1
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2024. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Guo Y, Wang Z, He Y, Gao H, Shi H. Profiling of Volatile Compounds in 'Muscat Hamburg' Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules 2024; 29:567. [PMID: 38338312 PMCID: PMC10856765 DOI: 10.3390/molecules29030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aspergillus carbonarius is known to produce the carcinogenic ochratoxin A (OTA) in grapes. The metabolism process before OTA biosynthesis influences the content and composition of the volatile compounds in grapes. In this study, a self-established method based on QuEChERS coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was used to determine the OTA levels during a seven-day contamination period. The results showed that OTA was detected on the second day after contamination with A. carbonarius. Thus, the first day was considered as the critical sampling timepoint for analyzing the volatiles in grapes before OTA biosynthesis. Additionally, the volatile compounds in grapes were analyzed using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and dispersive liquid-liquid microextraction gas chromatography-mass spectrometry (DLLME-GC-MS). The corresponding data were evaluated via multivariate data analysis using projection methods, including PCA and OPLS-DA. The results indicated significant differences in the nine volatile compounds in grapes contaminated with A. carbonarius before OTA biosynthesis. The results of the Pearson correlation analysis showed positive correlations between ethyl acetate, styrene, 1-hexanol and OTA; (E)-2-hexenal and nerolic acid were negatively correlated with OTA. Overall, these findings provide a theoretical basis for the early prediction of OTA formation in grape and grape products using GC-MS technology.
Collapse
Affiliation(s)
- Yayun Guo
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Zhe Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Yi He
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Huanhuan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| |
Collapse
|
3
|
Zhang J, Xu D, Zhang Y, Luo Z, Zhao Y, Zheng X, Yang H, Zhou Y. Gold nanoparticle-mediated fluorescence immunoassay for rapid and sensitive detection of Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123312. [PMID: 37683440 DOI: 10.1016/j.saa.2023.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
In this work, a fluorescence immunoassay based on horseradish peroxidase-labeled IgG (HRP-IgG)-modified gold nanoparticle (AuNP@HRP-IgG) probe was established for detection of ochratoxin A (OTA). Through the catalysis of HRP, the dopamine (DA) and 1,5-dihydroxynaphthalene (DHA) can rapidly generate azamonardine fluorescence compound (AFC) with intense yellow fluorescence. Large amounts of AFC can be formed within 4 min, which led to fluorescence enhancement at 545 nm. This new method displayed high sensitivity with a limit of detection (LOD) of 0.18 ng/mL and a linear range of 0.78-200 ng/mL for OTA. Meanwhile, the recoveries of OTA in corn samples were 101.41% - 113.45%. Due to the universality of the probe and the rapidity of signal output, the fluorescence immunoassay allowed rapid and sensitive detection of targets.
Collapse
Affiliation(s)
- Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yan Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Zhenzhen Luo
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Xiaolong Zheng
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
4
|
Nie E, He P, Peng W, Zhang H, Lü F. Microbial volatile organic compounds as novel indicators of anaerobic digestion instability: Potential and challenges. Biotechnol Adv 2023; 67:108204. [PMID: 37356597 DOI: 10.1016/j.biotechadv.2023.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The wide application of anaerobic digestion (AD) technology is limited by process fluctuations. Thus, process monitoring based on screening state parameters as early warning indicators (EWI) is a top priority for AD facilities. However, predicting anaerobic digester stability based on such indicators is difficult, and their threshold values are uncertain, case-specific, and sometimes produce conflicting results. Thus, new EWI should be proposed to integrate microbial and metabolic information. These microbial volatile organic compounds (mVOCs) including alkanes, alkenes, alkynes, aromatic compounds are produced by microorganisms (bacteria, archaea and fungi), which might serve as a promising diagnostic tool for environmental monitoring. Moreover, mVOCs diffuse in both gas and liquid phases and are considered the language of intra kingdom microbial interactions. Herein, we highlight the potential of mVOCs as EWI for AD process instability, including discussions regarding characteristics and sources of mVOCs as well as sampling and determination methods. Furthermore, existing challenges must be addressed, before mVOCs profiling can be used as an early warning system for diagnosing AD process instability, such as mVOCs sampling, analysis and identification. Finally, we discuss the potential biotechnology applications of mVOCs and approaches to overcome the challenges regarding their application.
Collapse
Affiliation(s)
- Erqi Nie
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, People's Republic of China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, People's Republic of China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, People's Republic of China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
5
|
Cai X, Li B, Li X, Dang H, Wang D, Pei Z, Feng X, Ren X, Kong Q. Characteristic Structures of Different Stilbenes Distinguish the Impact on Ochratoxin A Biosynthesis Intermediate Pathway and Metabolites of Aspergillus carbonarius. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7996-8007. [PMID: 37192315 DOI: 10.1021/acs.jafc.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we accurately pinpointed the inhibition sites of ochratoxin A (OTA) synthesis pathway in Aspergillus carbonarius acted by stilbenes from the perspective of oxidative stress and comprehensively explored the relationship between the physical and chemical properties of natural polyphenolic substances and their biochemical properties of antitoxin. To facilitate the application of ultra-high-performance liquid chromatography and triple quadrupole mass spectrometry for real-time tracking of pathway intermediate metabolite content, the synergistic effect of Cu2+-stilbenes self-assembled carriers was utilized. Cu2+ increased the generation of reactive oxygen species to accumulate mycotoxin content, while stilbenes had the inhibitory effect. The impact of the m-methoxy structure of pterostilbene on A. carbonarius was found to be superior to that of resorcinol and catechol. The m-methoxy structure of pterostilbene acted on the key regulator Yap1, downregulated the expression of antioxidant enzymes, and accurately inhibited the halogenation step of the OTA synthesis pathway, thus accumulating the content of OTA precursors. This provided a theoretical basis for the extensive and efficient application of a wide range of natural polyphenolic substances for postharvest disease control and quality assurance of grape products.
Collapse
Affiliation(s)
- Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Boqiang Li
- Chinese Academy Sciences, Institute of Botany, Key Lab Plant Resources, Beijing 100093, P. R. China
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhifei Pei
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
6
|
A Bacillus-based biofungicide agent prevents ochratoxins occurrence in grapes and impacts the volatile profile throughout the Chardonnay winemaking stages. Int J Food Microbiol 2023; 389:110107. [PMID: 36731201 DOI: 10.1016/j.ijfoodmicro.2023.110107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Bacillus-based biocontrol agents have emerged as a strategy to eliminate or reduce the use of synthetic fungicides that are detrimental to health and the environment. In vineyards, a special concern arises from the control of Aspergillus carbonarius, a fungus known for its potential to produce ochratoxins. Ochratoxin A (OTA) is the most toxic form among ochratoxins and its maximum limit in wine has been established in Europe and Brazil as 2 μg/kg. Wine quality, especially the volatile profile, may be influenced by the antifungal strategies, since fungicide residues are transferred from grapes to must during winemaking. The objective of this study was to evaluate, for the first time, the impact of a biocontrol strategy containing Bacillus velezensis P1 on the volatile profile and occurrence of ochratoxins when grapes infected with A. carbonarius were used in winemaking. The evaluation of ochratoxins was carried out by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and volatile compounds were analyzed using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC/qMS). Six ochratoxins were identified in must prepared with Chardonnay grapes inoculated with A. carbonarius (ochratoxin α, ochratoxin β, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide and OTA). Although winemaking causes a decrease in the levels of all forms of ochratoxins, the co-occurrence of these mycotoxins was verified in wine made with grapes containing A. carbonarius. B. velezensis P1 prevented the occurrence of ochratoxins in must, ensuring the safety of wines. Regarding the volatile profile, a predominant presence of terpenic compounds was verified in samples treated with B. velezensis when compared with those not treated with the biocontrol strategy, whereas the presence of A. carbonarius resulted in a higher concentration of volatile compounds with an odor described as fatty/waxy, possibly compromising wine quality. Therefore, B. velezensis P1 is a new biofungicide possibility to produce ochratoxin-free grapes and high-quality wines.
Collapse
|
7
|
Crandall SG, Spychalla J, Crouch UT, Acevedo FE, Naegele RP, Miles TD. Rotting Grapes Don't Improve with Age: Cluster Rot Disease Complexes, Management, and Future Prospects. PLANT DISEASE 2022; 106:2013-2025. [PMID: 35108071 DOI: 10.1094/pdis-04-21-0695-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cluster rots can be devastating to grape production around the world. There are several late-season rots that can affect grape berries, including Botrytis bunch rot, sour rot, black rot, Phomopsis fruit rot, bitter rot, and ripe rot. Tight-clustered varieties such as 'Pinot gris', 'Pinot noir', and 'Vignoles' are particularly susceptible to cluster rots. Symptoms or signs for these rots range from discolored berries or gray-brown sporulation in Botrytis bunch rot to sour rot, which smells distinctly of vinegar due to the presence of acetic acid bacteria. This review discusses the common symptoms and disease cycles of these different cluster rots. It also includes useful updates on disease diagnostics and management practices, including cultural practices in commercial vineyards and future prospects for disease management. By understanding what drives the development of different cluster rots, researchers will be able to identify new avenues for research to control these critical pathogens.
Collapse
Affiliation(s)
- Sharifa G Crandall
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Jamie Spychalla
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Uma T Crouch
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Flor E Acevedo
- Pennsylvania State University, Department of Entomology, University Park, PA 16802
| | - Rachel P Naegele
- United States Department of Agriculture-Agricultural Research Station, Parlier, CA 93648
| | - Timothy D Miles
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| |
Collapse
|
8
|
Gu S, Wang Z, Chen W, Wang J. Early identification of Aspergillus spp. contamination in milled rice by E-nose combined with chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4220-4228. [PMID: 33426692 DOI: 10.1002/jsfa.11061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/08/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice grains can be contaminated easily by certain fungi during storage and in the market chain, thus generating a risk for humans. Most classical methods for identifying and rectifying this problem are complex and time-consuming for manufacturers and consumers. However, E-nose technology provides analytical information in a non-destructive and environmentally friendly manner. Two-feature fusion data combined with chemometrics were employed for the determination of Aspergillus spp. contamination in milled rice. RESULTS Linear discriminant analysis (LDA) indicated that the efficiency of fusion signals ('80th s values' and 'area values') outperformed that of independent E-nose signals. Linear discriminant analysis showed clear discrimination of fungal species in stored milled rice for four groups on day 2, and the discrimination accuracy reached 92.86% by using an extreme learning machine (ELM). Gas chromatography-mass spectrometry (GC-MS) analysis showed that the volatile compounds had close relationships with fungal species in rice. The quantification results of colony counts in milled rice showed that the monitoring models based on ELM and the genetic algorithm optimized support vector machine (GA-SVM) (R2 = 0.924-0.983) achieved better performances than those based on partial least squares regression (PLSR) (R2 = 0.877-0.913). The ability of the E-nose to monitor fungal infection at an early stage would help to prevent contaminated rice grains from entering the food chains. CONCLUSIONS The results indicated that an E-nose coupled with ELM or GA-SVM algorithm could be a useful tool for the rapid detection of fungal infection in milled rice, to prevent contaminated rice from entering the food chain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Gu
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhenhe Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Štefániková J, Martišová P, Šnirc M, Kunca V, Árvay J. The Effect of Amanita rubescens Pers Developmental Stages on Aroma Profile. J Fungi (Basel) 2021; 7:jof7080611. [PMID: 34436150 PMCID: PMC8397175 DOI: 10.3390/jof7080611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The dichloromethane extraction was applied to extracted volatile compounds of the six developmental stages of caps and stipes of an Amanita rubescens mushroom and the relative contents were measured with the gas chromatography-mass spectrometry. The number of identified compounds ranged between 53 and 52, respectively, with a high ratio of alkane volatiles. The significant differences between the aroma compounds were determined in caps to identify their stages of development. The fully mature stage caps were characterized by 4,6-dimethyl-dodecane (7.69 ± 1.15%), 2-hexyl-1-decanol (11.8 ± 1.61%), 1,3-di-tert-butylbenzene (11.4 ± 1.25%), heptadecyl pentadecafluorooctanoate (2.16 ± 0.31%), and 2-hexyl-1-dodecanol (13.5 ± 1.33%). Niacinamide (3.90 ± 0.07%) and glycerol (3.62 ± 1.27%) was present in the caps in the early-stage of the rotting mushroom, which represented the 10th-12th day of fructification. The caps and stipes from the 12th-15th day of fructification were characterized by 2,3-butanediol (11.7 ± 0.13% and 8.00 ± 0.10%, respectively). Moreover, the caps from this developmental stage were characterized by 2-methyl- and 3-methyl butanoic acids (0.18 ± 0.03% and 0.33 ± 0.02%, respectively) which are typical for the rotting stage. In this study, we confirmed the effect of A. rubescens developmental stages on the aroma profile.
Collapse
Affiliation(s)
- Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: ; Tel.: +421-37-641-4911
| | - Patrícia Martišová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Marek Šnirc
- Department of Chemistry, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Š.); (J.Á.)
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Science, Technical University in Zvolen, Ul. T. G. Masaryka 24, 960 01 Zvolen, Slovakia;
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Š.); (J.Á.)
| |
Collapse
|
10
|
Abou Fayssal S, Alsanad MA, El Sebaaly Z, Ismail AIH, Sassine YN. Valorization of Olive Pruning Residues through Bioconversion into Edible Mushroom Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. (1871) of Improved Nutritional Value. SCIENTIFICA 2020; 2020:3950357. [PMID: 32774986 PMCID: PMC7407021 DOI: 10.1155/2020/3950357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In several Mediterranean countries, olive pruning residues (OLPRs) are abandoned or burned leading to several environmental problems. Valorization of these agrowastes could be a challenge for the primary decomposer Pleurotus ostreatus, turning them into edible biomass. The OLPR was used alone (OLPR), or in mixtures with wheat straw (WS : OLPR 1 : 3 v/v and WS : OLPR 3 : 1 v/v). Mycelial colonization was hastened by 3.7 days in WS : OLPR 1 : 3 (v/v). Yields were comparable to control (WS) in WS : OLPR 3 : 1 (v/v). Organic matter loss decreased with increasing proportions of OLPR in substrates. The nutritional value of mushrooms was improved by lower fat and sodium contents, in WS : OLPR 1 : 3 (v/v) and WS : OLPR 3 : 1 (v/v), and higher total protein, crude fiber, iron, and total carbohydrates contents in WS : OLPR 3 : 1 (v/v), compared with those of control. Polyunsaturated fatty acids, mainly linoleic acid, were the most abundant in mushrooms. Monounsaturated fatty acids increased in mushrooms of the substrates containing OLPR. A good predictive model of partial least square regression analysis showed different relationships of mushroom palmitic, oleic, linolenic, palmitoleic, and stearic acids with substrate composition. Findings suggested the use of OLPR as a supplement to commercial wheat straw and as a tool to reduce the negative impacts of their hazardous disposal on the environment.
Collapse
Affiliation(s)
- Sami Abou Fayssal
- University of Forestry, 10 Kliment Ohridski Blvd, BG1797 Sofia, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Mohammed A. Alsanad
- Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al Ahsa 31982, Saudi Arabia
| | - Zeina El Sebaaly
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Ahmed I. H. Ismail
- Agribusiness and Consumer Sciences Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Al-Hofuf, Saudi Arabia
- Rural Community and Agric. Extension Department, College of Agriculture, Ain Shams University, Cairo, Egypt
| | - Youssef N. Sassine
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
- Department of Agricultural Biotechnology, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Sun LB, Zhang ZY, Xin G, Sun BX, Bao XJ, Wei YY, Zhao XM, Xu HR. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Achimón F, Dambolena JS, Zygadlo JA, Pizzolitto RP. Carbon sources as factors affecting the secondary metabolism of the maize pathogen Fusarium verticillioides. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Costa CLDA, Cerqueira MBR, Garda-Buffon J. Kresoxim-methyl and famoxadone as activators of toxigenic potential of Aspergillus carbonarius. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1860-1870. [PMID: 31599694 DOI: 10.1080/19440049.2019.1670869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ochratoxin A (OTA) is a secondary metabolite produced by filamentous fungi species belonging to the genera Penicillium and Aspergillus. The contamination of grapes by ochratoxigenic species occurs worldwide in regions of tropical and temperate climates. Better control of fungal growth is achieved through good cultural practice and proper selection of fungicides. Kresoxim-methyl and famoxadone are the most common fungicides used in vineyards. This study aimed at analysing the OTA production and toxigenic potential of Aspergillus carbonarius under fungicide treatment with famoxadone and kresoxim-methyl. The growth rate of A. carbonarius was evaluated by measuring the glucosamine content and the diameter of the fungal colonies. OTA production was quantified by HPLC analysis. The treatment with fungicides, kresoxim-methyl and famoxadone, significantly reduced the fungal growth, by 76% and 60%, respectively. However, the mycotoxin production was greater in the fungicide-treated groups than the control group, showing that even though the fungicides were effective in controlling fungal growth, they were ineffective against mycotoxin production.
Collapse
Affiliation(s)
- Carmen Luiza De Azevedo Costa
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Maristela Barnes Rodrigues Cerqueira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Jaqueline Garda-Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int 2019; 126:108687. [PMID: 31732020 DOI: 10.1016/j.foodres.2019.108687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.
Collapse
|
16
|
|
17
|
Piña MDLN, Gutiérrez MS, Panagos M, Duel P, León A, Morey J, Quiñonero D, Frontera A. Influence of the aromatic surface on the capacity of adsorption of VOCs by magnetite supported organic-inorganic hybrids. RSC Adv 2019; 9:24184-24191. [PMID: 35527864 PMCID: PMC9069820 DOI: 10.1039/c9ra04490f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
It has been recently evidenced that hybrid magnetic nanomaterials based on perylene diimide (PDI) dopamine and iron oxide nanoparticles are useful for the adsorption and determination of volatile organic compounds (VOCs). However, NDI compounds are expensive and difficult to handle compared to smaller size diimides. Therefore, in this manuscript a combined experimental and theoretical investigation is reported including the analysis of the effect of changing the aromatic surface on the ability of these magnetite supported organic-inorganic hybrid nanoparticles (NPs) to adsorb several aromatic and non-aromatic VOCs. In particular, two new hybrid Fe3O4NPs are synthesized and characterized where the size of organic PDI dopamine linker is progressively reduced to naphthalene diimide (NDI) and pyromellitic diimide (PMDI). These materials were utilized to fill two sorbent tubes in series. Thermal desorption (TD) combined with capillary gas chromatography (GC)/flame detector (FID) was used to analyze both front and back tubes. Adsorption values (defined as % VOCs found in the front tube) were determined for a series of VOCs. The binding energies (DFT-D3 calculations) of VOC-Fe3O4NP complexes were also computed to correlate the electron-accepting ability of the arylene diimide (PDI, NDI or PMDI) with the adsorption capacity of the different tubes. The prepared hybrids can be easily separated magnetically and showed great reusability.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - María Susana Gutiérrez
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Mario Panagos
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Paulino Duel
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Alberto León
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Jeroni Morey
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - David Quiñonero
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| |
Collapse
|
18
|
Gancarz M, Nawrocka A, Rusinek R. Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal. J Food Sci 2019; 84:2077-2085. [PMID: 31339559 DOI: 10.1111/1750-3841.14701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Volatile organic compounds (VOCs) are natural markers useful in rapid assessment of adverse changes occurring in biological material. The use of an electronic nose seems to be a good, fast, and cheap method to determine particular VOCs. This paper presents a new method determination for VOCs and their concentration based on three sensorgram parameters: maximum of normalized sensor response, reaction time, and cleaning time measured from the end of the test to the half value of the maximum of normalized sensor response. The novelty of the method consists in the use for the first time of two parameters: reaction time and cleaning time measured from the end of the test to the half value of the maximum of normalized sensor response. The VOC sensorgrams at different VOC concentrations (26 to 3,842 ppm) were measured by an electronic nose Food Volatile Compound Analyzer (Agrinose) equipped with eight metal oxide semiconductor sensors dedicated to detect different gases. In the present studies, only six sensors that best respond to the VOCs were used. The highest responses to VOCs were obtained for two sensors-TGS2602 and AS-MLV-P2. The results showed that the dependence between the sensorgram parameters on VOC concentration was well described by a logarithmic curve in the whole range of concentrations. Detailed analysis revealed that the cleaning time increases with an increase in the number of carbon atoms in aliphatic molecules. The principal component analysis (PCA) was used to verify the utility of the new three parameters method in VOCs differentiation. The PCA analysis of these parameters showed that maximum of the normalized sensor response alone, which has been used for identification of particular VOCs so far, could not be regarded as a good parameter used for this purpose. Application of all the three parameters gave the best results in VOC identification. The research indicates that the use of three parameters of a volatile compound instead of only one parameter can allow precise determination of substances. Moreover, the results indicate that the analyzed parameters depend on the chemical structure of VOCs.
Collapse
Affiliation(s)
- Marek Gancarz
- Inst. of Agrophysics, Polish Academy of Sciences, Do´swiadczalna 4, 20-290, Lublin, Poland
| | - Agnieszka Nawrocka
- Inst. of Agrophysics, Polish Academy of Sciences, Do´swiadczalna 4, 20-290, Lublin, Poland
| | - Robert Rusinek
- Inst. of Agrophysics, Polish Academy of Sciences, Do´swiadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
19
|
Zhang X, Li M, Cheng Z, Ma L, Zhao L, Li J. A comparison of electronic nose and gas chromatography-mass spectrometry on discrimination and prediction of ochratoxin A content in Aspergillus carbonarius cultured grape-based medium. Food Chem 2019; 297:124850. [PMID: 31253256 DOI: 10.1016/j.foodchem.2019.05.124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
This study investigated discrimination and prediction of ochratoxin A (OTA) in three Aspergillus carbonarius strains cultured grape-based medium using E-nose technology and GC-MS analysis. Results showed that these strains cultured medium samples were divided into four groups regarding their log 10 OTA value using an equispaced normal distribution analysis. Partial least squares-discriminant analysis (PLS-DA) revealed that GC-MS PLS-DA model only separated the low OTA level medium samples from the rest OTA level samples, whereas all the OTA level samples were segregated from each other using E-nose PLS-DA model. Partial least squares regression (PLSR) analysis indicated that an excellent prediction performance was established on the accumulation of OTA in these medium samples using E-nose PLSR, whereas GC-MS PLSR model showed a screening performance on the OTA formation. These indicated that E-nose analysis could be a reliable method on discriminating and predicting OTA in A. carbonarius strains under grape-based medium.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Menghua Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Inspection & Testing Center for Agricultural Products Quality, Ministry of Agriculture, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Longlian Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Armutcu C, Uzun L, Denizli A. Determination of Ochratoxin A traces in foodstuffs: Comparison of an automated on-line two-dimensional high-performance liquid chromatography and off-line immunoaffinity-high-performance liquid chromatography system. J Chromatogr A 2018; 1569:139-148. [PMID: 30054130 DOI: 10.1016/j.chroma.2018.07.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
Automated on-line two-dimensional high-performance liquid chromatography method (2D-HPLC) is proposed to determine Ochratoxin A (OTA) in food samples as an alternative to OTA immunoaffinity column (IAC). An on-line 2D-HPLC system is designed for the analysis of OTA using an affinity-based monolithic column in the first dimension and reversed-phase C18 column in the second dimension. Initially, optimal OTA separation efficiency is determined through traditional HPLC system consisting of a P(HEMAPA) monolithic column coupled with HPLC system. Secondly, after providing optimum conditions, OTA determination was investigated through the 2D-HPLC system. According to results, 2D-HPLC system showed good linearity in the range 0.5 to 20 ng/mL with limit of detection (LOD) and limit of quantification (LOQ) values of 21.2 pg/mL and 64.3 pg/mL, respectively. The P(HEMAPA)-4 monolithic column displayed good recovery of OTA ranging from 104.34% to 107.33%. Relative standard deviations (RSD) varied in the range 0.21% to 1.31% thus indicating the efficiency of P(HEMAPA)-4 monolithic column developed for OTA.
Collapse
Affiliation(s)
- Canan Armutcu
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
21
|
Chemometric Analysis of the Volatile Compounds Generated by Aspergillus carbonarius Strains Isolated from Grapes and Dried Vine Fruits. Toxins (Basel) 2018; 10:toxins10020071. [PMID: 29415459 PMCID: PMC5848172 DOI: 10.3390/toxins10020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Ochratoxin A (OTA) contamination in grape production is an important problem worldwide. Microbial volatile organic compounds (MVOCs) have been demonstrated as useful tools to identify different toxigenic strains. In this study, Aspergillus carbonarius strains were classified into two groups, moderate toxigenic strains (MT) and high toxigenic strains (HT), according to OTA-forming ability. The MVOCs were analyzed by GC-MS and the data processing was based on untargeted profiling using XCMS Online software. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) was performed using extract ion chromatogram GC-MS datasets. For contrast, quantitative analysis was also performed. Results demonstrated that the performance of the OPLS-DA model of untargeted profiling was better than the quantitative method. Potential markers were successfully discovered by variable importance on projection (VIP) and t-test. (E)-2-octen-1-ol, octanal, 1-octen-3-one, styrene, limonene, methyl-2-phenylacetate and 3 unknown compounds were selected as potential markers for the MT group. Cuparene, (Z)-thujopsene, methyl octanoate and 1 unknown compound were identified as potential markers for the HT groups. Finally, the selected markers were used to construct a supported vector machine classification (SVM-C) model to check classification ability. The models showed good performance with the accuracy of cross-validation and test prediction of 87.93% and 92.00%, respectively.
Collapse
|