount of identified bioactive peptides were positively correlated to the biological activities of the different digested meats. BIOLOGICAL SIGNIFICANCE: The present study describes for the first time a comprehensive peptide profile of four types of meat after in vitro gastro-intestinal digestion. The peptide inventory was used to identify 62 bioactive peptides with ACE- and DPPIV-inhibitory and antioxidant activities. The bioactivity analysis revealed interesting and significant differences between the studied meats. The originality of this work lay in the description of intrinsic differences in physiological functions after the ingestion of meat proteins from different species. In a context in which the current research scene relates meat consumption to the onset of chronic pathologies, this peptide profiling and bioactivity analysis shed light on the possible health benefits of peptides released from meat proteins. In fact, this paper represents a sort of detailed peptide list that may help to predict which peptides could be generated after meat intake and detectable at gastro-intestinal level. It also provides a thorough investigation of novel biological activities associated to meat protein hydrolysates, giving a new positive aspect to meat consumption.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy
| | - Angela Conte
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy.
| |
Collapse
|
29
|
Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Res Int 2019; 120:793-799. [DOI: 10.1016/j.foodres.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
|
30
|
Liu D, Chen X, Huang M, Zhou G. Antioxidant activity of peptides in postmortem aged duck meat as affected by cooking and in vitro digestion. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1605374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongmei Liu
- Nanjing Innovation Center of Meat Products Processing, Synergetic Innovation Center of Food Safety and Nutrition, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ming Huang
- Nanjing Innovation Center of Meat Products Processing, Synergetic Innovation Center of Food Safety and Nutrition, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Guanghong Zhou
- Nanjing Innovation Center of Meat Products Processing, Synergetic Innovation Center of Food Safety and Nutrition, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
31
|
Comparison of antioxidant compounds in pig meat from Italian autochthonous pig Suino Nero Lucano and a modern crossbred pig before and after cooking. Food Chem 2019; 292:108-112. [PMID: 31054652 DOI: 10.1016/j.foodchem.2019.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate and compare the antioxidant compounds of raw and cooked Longissimus lumborum muscles from Suino Nero Lucano (SNL) and a modern crossbred (CG) pig. Vitamin E, phenols, histidine-containing peptides, and superoxide dismutase (SOD) activity have been detected in the raw and cooked meat of both genetic types. Cooking process decreased the content of all considered antioxidant compounds (P < 0.05). The antioxidant compounds of meat were significantly influenced by genetic type (P < 0.001). Autochthonous SNL raw and cooked meat showed a higher endogenous antioxidants content (P < 0.001) and SOD activity (P < 0.02) compared to CG meat. The results of this research highlighted that the pig meat, in particular autochthonous pig meat, showed good concentrations of endogenous antioxidant compounds that could confer functional properties to the product.
Collapse
|
32
|
Pulsed electric field improved protein digestion of beef during in-vitro gastrointestinal simulation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Bhat ZF, Morton JD, Mason SL, Bekhit AEDA. Pulsed electric field: Role in protein digestion of beef Biceps femoris. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Perna A, Simonetti A, Grassi G, Gambacorta E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci 2018; 149:134-140. [PMID: 30522046 DOI: 10.1016/j.meatsci.2018.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the effect of a cauliflower leaf powder (CLP)-enriched diet on the performance, quality and antioxidative potential of rabbit meat. No significant differences were found for live performance parameters between rabbits fed with standard (SD) and CLP diet. Dietary supplementation influenced the meat traits of rabbits: CLP meat showed significantly lower drip loss after 48 h, cooking loss, and a significantly higher lightness (L*) and redness (a*) values, vitamin A and vitamin E content, and oxidative stability, compared to SD meat. Moreover, the CLP supplementation caused a significant decrease in SFA and increase in PUFA percentage of rabbit intramuscular fat. The statistical analysis also showed a significant effect of dietary fortification on phenolic content and antioxidant activity of rabbit meat which resulted higher in meat of CLP group. This study highlighted that dietary fortification with CLP is a valid strategy to produce rabbit meat with better technological and functional quality.
Collapse
Affiliation(s)
- Annamaria Perna
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Amalia Simonetti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Giulia Grassi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Emilio Gambacorta
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
35
|
Hu L, Ren S, Shen Q, Ye X, Chen J, Ling J. Protein oxidation and proteolysis during roasting and in vitro digestion of fish (Acipenser gueldenstaedtii). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5344-5351. [PMID: 29656426 DOI: 10.1002/jsfa.9075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 02/22/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Roasted fish enjoys great popularity in Asia, but how roasting and subsequent digestion influence the oxidation and proteolysis of fish meat is unknown. This study aimed to investigate the effect of roasting time on lipid and protein oxidation and their evolution and consequence on proteolysis during simulated digestion of fish fillets. RESULTS Several oxidation markers (thiobarbituric acid-reactive substances (TBARS), free thiols, total carbonyls and Schiff bases) were employed to assess the oxidation of fish. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay for free amino groups were used to study the proteolysis during gastrointestinal digestion. The results showed that significant lipid and protein oxidative changes occurring in roasted fish fillets were reinforced after gastric digestion and were much more intense after intestinal digestion. Throughout roasting and digestion, a close interconnection between lipid and protein was also manifested as the levels of total carbonyls and Schiff bases rose while TBARS fell. Furthermore, free amino groups decreased with prolonged roasting time, signifying that protein oxidation before digestion resulted in impaired proteolysis during digestion. CONCLUSION This study indicated that the lipid and protein oxidation of fish fillets could be dependent on time of roasting, and the oxidation continued to develop and have an impact on proteolysis during in vitro digestion. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lyulin Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Sijie Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qing Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou, China
| | - Jiangang Ling
- Ningbo Academy of Agricultural Sciences, Zhejiang, China
| |
Collapse
|
36
|
Gallego M, Mora L, Toldrá F. Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chem 2018; 258:8-15. [DOI: 10.1016/j.foodchem.2018.03.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
37
|
Chen H, Xu Z, Fan F, Shi P, Tu M, Wang Z, Du M. Identification and mechanism evaluation of a novel osteogenesis promoting peptide from Tubulin Alpha-1C chain in Crassostrea gigas. Food Chem 2018; 272:751-757. [PMID: 30309606 DOI: 10.1016/j.foodchem.2018.07.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Marine shellfish provides a series of biofunctionality account of its high-protein level. In this study, the osteogenic effect of a novel peptide, YRGDVVPK, from Crassostrea gigas protein hydrolysates on preosteoblast MC3T3-E1 proliferation was examined. Synthetic peptide with 100 nM significantly promoted the proliferation of MC3T3-E1 cells for a treatment of 72 h assayed by MTT method, and which was confirmed by the increase of alkaline phosphatase (ALP) activity. The peptide, YRGDVVPK, was docked with integrin α5β1 (PDB ID: 3VI4), which is a surface receptor of MC3T3-E1. The interaction of the peptide with integrin α5β1 (PDB ID: 3VI4) was analyzed by the molecular modeling algorithm of CDOCKER, which showed a more stable combination than the original ligand. The results suggested the novel peptide could promote the preosteoblast MC3T3-E1 proliferation probably by activating the signaling pathway of MAPK, which is induced through binding with peptide YRGDVVPK.
Collapse
Affiliation(s)
- Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Fengjiao Fan
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Pujie Shi
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Maolin Tu
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
38
|
Ozvural EB, Bornhorst GM. Chemical and structural characteristics of frankfurters during in vitro gastric digestion as influenced by cooking method and severity. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Wang L, Li X, Li Y, Liu W, Jia X, Qiao X, Qu C, Cheng X, Wang S. Antioxidant and angiotensin I-converting enzyme inhibitory activities of Xuanwei ham before and after cooking and in vitro simulated gastrointestinal digestion. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180276. [PMID: 30109083 PMCID: PMC6083686 DOI: 10.1098/rsos.180276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Xuanwei ham is especially rich in a large amount of peptides and free amino acids under the action of protein degradation. Some of these peptides can potentially exert bioactivities of interest for human health. Traditionally, Xuanwei ham should undergo Chinese household cooking treatments before eating. However, it has not been known how its bioactivity changes after cooking and gastrointestinal digestion. Herein, Xuanwei ham is analysed before and after cooking, as well as gastrointestinal digestion being simulated so as to evaluate and compare its effect on antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities. The antioxidant activity is analysed using five different methods, and results demonstrate that cooking has some negative effects on antioxidative capacity when determined using different antioxidant methods except for a significant increment in 1,1'-diphenyl-2-picrylhydrazyl radical-scavenging activity, while ACE inhibitory activity increases significantly after cooking compared with control samples. After gastrointestinal digestion of samples, there is a significant increment of the antioxidant and ACE inhibitory activities in comparison with control and cooked samples. Particularly, after gastrointestinal digestion, free thiols content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation-scavenging activity of Xuanwei ham, respectively, increase about twice and fourfold, while ACE inhibitory activity increases about twice compared to cooked samples, reaching the value of 83.73%. Therefore, through cooking the antioxidant activity and ACE inhibitory activity of Xuanwei ham are not completely lost and a part of them is still maintained, while gastrointestinal digestion produces a significant enhancement in both bioactivities, highlighting a greater potential for a beneficial physiological effect on human health after eating it.
Collapse
Affiliation(s)
- Le Wang
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Xiang Li
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Yingnan Li
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Wenying Liu
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Xiaoyun Jia
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Xiaoling Qiao
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Chao Qu
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Xiaoyu Cheng
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| | - Shouwei Wang
- China Meat Research Centre, Beijing 100068, People's Republic of China
- Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, People's Republic of China
| |
Collapse
|
40
|
Phongthai S, D'Amico S, Schoenlechner R, Homthawornchoo W, Rawdkuen S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 2017; 240:156-164. [PMID: 28946256 DOI: 10.1016/j.foodchem.2017.07.080] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
Abstract
Rice bran was used as a starting material to prepare protein concentrate through enzyme-assisted extraction. The hydrolysis of protein concentrate under in vitro gastrointestinal digestion (pepsin-trypsin system) greatly improved the antioxidant properties. Rice bran protein hydrolysate was further fractionated by membrane ultrafiltration (UF, F1: molecular weight (MW) <3kDa, F2: MW 3-5kDa, and F3: MW 5-10kDa). Peptides with smaller MW possessed higher antioxidant activities (P<0.05). UF showed a great efficacy to selectively separate the metal-chelating peptides. Tyrosine and phenylalanine had positive correlations with their DPPH & ABTS radicals scavenging activities and ferric reducing antioxidant power (r>0.831). A major peptide fragment was detected at m/z 1088 by a MALDI-TOF mass spectrometry. There is high potential that antioxidative peptides from rice bran might also be produced in the gastrointestinal tract of the human body.
Collapse
Affiliation(s)
- Suphat Phongthai
- Program of Food Technology, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Stefano D'Amico
- Institute of Food Technology, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Regine Schoenlechner
- Institute of Food Technology, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wantida Homthawornchoo
- Program of Food Technology, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Saroat Rawdkuen
- Program of Food Technology, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
41
|
Mora L, Bolumar T, Heres A, Toldrá F. Effect of cooking and simulated gastrointestinal digestion on the activity of generated bioactive peptides in aged beef meat. Food Funct 2017; 8:4347-4355. [DOI: 10.1039/c7fo01148b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ageing is widely used in the meat industry to improve tenderness mainly as a result of the breakdown of muscular proteins through the action of endopeptidases during storage time.
Collapse
Affiliation(s)
- Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| | | | - Alejandro Heres
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| |
Collapse
|
42
|
Yu TY, Morton JD, Clerens S, Dyer JM. Cooking-Induced Protein Modifications in Meat. Compr Rev Food Sci Food Saf 2016; 16:141-159. [DOI: 10.1111/1541-4337.12243] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Tzer-Yang Yu
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences; Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
| | - James D. Morton
- Wine, Food & Molecular Biosciences; Faculty of Agriculture and Life Sciences, Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Stefan Clerens
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Jolon M. Dyer
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Riddet Inst; Massey Univ; Palmerston North 4442 New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences; Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|