1
|
Alkhawaja B, Al-Akayleh F, Al-Rubaye Z, AlDabet G, Bustami M, Smairat M, Agha ASAA, Nasereddin J, Qinna N, Michael A, Watts AG. Dissecting the stability of Atezolizumab with renewable amino acid-based ionic liquids: Colloidal stability and anticancer activity under thermal stress. Int J Biol Macromol 2024; 270:132208. [PMID: 38723835 DOI: 10.1016/j.ijbiomac.2024.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monoclonal antibodies (mAbs) have revolutionised the biopharmaceutical market. Being proteinaceous, mAbs are prone to chemical and physical instabilities. Various approaches were attempted to stabilise proteins against degradation factors. Ionic liquids (ILs) and deep eutectic solvents (DESs) have been established as green solvents for ever-increasing pharmaceutical and biopharmaceutical applications. Hence, amino acid (AA)-based ILs, were used for the first time, for mAb stabilisation. Choline (Ch)-based DESs were also utilised for comparison purposes. The prepared ILs and DESs were utilised to stabilise Atezolizumab (Amab, anti-PDL-1 mAb). The formulations of Amab in ILs and DESs were incubated at room temperature, 45 or 55 °C. Following this, the structural stability of Amab was appraised. Interestingly, Ch-Valine retained favourable structural stability of Amab with minimal detected aggregation or degradation as confirmed by UV-visible spectroscopy and protein Mass Spectroscopy. The measured hydrodynamic diameter of Amab in Ch-Valine ranged from 10.40 to 11.65 nm. More interestingly, the anticancer activity of Amab was evaluated, and Ch-Valine was found to be optimum in retaining the activity of Amab when compared to other formulations, including the control Amab sample. Collectively, this study has spotlighted the advantages of adopting the Ch-AA ILs for the structural and functional stabilising of mAbs.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Zaid Al-Rubaye
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Ghayda' AlDabet
- University of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, Petra University, Amman 11196, Jordan
| | - Muna Bustami
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Maisa'a Smairat
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Ahmed S A A Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Jehad Nasereddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Nidal Qinna
- University of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, Petra University, Amman 11196, Jordan
| | - Andreas Michael
- Department of Life Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Andrew G Watts
- Department of Life Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
2
|
Kölbel J, Anuschek ML, Stelzl I, Santitewagun S, Friess W, Zeitler JA. Dynamical Transition in Dehydrated Proteins. J Phys Chem Lett 2024; 15:3581-3590. [PMID: 38527099 PMCID: PMC11000241 DOI: 10.1021/acs.jpclett.3c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Terahertz time-domain spectroscopy and differential scanning calorimetry were used to study the role of the dynamics of biomolecules decoupled from solvent effects. Lyophilized sucrose exhibited steadily increasing absorption with temperature as anharmonic excitations commenced as the system emerged from a deep minimum of the potential energy landscape where harmonic vibrations dominate. The polypeptide bacitracin and two globular proteins, lysozyme and human serum albumin, showed a more complex temperature dependence. Further analysis focused on the spectral signature below and above the boson peak. We found evidence of the onset of anharmonic motions that are characteristic for partial unfolding and molecular jamming in the dry biomolecules. The activation of modes of the protein molecules at temperatures comparable to the protein dynamical transition temperature was observed in the absence of hydration. No evidence of Fröhlich coherence, postulated to facilitate biological function, was found in our experiments.
Collapse
Affiliation(s)
- Johanna Kölbel
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Moritz L. Anuschek
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - Ivonne Stelzl
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - Supawan Santitewagun
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Wolfgang Friess
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - J. Axel Zeitler
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| |
Collapse
|
3
|
Andreadis M, Moschakis T. Formation of thermo-reversible gels from whey proteins after combined thermal and ethanol pretreatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Effect of ethanol on gelation and microstructure of whey protein gels in the presence of NaCl. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
An Integrated Optical and Chromogenic Probe for Tumor Cell Imaging. J Pharm Biomed Anal 2022; 215:114766. [DOI: 10.1016/j.jpba.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
|
6
|
Wouters AG, Boeve J, Dams H, Joye IJ. Heat treatment as a food-grade strategy to increase the stability of whey protein particles under food system relevant conditions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 2022; 206:175-187. [PMID: 35217087 DOI: 10.1016/j.ijbiomac.2022.02.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.
Collapse
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, USA.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
8
|
Βasdeki AM, Fatouros DG, Βiliaderis CG, Moschakis T. Physicochemical properties of human breast milk during the second year of lactation. Curr Res Food Sci 2021; 4:565-576. [PMID: 34467219 PMCID: PMC8384777 DOI: 10.1016/j.crfs.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
The present study examined the microstructure as well as the physicochemical properties of human milk during the second year of lactation in an attempt to explore its applicability for the formulation of food products. It was observed that human milk fat globules (MFG) droplet size increased within 3 days of milk extraction due to coalescence, as evidenced by confocal microscopy. Furthermore, a gradual decrease of the average MFG size was noted from the sixteenth (16th) to twenty-fifth (25th) month of lactation. It was also found that the size of casein micellar structures increased upon acidification to pH 4.3 (isoelectric point of human caseins). In addition, human milk proteins enhanced the stability of oil-in-water emulsions against coalescence compared to cow, sheep, and goat milk proteins employed as macromolecular emulsifying ingredients. The cold-acid-gels of human milk proteins showed a less elastic behavior than the other milk samples, possibly due to the different structure, composition and size of human casein micelles. Furthermore, the DSC thermograms showed that human whey proteins are denatured in the same temperature range as do the cow whey proteins, but exhibit different thermal transition profiles. Overall, the findings of this research confirm that both the structure and the physicochemical properties of human milk are affected by the stage of lactation. Moreover, the particular composition and structure of human milk proteins seem to be responsible for the special functional characteristics of human milk that may lead towards the formulation of innovative products.
Collapse
Affiliation(s)
- Alexandra-Maria Βasdeki
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Costas G. Βiliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
9
|
Charoensuk D, Brannan RG, Chaiyasit W, Chanasattru W. Physico-chemical and gel properties of heat-induced pasteurized liquid egg white gel: effect of alkyl chain length of alcohol. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1960371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Danai Charoensuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Robert G. Brannan
- School of Applied Health Science and Wellness, Ohio University, E170 Grover Center, Athens, OH, United States
| | - Wilailuk Chaiyasit
- Division of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Wanlop Chanasattru
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
10
|
Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with phase tunability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111590. [PMID: 33321635 DOI: 10.1016/j.msec.2020.111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Amyloids are fibrillar structures formed due to protein aggregation or misfolding when the molecules undergo a conformational change from α-helix to β-sheet. Although this self-assembly is associated with many neurodegenerative diseases in vivo, the highly ordered amyloidic structures formed in vitro are ideal scaffolds for many bionanotechnological applications. Amyloid fibrillar networks under specific stimuli can also form stable hydrogels. We have used bovine serum albumin (BSA) as a model amyloidogenic protein to obtain thermally-induced hydrogels that display tunable sol-gel-sol transitions spanning over minutes to days. High concentrations of BSA (14-22% w/v) were heated at 65 °C for less than 3 min without any cross-linking agent to yield soft, injectable gels that were non-toxic to mammalian cells. A detailed investigation of temperature, concentration, incubation time and ionic strength on the formation and reversal of these gels was carried out using visual inspection, rheology, electron microscopy, fluorescence spectroscopy, UV-visible spectroscopy and circular dichroism spectroscopy. The optimum gelation temperature (Tg) for phase reversal of BSA gels was found to lie between 60 and 70 °C. An increase in protein concentration led to a reduction in the gelation time and increase in the gel-to-rev sol transition time. Gels heated for longer duration than their minimum gelation time yielded irreversible gels suggesting that low incubation periods were favourable for partial protein denaturation and hydrogel formation. This was supported by time-resolved secondary and tertiary structural ensemble studies. Further, the hydrogel networks demonstrated a zero-order drug release kinetics and the rev sol was found to be cytocompatible with HaCaT skin cell lines. Overall, our approach demonstrates rapid, crosslinker-free thermoresponsive BSA gelation with wide tunability and control on the time and material property, ideal for topical drug delivery applications.
Collapse
Affiliation(s)
- Shruti Khanna
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ajay Kumar Singh
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumya Prakash Behera
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Beasley KL, Cristy SA, Elmassry MM, Dzvova N, Colmer-Hamood JA, Hamood AN. During bacteremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those involved in quorum sensing. PLoS One 2020; 15:e0240351. [PMID: 33057423 PMCID: PMC7561203 DOI: 10.1371/journal.pone.0240351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that produces numerous virulence factors and causes serious infections in trauma patients and patients with severe burns. We previously showed that the growth of P. aeruginosa in blood from severely burned or trauma patients altered the expression of numerous genes. However, the specific influence of whole blood from healthy volunteers on P. aeruginosa gene expression is not known. Transcriptome analysis of P. aeruginosa grown for 4 h in blood from healthy volunteers compared to that when grown in laboratory medium revealed that the expression of 1085 genes was significantly altered. Quorum sensing (QS), QS-related, and pyochelin synthesis genes were downregulated, while genes of the type III secretion system and those for pyoverdine synthesis were upregulated. The observed effect on the QS and QS-related genes was shown to reside within serum fraction: growth of PAO1 in the presence of 10% human serum from healthy volunteers significantly reduced the expression of QS and QS-regulated genes at 2 and 4 h of growth but significantly enhanced their expression at 8 h. Additionally, the production of QS-regulated virulence factors, including LasA and pyocyanin, was also influenced by the presence of human serum. Serum fractionation experiments revealed that part of the observed effect resides within the serum fraction containing <10-kDa proteins. Growth in serum reduced the production of many PAO1 outer membrane proteins but enhanced the production of others including OprF, a protein previously shown to play a role in the regulation of QS gene expression. These results suggest that factor(s) within human serum: 1) impact P. aeruginosa pathogenesis by influencing the expression of different genes; 2) differentially regulate the expression of QS and QS-related genes in a growth phase- or time-dependent mechanism; and 3) manipulate the production of P. aeruginosa outer membrane proteins.
Collapse
Affiliation(s)
- Kellsie L. Beasley
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Shane A. Cristy
- Honors College, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Nyaradzo Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- * E-mail:
| |
Collapse
|
12
|
Whey protein-polysaccharide conjugates obtained via dry heat treatment to improve the heat stability of whey protein stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Grigoryan K, Zatikyan A, Shilajyan H. Effect of monovalent ions on the thermal stability of bovine serum albumin in dimethylsulfoxide aqueous solutions. Spectroscopic approach. J Biomol Struct Dyn 2020; 39:2284-2288. [PMID: 32178588 DOI: 10.1080/07391102.2020.1743759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Karine Grigoryan
- Department of Physical Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, Armenia
| | - Ashkhen Zatikyan
- Department of Physical Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, Armenia
| | - Hasmik Shilajyan
- Department of Physical Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
14
|
Wagner J, Biliaderis CG, Moschakis T. Whey proteins: Musings on denaturation, aggregate formation and gelation. Crit Rev Food Sci Nutr 2020; 60:3793-3806. [DOI: 10.1080/10408398.2019.1708263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Janine Wagner
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Koch H, Eisen K, Werblinski T, Perlitz J, Prihoda F, Lee G, Will S. High-speed, inline measurement of protein activity and inactivation processes by supercontinuum attenuation spectroscopy. Analyst 2019; 144:7041-7048. [PMID: 31656968 DOI: 10.1039/c9an00893d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some proteins such as catalase and glutamate dehydrogenase (GDH) are very sensitive to external factors such as irradiation or heat, which may cause inactivation. Since proteins are used in a wide field of applications, the entire activity has to be ensured during the whole process. By default, activity is measured by invasive and offline activity assays. To avoid the need for a time-consuming offline analysis, we developed an optical high-speed measurement technique, which may form the basis for the non-invasive inline control of enzyme processes e.g. in the textile or food industry. The technique is based on attenuation spectroscopy using a supercontinuum laser source in combination with multivariate data analysis, in particular partial least squares regression (PLSR). For verification of the approach, samples treated by various stresses were analyzed in parallel by activity assays and our new method. Applying this technique, we were able to determine the activity in the turbid catalase samples after heat treatment, addition of guanidine-HCl or irradiation with UV light by applying partial least squares regression. Furthermore, we demonstrate that the combination of broadband attenuation spectroscopy and PLSR enables us to determine also the activity of GDH in clear solutions after heat treatment.
Collapse
Affiliation(s)
- Hanna Koch
- Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abedi M, Ahangari Cohan R, Shafiee Ardestani M, Davami F. Comparison of polystyrene versus cycloolefin microplates in absorbance measurements in the UV/VIS region of the spectrum. ACTA ACUST UNITED AC 2019. [DOI: 10.34172/jsums.2019.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background and aims: Polystyrene microplates are generally used to specify the absorption in the visible light region of the spectrum. However, they are capable of absorption in the ultraviolet (UV) range of the spectrum while they are not suitable for UV spectroscopy analysis. This study aimed to compare polystyrene and cycloolefin microplates for their background absorbance characteristics in the UV/ VIS region of the spectrum. Methods: Background absorbance of the mentioned microplates was measured using two different spectrophotometers and four various samples. Results: The analysis of our results verified the advantage of applying cycloolefin microplate over polystyrene one for absorbance measurements in the UV range of the spectrum. Conclusion: In general, suitable microplate selection is a critical factor in absorbance measurements, especially in the UV portion of the spectrum.
Collapse
Affiliation(s)
- Mehri Abedi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Pilot Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Zhang F, Li S, Zhang Q, Liu J, Zeng S, Liu M, Sun D. Adsorption of different types of surfactants on graphene oxide. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
|
19
|
Lemli B, Derdák D, Laczay P, Kovács D, Kunsági-Máté S. Noncovalent Interaction of Tilmicosin with Bovine Serum Albumin. Molecules 2018; 23:molecules23081915. [PMID: 30065238 PMCID: PMC6222512 DOI: 10.3390/molecules23081915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/19/2022] Open
Abstract
Tilmicosin is a widely used antibiotic in veterinary applications. Its antimicrobial activity is ranged from Gram-positive and some Gram-negative bacteria towards activities against Mycoplasma and Chlamydia. Adsorption affinity of tilmicosin antibiotics towards bovine serum albumin was investigated by both spectroscopic (UV-vis, Photoluminescence) and calorimetric methods. The interaction was determined on the basis of quenching of albumin by tilmicosin. Results confirm noncovalent binding of tilmicosin on bovine serum albumin with 1:1 stoichiometry associated with pK = 4.5, highlighting possible removal of tilmicosin molecules from the albumin surface through exchange reactions by known competitor molecules. Calorimetric measurements have confirmed the weak interaction between tilmicosin and albumin and reflect enhanced denaturation of the albumin in the presence of tilmicosin antibiotic. This process is associated with the decreased activation energy of conformational transition of the albumin. It opens a new, very quick reaction pathway without any significant effect on the product by noncovalent binding the tilmicosin molecules to the protein molecules. Results highlight the medical importance of these investigations by considerable docking of the selected antibiotic molecules on serum albumins. Although the binding may cause toxic effects in living bodies, the strength of the binding is weak enough to find competitor molecules for effective removals from their surface.
Collapse
Affiliation(s)
- Beáta Lemli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus 2, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs, Hungary.
| | - Diána Derdák
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus 2, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs, Hungary.
| | - Péter Laczay
- Department of Food Hygiene, University of Veterinary Medicine, István 2, H-1078 Budapest, Hungary.
| | - Dorottya Kovács
- Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus 2, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs, Hungary.
| |
Collapse
|
20
|
Using front-face fluorescence spectroscopy for prediction of retinol loss in milk during thermal processing. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Nikolaidis A, Andreadis M, Moschakis T. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra. Food Chem 2017; 232:425-433. [DOI: 10.1016/j.foodchem.2017.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/26/2022]
|
22
|
Shrestha UR, Bhowmik D, Van Delinder KW, Mamontov E, O’Neill H, Zhang Q, Alatas A, Chu XQ. Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity. J Phys Chem B 2017; 121:923-930. [DOI: 10.1021/acs.jpcb.6b10245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Utsab R. Shrestha
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Debsindhu Bhowmik
- Computational
Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kurt W. Van Delinder
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Eugene Mamontov
- Chemical
and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Hugh O’Neill
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Qiu Zhang
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ahmet Alatas
- Advanced
Photon Source, Argonne National laboratory, Argonne, IL 60439, United States
| | - Xiang-Qiang Chu
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
23
|
Chebotareva NA, Roman SG, Kurganov BI. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins. Biophys Rev 2016; 8:397-407. [PMID: 28510015 PMCID: PMC5418479 DOI: 10.1007/s12551-016-0220-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure. The kinetic schemes of denaturation can include the multiple stages of conformational transitions in the protein oligomer and stages of reversible dissociation of the oligomer. In this case, the shape of the kinetic curve of denaturation or the shape of the melting curve registered by differential scanning calorimetry can vary with varying the protein concentration. The experimental data illustrating dissociative mechanism for irreversible thermal denaturation of oligomeric proteins have been summarized in the present review. The use of test systems based on thermal aggregation of oligomeric proteins for screening of agents possessing anti-aggregation activity is discussed.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|