1
|
Qin S, Li R, McClements DJ, Chen Y, Duan Z, Chen M, Dai Y, Liao L, Zhou W, Li J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: an in vitro gastrointestinal tract study. Food Funct 2024; 15:7478-7490. [PMID: 38915263 DOI: 10.1039/d4fo01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Ying Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
2
|
Huang Z, Feng W, Zhang T, Miao M. Structure and functional characteristics of starch from different hulled oats cultivated in China. Carbohydr Polym 2024; 330:121791. [PMID: 38368094 DOI: 10.1016/j.carbpol.2024.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/19/2024]
Abstract
This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.
Collapse
Affiliation(s)
- Zhihao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Wenjuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Ait Chekdid A, Kahn CJF, Lemois B, Linder M. Impact of a Starch Hydrolysate on the Production of Exopolysaccharides in a Fermented Plant-Based Dessert Formulation. Foods 2023; 12:3868. [PMID: 37893760 PMCID: PMC10606095 DOI: 10.3390/foods12203868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Plant-based desserts are becoming increasingly popular with and appreciated by consumers. However, they are limited by the choice of ingredients, which are often expensive and unstable with a random texture. Therefore, the aim of the research is to propose a new product that offers an advantageous texture and flavour in a fermented dessert based on a flour mix supplemented with an enzymatic hydrolysate. This study involved the development of two processes: (i) an enzymatic hydrolysis of oat flour and (ii) a fermentation of a flour mixture (oat, chickpea, and coconut) by lactic acid bacteria (Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus). The result of the oat flour hydrolysate shows a significant decrease in starch after 60 min of reaction, followed by an increase in sugar content. During 23 days of storage at 4 °C, the formulations used showed post-acidification, water retention capacity decrease, and hardness increase related to the hydrolysate rate (p < 0.05). All formulations allowed the viability of lactic bacteria (over 5 log10 CFU/mL) and verified their ability to produce exopolysaccharides (0.23-0.73 g/100 g). The prototyping of such a product represents a key step in meeting the growing demand for plant-based alternatives, with qualitative sensory characteristics without additives.
Collapse
Affiliation(s)
- Aldjia Ait Chekdid
- Université de Lorraine, LIBio, F-54000 Nancy, France; (A.A.C.); (C.J.F.K.)
- St-Hubert SA, 13-15 Rue du Pont des Halles, F-94150 Rungis, France;
| | - Cyril J. F. Kahn
- Université de Lorraine, LIBio, F-54000 Nancy, France; (A.A.C.); (C.J.F.K.)
| | - Béatrice Lemois
- St-Hubert SA, 13-15 Rue du Pont des Halles, F-94150 Rungis, France;
| | - Michel Linder
- Université de Lorraine, LIBio, F-54000 Nancy, France; (A.A.C.); (C.J.F.K.)
| |
Collapse
|
4
|
Gu X, Cheng H, Lu X, Li R, Ouyang X, Ma N, Zhang X. Plant-based Biomass/Polyvinyl Alcohol Gels for Flexible Sensors. Chem Asian J 2023; 18:e202300483. [PMID: 37553785 DOI: 10.1002/asia.202300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Flexible sensors show great application potential in wearable electronics, human-computer interaction, medical health, bionic electronic skin and other fields. Compared with rigid sensors, hydrogel-based devices are more flexible and biocompatible and can easily fit the skin or be implanted into the body, making them more advantageous in the field of flexible electronics. In all designs, polyvinyl alcohol (PVA) series hydrogels exhibit high mechanical strength, excellent sensitivity and fatigue resistance, which make them promising candidates for flexible electronic sensing devices. This paper has reviewed the latest progress of PVA/plant-based biomass hydrogels in the construction of flexible sensor applications. We first briefly introduced representative plant biomass materials, including sodium alginate, phytic acid, starch, cellulose and lignin, and summarized their unique physical and chemical properties. After that, the design principles and performance indicators of hydrogel sensors are highlighted, and representative examples of PVA/plant-based biomass hydrogel applications in wearable electronics are illustrated. Finally, the future research is briefly prospected. We hope it can promote the research of novel green flexible sensors based on PVA/biomass hydrogel.
Collapse
Affiliation(s)
- Xiaochun Gu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haoge Cheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Ouyang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
5
|
Alemayehu GF, Forsido SF, Tola YB, Amare E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat ( Avena sativa) Grains and Oat-Based Fermented Food Products. ScientificWorldJournal 2023; 2023:2730175. [PMID: 37492342 PMCID: PMC10365923 DOI: 10.1155/2023/2730175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Oats (Avena sativa L.) are a popular functional cereal grain due to their numerous health benefits. This review article summarized the information on the chemical composition and phytonutrients of oats grown in different countries. It also reviewed recently developed fermented oat products to highlight their potential for human health. Oats have an interesting nutritional profile that includes high-quality protein, unsaturated fats, soluble fiber, polyphenolic compounds, and micronutrients. Oat grain has a unique protein composition, with globulins serving as the primary storage protein, in contrast to other cereals, where prolamins are the main storage proteins. Oats have the highest fat content of any cereal, with low saturated fatty acids and high essential unsaturated fatty acid content, which can help reduce the risk of cardiovascular diseases. Oats are a good source of soluble dietary fiber, particularly β-glucan, which has outstanding functional properties and is extremely important in human nutrition. β-Glucan has been shown to lower blood cholesterol and glucose absorption in the intestine, thereby preventing diseases such as cardiovascular injury, dyslipidemia, hypertension, inflammatory state, and type 2 diabetes. Oats also contain high concentration of antioxidant compounds. Avenanthramides, which are unique to oats, are powerful antioxidants with high antioxidative activity in humans. Recognizing the nutritional benefits of oats, oat-based fermented food products are gaining popularity as functional foods with high probiotic potential.
Collapse
Affiliation(s)
| | | | - Yetenayet B. Tola
- Department of Post-Harvest Management, Jimma University, Jimma, Ethiopia
| | - Endale Amare
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Cui L, Jia Q, Zhao J, Hou D, Zhou S. A comprehensive review on oat milk: from oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct 2023. [PMID: 37317702 DOI: 10.1039/d3fo00893b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant-based milk alternatives have become increasingly desirable due to their sustainability and the increased consumer awareness of health. Among many varieties of emerging plant-based milk, the smooth texture and flavor of oat milk make it spread rapidly around the world. Furthermore, as a sustainable source of diet, oats can provide rich nutrients and phytochemicals. Issues on the stability, sensory properties, shelf life, and nutritional quality of oat milk have been highlighted in published studies. In this review, the processing techniques, quality improvement, and product features of oat milk are elaborated, and the potential applications of oat milk are summarized. Besides, the challenges and future perspectives of oat milk production in the future are discussed.
Collapse
Affiliation(s)
- Lulu Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qiuju Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Jiani Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
7
|
Zhang X, Shen Q, Yang Y, Zhang F, Wang C, Liu Z, Zhao Q, Wang X, Diao X, Cheng R. Structural, functional and mechanistic insights uncover the role of starch in foxtail millet cultivars with different congee-making quality. Int J Biol Macromol 2023:125107. [PMID: 37257541 DOI: 10.1016/j.ijbiomac.2023.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Ten foxtail millet cultivars with different congee-making quality were investigated for relationships between starch structures, functional properties and congee-making qualities. Swelling power, pasting peak viscosity (PV) and setback (SB), gel hardness and resilience, and gelatinization onset (To), peak (Tp) and range (R) temperature were correlated with congee-making performance significantly. Good eating-quality cultivars with these parameters were in the range of 15.41-18.58 %, 3095-3279 cp, 1540-1745 cp, 430-491 g, 0.47-0.57, 64.43-65.28 °C, 69.97-70.32 °C and 23.38-24.52 °C, respectively. Correlation analysis showed that amylose, amylopectin B2 chains and A21 were essential parameters controlling the functional properties. Amylose molecules with linear molecular morphology would cause crystal defects and a wide range of molecular weight distribution. Additionally, they were more prone to re-association, which influenced the PV, SB, To, Tp and gel hardness. B2 chains impacted the gelatinization temperature range (R), gel resilience and swelling behavior by affecting the alignment of double helices and the size of starch particles and pores. Starch with more binding sites of bound water (A21) tended to leach from the swelling granules easily and contributed to higher values of PV. The content of amylose, B2 chains and A21 of good eating-quality cultivars were 16.19-18.46 %, 11.60-11.69 % and 96.50-97.02 %, respectively.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yu Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Fan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| | - Xianrui Wang
- Research Institute of Millet, Chifeng Academy of Agriculture and Animal Science, Chifeng 024031, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruhong Cheng
- Research Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| |
Collapse
|
8
|
Babolanimogadam N, Gandomi H, Akhondzadeh Basti A, Taherzadeh MJ. Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α-amylase, and sprouting treatments. Food Sci Nutr 2023; 11:2288-2297. [PMID: 37181303 PMCID: PMC10171527 DOI: 10.1002/fsn3.3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the effects of different treatments of the oat slurry on the nutritional, functional, and sensorial properties of oat milk were evaluated. The sprouting and sprouting-acidic treatments have the highest oat milk yield (91.70%) and protein extraction yield (82.74%), respectively. The protein concentrations of alkali, sprouting-acidic, and α-amylase-alkali treatments were significantly (p < .05) higher than other treatments. The alkali treatments showed higher fat content (0.66%). In addition, acidic and alkali treatments in single or combined with other treatments showed the highest dry matter and energy value. The carbohydrate content of α-amylase-alkali treatment (4.35%) was higher than other treatments and also, all acidic treatments showed higher ash content (>1) compared to the other treatments. Furthermore, the sprouting-α-amylase and acidic-α-amylase showed the lowest starch (0.28%) and the highest reducing sugar content (3.15%) compared to the other treatments, respectively. Moreover, the α-amylase-alkali treatment showed the highest total phenolic content and antioxidant activity (342.67 mg GAE/L and 183.08 mg BHT eq/L, respectively). Furthermore, sensory evaluation of most treatments showed acceptable scores (≥7) for consumers, especially in the case of α-amylase, sprouting, and α-amylase-sprouting treatments. Results show that the different treatments had different effects on the nutritional, functional, and sensorial properties of oat milk. In conclusion, from the nutritional and functional point of view, the two-stage treatments were more effective than singular treatments on investigated factors proposing their application in functional plant milk preparation.
Collapse
Affiliation(s)
- Nima Babolanimogadam
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Hassan Gandomi
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | | | | |
Collapse
|
9
|
Xia J, Zhang Y, Huang K, Cao H, Sun Q, Wang M, Zhang S, Sun Z, Guan X. Different multi-scale structural features of oat resistant starch prepared by ultrasound combined enzymatic hydrolysis affect its digestive properties. ULTRASONICS SONOCHEMISTRY 2023; 96:106419. [PMID: 37156158 DOI: 10.1016/j.ultsonch.2023.106419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In this research, oat resistant starch (ORS) was prepared by autoclaving-retrogradation cycle (ORS-A), enzymatic hydrolysis (ORS-B), and ultrasound combined enzymatic hydrolysis (ORS-C). Differences in their structural features, physicochemical properties and digestive properties were studied. Results of particle size distribution, XRD, DSC, FTIR, SEM and in vitro digestion showed that ORS-C was a B + C-crystal, and ORS-C had a larger particle size, the smallest span value, the highest relative crystallinity, the most ordered and stable double helix structure, the roughest surface shape and strongest digestion resistance compared to ORS-A and ORS-B. Correlation analysis revealed that the digestion resistance of ORS-C was strongly positively correlated with RS content, amylose content, relative crystallinity and absorption peak intensity ratio of 1047/1022 cm-1 (R1047/1022), and weakly positively correlated with average particle size. These results provided theoretical support for the application of ORS-C with strong digestion resistance prepared by ultrasound combined enzymatic hydrolysis in the low GI food application.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Man Wang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
10
|
Ikram M, Shahzadi A, Haider A, Imran M, Hayat S, Haider J, Ul-Hamid A, Rasool F, Nabgan W, Mustajab M, Ali S, Al-Shanini A. Toward Efficient Bactericidal and Dye Degradation Performance of Strontium- and Starch-Doped Fe 2O 3 Nanostructures: In Silico Molecular Docking Studies. ACS OMEGA 2023; 8:8066-8077. [PMID: 36872998 PMCID: PMC9979251 DOI: 10.1021/acsomega.2c07980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, various concentrations of strontium (Sr) into a fixed amount of starch (St) and Fe2O3 nanostructures (NSs) were synthesized with the co-precipitation approach to evaluate the antibacterial and photocatalytic properties of the concerned NSs. The study aimed to synthesize nanorods of Fe2O3 with co-precipitation to enhance the bactericidal behavior with dopant-dependent Fe2O3. Advanced techniques were utilized to investigate the structural characteristics, morphological properties, optical absorption and emission, and elemental composition properties of synthesized samples. Measurements via X-ray diffraction confirmed the rhombohedral structure for Fe2O3. Fourier-transform infrared analysis explored the vibrational and rotational modes of the O-H functional group and the C=C and Fe-O functional groups. The energy band gap of the synthesized samples was observed in the range of 2.78-3.15 eV, which indicates that the blue shift in the absorption spectra of Fe2O3 and Sr/St-Fe2O3 was identified with UV-vis spectroscopy. The emission spectra were obtained through photoluminescence spectroscopy, and the elements in the materials were determined using energy-dispersive X-ray spectroscopy analysis. High-resolution transmission electron microscopy micrographs showed NSs that exhibit nanorods (NRs), and upon doping, agglomeration of NRs and nanoparticles was observed. Efficient degradations of methylene blue increased the photocatalytic activity in the implantation of Sr/St on Fe2O3 NRs. The antibacterial potential for Escherichia coli and Staphylococcus aureus was measured against ciprofloxacin. E. coli bacteria exhibit inhibition zones of 3.55 and 4.60 mm at low and high doses, respectively. S. aureus shows the measurement of inhibition zones for low and high doses of prepared samples at 0.47 and 2.40 mm, respectively. The prepared nanocatalyst showed remarkable antibacterial action against E. coli bacteria rather than S. aureus at high and low doses compared to ciprofloxacin. The best-docked conformation of the dihydrofolate reductase enzyme against E. coli for Sr/St-Fe2O3 showed H-bonding interactions with Ile-94, Tyr-100, Tyr-111, Trp-30, ASP-27, Thr-113, and Ala-6.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab 57000, Pakistan
| | - Shaukat Hayat
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Junaid Haider
- Tianjin
Institute
of Industrial Biotechnology, Chinese Academy
of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Faiz Rasool
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, Tarragona 43007, Spain
| | - Muhammad Mustajab
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla, Hadhramout 50512, Yemen
| |
Collapse
|
11
|
LIU X. A new way to expand the application of starch and tung oil: tung oil anhydride modified starch. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.95822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuncai LIU
- Xiamen Yan Palace Seelong Food Co. Ltd., China
| |
Collapse
|
12
|
Zhu K, Aykas DP, Anderson N, Ball C, Plans M, Rodriguez-Saona L. Nutritional quality screening of oat groats by vibrational spectroscopy using field-portable instruments. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Rostamabadi H, Karaca AC, Deng L, Colussi R, Narita IMP, Kaur K, Aaliya B, Sunooj KV, Falsafi SR. Oat starch - How physical and chemical modifications affect the physicochemical attributes and digestibility? Carbohydr Polym 2022; 296:119931. [DOI: 10.1016/j.carbpol.2022.119931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
|
14
|
Kaur P, Kaur K, Basha SJ, Kennedy JF. Current trends in the preparation, characterization and applications of oat starch - A review. Int J Biol Macromol 2022; 212:172-181. [PMID: 35598726 DOI: 10.1016/j.ijbiomac.2022.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Worldwide consumption of oats is gaining popularity due to its composition and multifunctional benefits of individual components. Oat starch being the major component accounts up to 60% of the dry weight of kernel, possess small granule size and high lipid content. Properties of starch substantially affect the quality of the product. Modification and characterization of starch is important for their specific applications that increase the utilization of oat starch. Different modification techniques greatly affect the functional, pasting, gelatinisation, textural, rheological, retrogradation properties and enzymatic digestibility of oat starches in comparison to native starch. Modified oat starch competes against other abundant and inexpensive cereal starches (rice and corn) that are available in modified forms in the market. This review summarises the current knowledge of physicochemical, morphological, pasting, functional, rheological and gelatinization properties, developments in the extraction and modification (physical, chemical and enzymatic) and applications of oat starch. Thus, this review will upgrade the scientific basis on oat starch being a unique source of starch for variety of applications.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India
| | - Kamaljit Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India.
| | - Shaik Jakeer Basha
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India
| | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| |
Collapse
|
15
|
Mao H, Xu M, Ji J, Zhou M, Li H, Wen Y, Wang J, Sun B. The utilization of oat for the production of wholegrain foods: Processing technology and products. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Huijia Mao
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Minghao Xu
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Jingyun Ji
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Mengsha Zhou
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Hongyan Li
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
| | - Jing Wang
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Baoguo Sun
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| |
Collapse
|
16
|
Li Y, Obadi M, Shi J, Xu B, Shi YC. Rheological and thermal properties of oat flours and starch affected by oat lipids. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Kumar L, Brennan M, Brennan C, Zheng H. Influence of whey protein isolate on pasting, thermal, and structural characteristics of oat starch. J Dairy Sci 2021; 105:56-71. [PMID: 34756432 DOI: 10.3168/jds.2021-20711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022]
Abstract
We investigated the effects of different concentrations of whey protein isolate (WPI) on oat starch characteristics in terms of pasting, thermal, and structural properties. The pasting properties of the starch showed that hot paste viscosity increased with the addition of WPI in the system, and relative breakdown decreased. Thermal analysis showed a significant effect of WPI on oat starch by increasing the peak temperature of differential scanning calorimeter endotherms. The X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that WPI increased the ordered structuration of starch paste, as evident by an increase in relative crystallinity; in addition, a decrease in infrared bands at 1,024 cm-1 and 1,080 cm-1 suggested decreased gelatinization of oat starch granules. Overall, WPI at different concentrations affected the oat starch gelatinization properties.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647 New Zealand
| | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647 New Zealand
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Riddet Institute, Palmerston North 4442, New Zealand
| | - Haotian Zheng
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh 27695.
| |
Collapse
|
18
|
Abe MM, Martins JR, Sanvezzo PB, Macedo JV, Branciforti MC, Halley P, Botaro VR, Brienzo M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers (Basel) 2021; 13:2484. [PMID: 34372086 PMCID: PMC8348970 DOI: 10.3390/polym13152484] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
The accumulation of plastic wastes in different environments has become a topic of major concern over the past decades; therefore, technologies and strategies aimed at mitigating the environmental impacts of petroleum products have gained worldwide relevance. In this scenario, the production of bioplastics mainly from polysaccharides such as starch is a growing strategy and a field of intense research. The use of plasticizers, the preparation of blends, and the reinforcement of bioplastics with lignocellulosic components have shown promising and environmentally safe alternatives for overcoming the limitations of bioplastics, mainly due to the availability, biodegradability, and biocompatibility of such resources. This review addresses the production of bioplastics composed of polysaccharides from plant biomass and its advantages and disadvantages.
Collapse
Affiliation(s)
- Mateus Manabu Abe
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Júlia Ribeiro Martins
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Paula Bertolino Sanvezzo
- Department of Materials Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil; (P.B.S.); (M.C.B.)
| | - João Vitor Macedo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Marcia Cristina Branciforti
- Department of Materials Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil; (P.B.S.); (M.C.B.)
| | - Peter Halley
- School of Chemical Engineering, The University of Queensland, Level 3, Don Nicklin Building (74), St Lucia, QLD 4072, Australia;
| | - Vagner Roberto Botaro
- Science and Technology Center for Sustainability—CCTS, Federal University of São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba 18052-780, SP, Brazil;
| | - Michel Brienzo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| |
Collapse
|
19
|
Lima Ribeiro AP, Guimarães JS, Teixeira Lago AM, Cardoso de Angelis Pereira M, Ronaldo de Abreu L, Pinto SM. Oat bran and sweeteners in petit-suisse cheese: Technological and nutritional properties and consumer acceptance. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Chekdid AA, Kahn CJ, Prévot E, Ferrières M, Lemois B, Choquet C, Linder M. Mixture design applied for formulation and characterization of vegetal-based fermented products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
22
|
Zhang Y, Chen C, Wang N, Chen Y, Yu J, Zheng X, Li S, Chen Y. Developing a new modification technology of oat flour based on differential pressure explosion puffing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Paixão e Silva GDL, Bento JAC, Bataus LAM, Soares Júnior MS, Caliari M. Purple and Beige‐Fleshed Sweet Potato Starches Modified by Autoclaving. STARCH-STARKE 2021. [DOI: 10.1002/star.202000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giselle de Lima Paixão e Silva
- Department of Food Engineering. Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Federal University of Goiás (UFG) – School of Agronomy CEP 74690‐900 Goiânia Brazil
| | - Juliana Aparecida Correia Bento
- Department of Food Engineering. Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Federal University of Goiás (UFG) – School of Agronomy CEP 74690‐900 Goiânia Brazil
| | - Luiz Artur Mendes Bataus
- Institute of Biological Sciences Federal University of Goiás (UFG) CP 131, CEP 74690‐900, Goiânia Goiás Brazil
| | - Manoel Soares Soares Júnior
- Department of Food Engineering. Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Federal University of Goiás (UFG) – School of Agronomy CEP 74690‐900 Goiânia Brazil
| | - Márcio Caliari
- Department of Food Engineering. Rodovia GO‐462, Km 0, CP 131, Campus Samambaia Federal University of Goiás (UFG) – School of Agronomy CEP 74690‐900 Goiânia Brazil
| |
Collapse
|
24
|
Hydrothermal–Microwave Processing for Starch Extraction from Mexican Avocado Seeds: Operational Conditions and Characterization. Processes (Basel) 2020. [DOI: 10.3390/pr8070759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Avocado seeds are an agroindustrial residue widely produced in Mexico that are causing various environmental problems due to their accumulation. The evaluation of avocado residues to recover biopolymers by microwave-assisted extraction (MAE) and the characterization of avocado starch properties were studied in the present work. A central-composite design was used to optimize the MAE process. Moreover, a comparison was performed between MAE non-isothermal mode (NO–ISO) and conventional extraction. Starch optimization by MAE was obtained at 161.09 °C for 56.23 min with an extraction yield of 49.52% ± 0.69%, while with NO–ISO at 161 °C was obtained 45.75% ± 2.18%. Conventional extraction was 39.04% ± 2.22%. Compared with conventional starch, MAE starch showed similar proprieties and molecular spectra. In contrast, MAE starch showed high solubility, low water absorption capacity, a non-granular structure with small particle size (<2 µm) and polydispersity of fragments at different sizes of polymers. Therefore, MAE is a viable technology to extract the starch, and avocado seed can be considered an excellent starch source for the development of novel functional foods, contributing to promoting sustainability across the food chain.
Collapse
|
25
|
Physicochemical, functional and rheological properties of fermented and non-fermented starch from canary seed (Phalaris canariensis). Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Duque SMM, Leong SY, Agyei D, Singh J, Larsen N, Oey I. Understanding the impact of Pulsed Electric Fields treatment on the thermal and pasting properties of raw and thermally processed oat flours. Food Res Int 2019; 129:108839. [PMID: 32036916 DOI: 10.1016/j.foodres.2019.108839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/15/2023]
Abstract
The aim of this research was to investigate the effect of Pulsed Electric Fields (PEF) treatments (electric field strengths 2 and 4.4 kV/cm combined with specific energy inputs between 48 and 484 kJ/kg) on the thermal and pasting properties of oat flours. Colour, β-glucan content, particle size distribution, morphological characteristics, starch short-range molecular order, protein secondary structure, thermal, and pasting properties of raw (dehulled and milled) and thermally processed (kilned at 115 °C for 30 min and steamed at 100-104 °C for 18 min under industrial process condition) oat flours under the influence of PEF treatment were evaluated. Results showed that PEF treatment, applied at any intensity, led to considerable changes in the structural properties especially when applied on raw oat flour. Both types of oat flour experienced an increase in particle size (up to four-fold), damage of starch granule morphology, and modifications in starch short-range molecular order and protein secondary structures as a result of PEF treatment. These physical changes observed after PEF treatment, particularly at increasing specific energy input, coincided with the thermal and pasting behaviour of PEF-treated oat flours, which include a decrease in gelatinisation enthalpy (up to 80%), increase in thermal transition temperatures (at least 3 °C), decrease in overall viscosity profile, and reduction in pasting temperature (up to 12 °C). Overall results suggested that PEF treatment improved majorly on starch-related functionality of oat, such as increased the pasting stability of raw and thermally processed oat flours and at the same time enhanced the retrogradation property (reduced syneresis and hardness) of raw oat flour, under lower temperature requirement without affecting pasting time. This research demonstrated the potential of PEF treatment in modifying the thermal and pasting properties of oat flour, thereby offering opportunities for novel products for food industry.
Collapse
Affiliation(s)
- Sheba Mae M Duque
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Institute of Food Science and Technology, University of the Philippines Los Baños, College, Laguna 4031, Philippines; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Dominic Agyei
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Jaspreet Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Nigel Larsen
- The New Zealand Institute for Plant and Food Research Limited, Gerald Street, Lincoln 7608, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
27
|
A novel process for CO2 purification and recycling based on subcritical adsorption in oat bran. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Hoffmanová I, Sánchez D, Szczepanková A, Tlaskalová-Hogenová H. The Pros and Cons of Using Oat in a Gluten-Free Diet for Celiac Patients. Nutrients 2019; 11:nu11102345. [PMID: 31581722 PMCID: PMC6835965 DOI: 10.3390/nu11102345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A therapeutic gluten-free diet often has nutritional limitations. Nutritional qualities such as high protein content, the presence of biologically active and beneficial substances (fiber, beta-glucans, polyunsaturated fatty acids, essential amino acids, antioxidants, vitamins, and minerals), and tolerance by the majority of celiac patients make oat popular for use in gluten-free diet. The health risk of long-time consumption of oat by celiac patients is a matter of debate. The introduction of oat into the diet is only recommended for celiac patients in remission. Furthermore, not every variety of oat is also appropriate for a gluten-free diet. The risk of sensitization and an adverse immunologically mediated reaction is a real threat in some celiac patients. Several unsolved issues still exist which include the following: (1) determination of the susceptibility markers for the subgroup of celiac patients who are at risk because they do not tolerate dietary oat, (2) identification of suitable varieties of oat and estimating the safe dose of oat for the diet, and (3) optimization of methods for detecting the gliadin contamination in raw oat used in a gluten-free diet.
Collapse
Affiliation(s)
- Iva Hoffmanová
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Ruská 87, 10000 Prague, Czech Republic.
| | - Daniel Sánchez
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Adéla Szczepanková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague, Czech Republic.
| | - Helena Tlaskalová-Hogenová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
29
|
Giraldo-Gómez GI, Rodríguez-Barona S, Sanabria-González NR. Preparation of instant green banana flour powders by an extrusion process. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
|
31
|
Shabana S, Prasansha R, Kalinina I, Potoroko I, Bagale U, Shirish SH. Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. ULTRASONICS SONOCHEMISTRY 2019; 51:444-450. [PMID: 30060987 DOI: 10.1016/j.ultsonch.2018.07.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Starch is second most abundant biomaterial available after cellulose but the intensity of research on starch is less compared to cellulose. It is a carbohydrate based polymer synthesized in plants for the storage of the energy. Major percentage of starch is being utilized by food industries as raw material for giving texture, flavor, gelling, fat replacement etc. and also has multiple applications in different area due to its biological origin and properties. Native starch possesses low shear stress, poor thermal properties and less digestion resistance and retro-gradation. Thus, it has to be modified using physical, chemical, enzymatic and/or genetic treatments. Physical and chemical modifications using ultrasound and acid hydrolysis is time-efficient and effective process. These economical treatments are predominant for production of digestion resistant starch with increased shelf-life and thermal properties. Ultrasound assisted acid hydrolyzed starch (potato) exfoliates the native starch and modifies the structural arrangement. On acid treatment the amorphous nature of starch converted to crystalline nature. The physical and structural properties of the native starch were enhanced. The digestibility and structure of the modified starch effects on the double helices structure of starch. The size of the starch particle was changed from 1596 nm (Conventional) to 80 and 42 nm on ultrasonication and acid hydrolyzed ultrasonication approaches respectively. The crystallite of the particles was evaluated from XRD analysis. From TEM analysis the starch nanoparticles were found to have spherical morphology.
Collapse
Affiliation(s)
- S Shabana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506 004, Telangana, India
| | - R Prasansha
- University of Petroleum & Energy Studies, Dehradun, India
| | - I Kalinina
- Food and Biotechnologies, Deputy Director of Higher School of Medicine and Biology, South Ural State University, Russia
| | - I Potoroko
- Food and Biotechnologies, Deputy Director of Higher School of Medicine and Biology, South Ural State University, Russia.
| | - U Bagale
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506 004, Telangana, India
| | - S H Shirish
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506 004, Telangana, India.
| |
Collapse
|
32
|
Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chem 2019; 271:685-690. [PMID: 30236731 DOI: 10.1016/j.foodchem.2018.07.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/03/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
This study aimed to investigate the effect of high hydrostatic pressure (HHP) on the physicochemical characteristics of blended low-protein wheat (LW) and oat flour. Additionally, quality changes in noodles made from blends treated with HHP were investigated. Crude protein and fiber contents of LW were not affected by HHP; however, those of blends were significantly higher than those of LW (p < 0.05). Water-holding capacity (WHC) of blends increased with HHP treatment. The peak viscosity of LW did not differ significantly because of HHP, and the peak and final viscosities of blends increased upon oat flour addition. The hardness, gumminess, chewiness of noodles made using LW improved with the addition of oat flour combined with HHP. The results indicated that the use of blends containing LW and oat flour as well as HHP treatment improved the quality and properties of noodles made using LW.
Collapse
|
33
|
Omedi JO, Huang W, Zhang B, Li Z, Zheng J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends-A review. Cereal Chem 2019. [DOI: 10.1002/cche.10122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob O. Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
- MagiBake GS International; Jinjiang; Quanzhou China
| | - Zhibin Li
- MagiBake GS International; Jinjiang; Quanzhou China
| | | |
Collapse
|
34
|
A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed Pharmacother 2018; 107:96-108. [PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023] Open
Abstract
Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
Collapse
|
35
|
Zhu F. Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Lee NY, Kang CS. Quality Improvement and Antioxidant Activity of Sugar-Snap Cookies Prepared Using Blends of Cereal Flour. Prev Nutr Food Sci 2018; 23:160-165. [PMID: 30018895 PMCID: PMC6047875 DOI: 10.3746/pnf.2018.23.2.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the changes in quality and antioxidant activity of sugar-snap cookies prepared with different blends of refined wheat (WHF) and oat flour (OAF). The crude protein contents of OAF and WHF were 12.24% and 7.17%, respectively, and the fiber contents of were 3.45% and 0.31%, respectively; both were increased by adding OAF. However, the total starch contents were decreased by adding OAF. The β-glucan content of the samples increased considerably upon the addition of OAF. The water-holding capacity was increased after adding OAF compared to WHF (79.21%). Water binding in wet gluten contents decreased on the addition of OAF. Final viscosity increased on the addition of OAF. Antioxidant activity and total phenolic acid were increased upon the addition of OAF. The thickness of cookies prepared with OAF, WHF, 20% of WHF with OAF (WOB20), and WOB40 were 11.28, 12.35, 9.74, and 9.81 mm, respectively. The hardness of cookies prepared with WHF and WOF20 did not differ significantly, and analysis of the appearance of cookies showed that the cookies were increasingly cracked as the OAF content increased. Therefore, substituting WHF with OAF improved the quality and nutrient value of the cookies.
Collapse
Affiliation(s)
- Na-Young Lee
- Department of Food Science and Biotechnology, Kunsan National University, Jeonbuk 54150,
Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Jeonbuk 55365,
Korea
| |
Collapse
|
37
|
Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Berski W, Ziobro R, Witczak M, Gambuś H. The retrogradation kinetics of starches of different botanical origin in the presence of glucose syrup. Int J Biol Macromol 2018; 114:1288-1294. [PMID: 29649532 DOI: 10.1016/j.ijbiomac.2018.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022]
Abstract
The influence of glucose syrup on the retrogradation of cereal starches was investigated. Laboratory isolated starches from wheat (WS) and oats (OS - oat starch and ROS - residual oat starch) were used in this research. ROS was isolated from the flour left after the industrial separation of β-glucans. Gelatinization temperature of oat starches (63.82°C and 64.01°C for OS and ROS, respectively) was higher than for WS (62.26°C), whereas gelatinization enthalpy for oat starches (8.87J/g and 9.09J/g for OS and ROS, respectively) was lower than for WS (9.99J/g). Moreover, retrogradation percentage (%R) was similar for both oat starches (29.76% and 27.72% for OS and ROS, respectively), and was substantially lower than for WS (42.04%). The introduction of glucose syrup into system reduced the extent of the retrogradation. Rate of the process was suppressed for WS and ROS, whereas for OS it was increased. β-Glucan production process had no significant effect on the gelatinization and retrogradation of oat starch.
Collapse
Affiliation(s)
- Wiktor Berski
- Department of Carbohydrate Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland.
| | - Rafał Ziobro
- Department of Carbohydrate Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
| | - Mariusz Witczak
- Department of Engineering and Machinery in Food Industry, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
| | - Halina Gambuś
- Department of Carbohydrate Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
39
|
Kumar L, Brennan M, Zheng H, Brennan C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem 2018; 245:518-524. [DOI: 10.1016/j.foodchem.2017.10.125] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/13/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|