1
|
Huang S, Zhang Y, Wang T, Li X. Molecular weight-mediated interaction changes for enhancing structural stability, release behavior and M cells-targeting transport efficacy of starch-based nanoparticles. Carbohydr Polym 2024; 346:122639. [PMID: 39245530 DOI: 10.1016/j.carbpol.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Molecular weight (Mw) of ligand-mediated nanocarriers plays a pivotal role in their architecture and properties. In this study, self-assembled ovalbumin (OVA)-loaded nanoparticles were meticulously engineered by starch polyelectrolytes with different Mw. Results unveiled that, tailoring Mw of GRGDS pentapeptides-grafted carboxymethyl starch (G-CMS) displayed strong binding-affinity and transport efficiency through microfold cells (M cells) pathway in the simulated intestinal epithelial cell monolayer in which M cells were randomly located in the Caco-2 cells monolayer. Notably, nanoparticles assembled from G-CMS with relatively higher Mw exhibited more compact structures due to the stronger interactions between layers compared to that with relatively lower Mw, which rendered remarkably stable and only 19.01 % in vitro OVA leakage under conditions of the upper gastrointestinal tract. Subsequently, more intact nanoparticles reached M cells after in vitro digestion and exhibited higher transport efficiency through the M cells pathways (apparent permeability: 9.38 × 10-5 cm/s) than Caco-2 cells, attributing to specific- and non-specific binding affinity towards M cells. Therefore, optimal Mw tailoring of starch polyelectrolytes can mediate the molecular interactions among their assembled layers and the interactions with M cells to balance the structural compactness, release and transport efficacy of nanoparticles, holding promise for advancing M cells-targeting oral delivery technologies.
Collapse
Affiliation(s)
- Shuangxia Huang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiping Zhang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Tianxing Wang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Huang J, Zhang S, Liu D, Wang Q, Feng X, Chu L. Coenzyme Q10-loaded microcapsules stabilized by glyceryl monostearate and soy protein isolates-flaxseed gum: Characterization, in vitro release and digestive behavior. Int J Biol Macromol 2024; 278:134680. [PMID: 39142479 DOI: 10.1016/j.ijbiomac.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to stabilize microcapsules with core materials of glyceryl monostearate (GMS) and octyl and decyl glycerate, and wall materials of soy protein isolates (SPI) and flaxseed gum (FG) by complex coacervation method to overcome the drawbacks of coenzyme Q10 (CoQ10). It was demonstrated by the study that the obtained microcapsules were irregular aggregates. Differential scanning calorimetry and x-ray diffraction patterns indicated that CoQ10 was entrapped inside the disordered semisolid cores of microcapsules. The CoQ10 loading and encapsulation efficiency analysis revealed that GMS and FG helped CoQ10 better encapsulated inside the microcapsules. The in vitro release curve showed a "burst" release of CoQ10 absorbed on the surface of microcapsules for the first 180 min, followed by a sustained release of the encapsulated CoQ10. GMS and FG contributed to the sustained release and the release mechanism of the microcapsules was Fickian diffusion. The in vitro simulated digestion demonstrated that the constructed microcapsules improved the bio-accessibility of CoQ10. Finally, due to the protection of GMS and FG, microcapsules had good storage stability. In conclusion, this study emphasized the potential of using new microcapsules to deliver and protect lipophilic ingredients, providing valuable information for developing functional foods with higher bioavailability.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Wang L, Huang Y, Ren Y, Wang H, Ding Y, Ren G, Wang T, Li Z, Qiu J. Effect of ethanol addition on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes. Food Chem 2024; 451:139350. [PMID: 38663246 DOI: 10.1016/j.foodchem.2024.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Collapse
Affiliation(s)
- Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Yilin Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanjuan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Changping, Beijing 102206, China
| | - Yue Ding
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zaigui Li
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
5
|
Aktaş H, Napiórkowska A, Szpicer A, Custodio-Mendoza JA, Paraskevopoulou A, Pavlidou E, Kurek MA. Microencapsulation of green tea polyphenols: Utilizing oat oil and starch-based double emulsions for improved delivery. Int J Biol Macromol 2024; 274:133295. [PMID: 38914398 DOI: 10.1016/j.ijbiomac.2024.133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Alicja Napiórkowska
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pavlidou
- Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
6
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Koshenaj K, Ferrari G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers (Basel) 2024; 16:1991. [PMID: 39065308 PMCID: PMC11281146 DOI: 10.3390/polym16141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Natural hydrogels based on renewable and inexpensive sources, such as starch, represent an interesting group of biopolymeric materials with a growing range of applications in the biomedical, cosmeceutical, and food sectors. Starch-based hydrogels have traditionally been produced using different processes based on chemical or physical methods. However, the long processing times, high energy consumption, and safety issues related to the synthesis of these materials, mostly causing severe environmental damage, have been identified as the main limitations for their further exploitation. Therefore, the main scientific challenge for research groups is the development of reliable and sustainable processing methods to reduce the environmental footprint, as well as investigating new low-cost sources of starches and individuating appropriate formulations to produce stable hydrogel-based products. In the last decade, the possibility of physically modifying natural polysaccharides, such as starches, using green or sustainable processing methods has mostly been based on nonthermal technologies including high-pressure processing (HPP). It has been demonstrated that the latter exerts an important role in improving the physicochemical and techno-functional properties of starches. However, as for surveys in the literature, research activities have been devoted to understanding the effects of physical pre-treatments via high-pressure processing (HPP) on starch structural modifications, more so than elucidating its role and capacity for the rapid formation of stable and highly structured starch-based hydrogels with promising functionality and stability, utilizing more sustainable and eco-friendly processing conditions. Therefore, the present review addresses the recent advancements in knowledge on the production of sustainable starch-based hydrogels utilizing HPP as an innovative and clean-label preparation method. Additionally, this manuscript has the ambition to give an updated overview of starch-based hydrogels considering the different types of structures available, and the recent applications are proposed as well to critically analyze the main perspectives and technological challenges for the future exploitation of these novel structures.
Collapse
Affiliation(s)
- Katerina Koshenaj
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- ProdAl Scarl, c/o University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Gao HX, Chen N, He Q, Shi B, Zeng WC. Potential of polyphenols from Ligustrum robustum (Rxob.) Blume on enhancing the quality of starchy food during frying. J Food Sci 2024; 89:3306-3317. [PMID: 38752388 DOI: 10.1111/1750-3841.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
The increasing concerns about health have led to a growing demand for high-quality fried foods. The potential uses of Ligustrum robustum (Rxob.) Blume, a traditional tea in China, as natural additives to enhance the quality of starchy food during frying was studied. Results indicated that L. robustum polyphenols extract (LREs) could improve the quality of fried starchy food, according to the tests of color, moisture content, oil content, texture property, and volatile flavor. The in vitro digestion results demonstrated that LRE reduced the final glucose content from 11.35 ± 0.17 to 10.80 ± 0.70 mmol/L and increased the phenolic content of fried starch foods from 1.23 ± 0.04 to 3.76 ± 0.14 mg/g. The appearance and polarizing microscopy results showed that LRE promoted large starch bulges on the surface of fried starchy foods. Meanwhile, X-ray diffraction results showed that LRE increased the intensity of characteristic diffraction peak of fried starch with a range of 21.8%-28%, and Fourier transform infrared results showed that LRE reduced the damage to short-range order structure of starch caused by the frying process. In addition, LRE increased the aggregation of starch granules according to the SEM observation and decreased the enthalpy of starch gelatinization based on the differential scanning calorimetry results. The present results suggest that LREs have the potential to be utilized as a natural additive for regulating the quality of fried starchy food in food industries. PRACTICAL APPLICATION: The enhancement of L. robustum polyphenols on the quality of starchy food during frying was found, and its mechanisms were also explored. This work indicated that L. robustum might be used as a novel economic natural additive for producing high-quality fried foods.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| | - Bi Shi
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, P. R. China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
9
|
Chen C, Wang Z, Fu H, Yu G, Luo X, Zhu K. Enhanced bioavailability of curcumin amorphous nanocomposite prepared by a green process using modified starch. Int J Biol Macromol 2024; 270:132210. [PMID: 38729473 DOI: 10.1016/j.ijbiomac.2024.132210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Curcumin (Cur), a bioactive compound extracted from plants, has attracted widespread attention due to its multiple pharmacological activities. However, the low bioavailability due to the inherent limitations in water solubility, chemical stability, and permeability poses great challenges for realizing its clinical potentials. In the current study, octenyl succinic anhydride-modified starch (OSA-S), a renewable and biodegradable biopolymer, was employed to fabricate Cur amorphous composite nanoparticles (Cur/OSA-S NPs) through a solvent-free pH-driven method with the aim to enhance Cur's bioavailability by improving its solubility and stability. Cur/OSA-S NPs, with mean sizes of about 128.9 ± 8.6 nm, encapsulation efficiencies of about 90.0 %, and the drug loading capacities around 51.0 ± 0.2 %, were successfully prepared. Cur was found to be dispersed within the composite nanoparticles in amorphous state as confirmed by the XRD and DSC characterizations. In addition, Cur/OSA-S NPs offers excellent storage, thermal and light stability, excellent re-dispersibility, and approximately 92 times better solubility than the original Cur. Furthermore, studies of dissolution and the parallel artificial membrane permeability assay (PAMPA) confirmed enhanced dissolution rates and in vitro permeabilities of Cur/OSA-S NPs. Cancer cell viability and uptake experiments revealed that Cur/OSA-S NPs possessed more potent inhibitory effects on cancer cell proliferation compared to the raw Cur. The results obtained from the current study demonstrated the effectiveness of OSA-S for manufacturing Cur amorphous composite nanoparticles with enhanced solubility, stability, and permeability, which might be valuable for further development of Cur based products for treatment of various diseases.
Collapse
Affiliation(s)
- Changying Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Zhixing Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Guoqi Yu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
10
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38821104 DOI: 10.1080/10408398.2024.2353366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Encapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab, Pakistan
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Park JY, Cho DH, Choi DJ, Moon SY, Park EY, Kim JY. Preparation of catechin-starch nanoparticles composites and its application as a Pickering emulsion stabilizer. Carbohydr Polym 2024; 332:121950. [PMID: 38431403 DOI: 10.1016/j.carbpol.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Starch is a biopolymer commonly used for nanoparticle synthesis. Starch nanoparticles (SNPs) have potential as encapsulation agents and Pickering emulsion stabilizers. Here, we prepared SNPs by dry heating under mildly acidic conditions to encapsulate catechin. Catechin (30 mg) and SNPs (50-150 mg) were dispersed in distilled water and freeze-dried to prepare catechin-SNP composites. Isothermal titration calorimetry and Fourier-transform infrared spectroscopy revealed that the binding of catechin to SNP may involve spontaneous hydrogen bonding and hydrophobic interactions. SNPs exhibited encapsulation efficiency for catechin, with 100 % catechin retention when 150 mg of SNP was used to prepare the composites. The catechin-SNP composites had a particle size of 54.2-74.9 nm. X-ray diffraction analysis revealed the formation of small amounts of inclusion complexes in catechin-SNP composites. As the amount of SNPs added for encapsulation increased, the catechin encapsulated in the SNP composites exhibited higher water solubility and UV stability than the pure catechin. The catechin-SNP composite with 150 mg of catechin exhibited the highest contact angle (51.37°) and formed a stable emulsion without notable droplet size changes. Therefore, catechin-SNP composites improved the encapsulation efficiency, water-solubility, stability of catechins, and Pickering emulsion stability.
Collapse
Affiliation(s)
- Jae Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwa Cho
- Eversummer Laboratory, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Dan Jung Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Yeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
13
|
Di Marco AE, Tomás MC, Ixtaina VY. Improved accelerated stability of starch-chia oil fatty acid inclusion complexes formed under mild reaction conditions. Carbohydr Polym 2024; 331:121887. [PMID: 38388041 DOI: 10.1016/j.carbpol.2024.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The starch inclusion complexation of sensitive compounds requires the use of conditions that minimize their degradation. This research work is aimed at investigating the effect of an alkaline complexation method employing mild reaction conditions on the physicochemical properties and accelerated stability of inclusion complexes of high amylose corn starch with omega-3 and omega-6 fatty acids. Hydrolyzed chia seed oil, rich in α-linolenic and linoleic fatty acids, was used as guest material and was incorporated at two ratios (10 and 20 % w/w hydrolysate/starch). Under the reaction conditions assessed, it were successfully formed V-type inclusion complexes with a high content of omega-3 and omega-6 (3.9-6 %). The initial hydrolysate concentration did not have a significant effect on the structural (crystallinity, short-range order) and thermal (dissociation temperature, melting enthalpy) properties. The method studied allowed the formation of complexes with an enhanced accelerated oxidative stability, compared to those formed using thermal treatment. The complexes formed using mild conditions with 20 % hydrolysate content had the highest oxidative stability, showing an omega-3 and omega-6 retention >90 % after 6 h of storage at 90 °C, an enhanced stability under thermogravimetric analysis, and flattened Rancimat curves, suggesting an appropriate preliminary behavior as potential carriers of bioactive fatty acids.
Collapse
Affiliation(s)
- Andrea E Di Marco
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina
| | - Mabel C Tomás
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina
| | - Vanesa Y Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina; Facultad de Ciencias Agrarias y Forestales (FCAyF-UNLP), calle 60 y 119, 1900 La Plata, Argentina.
| |
Collapse
|
14
|
Gumul D, Korus J, Orczykowska M, Rosicka-Kaczmarek J, Oracz J, Areczuk A. Starch from Unripe Apples ( Malus domestica Borkh) as an Alternative for Application in the Food Industry. Molecules 2024; 29:1707. [PMID: 38675527 PMCID: PMC11052241 DOI: 10.3390/molecules29081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the properties of starch isolated from the unripe fruit of two apple cultivars (Malus domestica Borkh) grown in southern Poland (Central Europe). The chemical composition of both starches, molecular mass, their granulation, thermal characteristics, swelling characteristics, and rheological characteristics were studied. The starches differed significantly in ash, phosphorus, and protein content. The water-binding capacity at temperatures of 25-65 °C was similar, while differences of 20% appeared at higher temperatures. In contrast, a significant difference was found in the solubility of the two starches in the temperature range of 25-75 °C. The study showed that apple starches have a relatively low tendency to retrograde, with the enthalpy of gelatinization for starch from the Oliwka variety being 40% higher than that from the Pyros variety. However, the starches differed in the hardness of the gels formed, i.e., one variety formed soft gels with an internal structure resistant to external forces, while the other formed hard gels.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122 Str., 30-149 Krakow, Poland; (J.K.); (A.A.)
| | - Jarosław Korus
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122 Str., 30-149 Krakow, Poland; (J.K.); (A.A.)
| | - Magdalena Orczykowska
- Department of Chemical Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Str., 90-924 Lodz, Poland;
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Str., 90-537 Lodz, Poland;
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Str., 90-537 Lodz, Poland;
| | - Anna Areczuk
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122 Str., 30-149 Krakow, Poland; (J.K.); (A.A.)
| |
Collapse
|
15
|
Li Q, Guo A, Rao L, Zhao L, Wang Y, Liao X. Tunable interactions in starch-anthocyanin complexes switched by high hydrostatic pressure. Food Chem 2024; 436:137677. [PMID: 37839121 DOI: 10.1016/j.foodchem.2023.137677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Native starches usually have poor polyphenol-binding efficiency despite remarkable architectural structures. In this study, the interaction between cyandin-3-O-glucose (C3G) and three starches under high hydrostatic pressure was investigated. Pressure (200-550 MPa) was found to promote the binding rate of potato starch from 31.6% to 47.0% but reduced that of corn and pea starch to below 10% at 550 MPa. Microscopy results showed that pressurized corn and pea starch-C3G complexes partially or completely lost spatial structures, whereas potato starch-C3G complexes retained structural integrity. The former had decreased zeta potentials and increased particle sizes at 550 MPa, suggesting surface charges and specific surface area losses caused poor binding. Potato starch-C3G complexes, however, exhibited unchanged zeta potential and particle size but the strongest fluorescence at 200 MPa, indicating a positive binding shift from surface to interior. Overall, high hydrostatic pressure can regulate the interactions of native starches with anthocyanins via spatial structural changes.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Aixin Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
16
|
Li Q, Liu Y, Li Y, Rao L, Zhao L, Wang Y, Liao X. Unravelling the anthocyanin-binding capacity of native starches from different botanical origins. Food Chem 2024; 434:137390. [PMID: 37716141 DOI: 10.1016/j.foodchem.2023.137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
In this study, the cyanidin-3-O-glucoside (C3G)-binding capacities of three native starches were investigated. While potato starch had the largest binding capacity of 0.34 mg/100 mg, corn and pea starch had binding capacities of 0.17 and 0.06 mg/100 mg. Confocal microscopy confirmed the binding results and revealed close associations between the surface properties and binding capacities. These findings were further substantiated with wettability and gelatinization results. The morphological observations showed that corn starch had advantageous particle sizes and more surface gullies, providing more opportunities to bind C3G. The zeta potential results, however, indicated that potato starch had the highest negative surface charges (-24 mV). These favorable electronic characteristics were believed to be responsible for the strongest electrostatic interactions. Hydrogen bonds, however, had a negligible effect on the formation of complexes. Overall, the negative surface charges and specific surface areas of the native starches were the most important factors determining C3G-binding capacities.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yuwan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
17
|
Wang Y, Pang C, Mohammad-Beigi H, Li X, Wu Y, Lin MKTH, Bai Y, Møller MS, Svensson B. Sequential starch modification by branching enzyme and 4-α-glucanotransferase improves retention of curcumin in starch-alginate beads. Carbohydr Polym 2024; 323:121387. [PMID: 37940281 DOI: 10.1016/j.carbpol.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca2+-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes. Alginate beads with or without starch were of similar size (1.69-1.74 mm), but curcumin retention was improved 1.4-2.8-fold in the presence of different starches. Thus, subjecting the curcumin-loaded beads to in vitro simulated gastrointestinal digestion resulted in retention of 70, 43 and 22 % of the curcumin entrapped in the presence of modified, unmodified, or no starch, respectively. Molecular docking provided support for curcumin interacting with starch via hydrogen bonding, hydrophobic contacts and π-π stacking. The study highlights the potential of utilizing low concentration of dual-enzyme modified starch with alginate to create a versatile vehicle for controlled release and targeted delivery of bioactive compounds.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Chengfang Pang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Hossein Mohammad-Beigi
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiaoxiao Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Yuxiang Bai
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Pozo LMF, Ramos-Pacheco BS, Palomino-Rincón H, Gutiérrez RJG, Peralta-Guevara DE. Effect of Inlet Air Temperature and Quinoa Starch/Gum Arabic Ratio on Nanoencapsulation of Bioactive Compounds from Andean Potato Cultivars by Spray-Drying. Molecules 2023; 28:7875. [PMID: 38067603 PMCID: PMC10708246 DOI: 10.3390/molecules28237875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Lizeth M. Flores Pozo
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Rodrigo J. Guzmán Gutiérrez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| |
Collapse
|
19
|
He Z, Chi C, Huang S, Li X. A novel method for obtaining high amylose starch fractions from debranched starch. Curr Res Food Sci 2023; 7:100589. [PMID: 37744555 PMCID: PMC10514404 DOI: 10.1016/j.crfs.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
High amylose starch shows wide applications in food and non-food-based industries. Traditional complex-precipitation approach for the amylose fractionation required a large volume of organic reagents and was possibly risky for food safety. The object of this work was to establish a novel method to obtain starch fractions rich in amylose from debranch starch through repeated short-term retrogradation and centrifugation. Four starch fractions were obtained with the amylose content of 52.08% (C1), 62.28% (C2), 63.58% (C3), and 64.74% (C4). The thermograms of samples displayed that multiple endothermic peaks were detected in C1 and C2 and only one endothermic peak with melting temperature over 120 °C were observed in C3 and C4, indicating their differences in retrogradation behavior. The chain length distribution results of sample exhibited that C1 and C2 contained more short chains (DP ≤ 24), while C3 and C4 consisted of mainly long chains (DP ≥ 25). Accordingly, the differences in fine structures could provide more choices for these fractionated high amylose starch to utilize in practical applications.
Collapse
Affiliation(s)
- Zhongchao He
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengdeng Chi
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuangxia Huang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
21
|
A “smart-sensing” bactericidal protein-based Pickering emulsion. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
22
|
Ali M, Cybulska J, Frąc M, Zdunek A. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. Int J Biol Macromol 2023; 244:125366. [PMID: 37327939 DOI: 10.1016/j.ijbiomac.2023.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Intensive farming practices have increased the consumption of chemical-based pesticides and fertilizers thereby creating health issues for humans and animals and also causing a deterioration in the natural ecosystem. The promotion of biomaterials synthesis could potentially lead to the replacement of synthetic products and improve soil fertility, protect plants from pathogen attacks, and enhance the productivity of the agricultural sector resulting in less environmental pollution. Microbial bioengineering involving the use and improvement of encapsulation using polysaccharides has the required potential to address environmental issues and promote green chemistry. This article describes various encapsulation techniques and polysaccharides which have an immense applicable capability to encapsulate microbial cells. The review elucidates the factors that may result in a reduced viable cell count during encapsulation, particularly using the spray drying method, where a high temperature is required to dry the suspension, this may damage the microbial cells. The environmental advantage of the application of polysaccharides as carriers of beneficial microorganisms, which do not pose a risk for soil due to their full biodegradability, was also shown. The encapsulated microbial cells may assist in addressing certain environmental problems such as ameliorating the unfavourable effects of plant pests and pathogens, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland.
| | - Madgalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
23
|
Dong S, Hu SM, Yu SJ, Zhou S, Zhou T. Soybean protein isolate/chitosan complex-rutin microcapsules. Int J Biol Macromol 2023:125323. [PMID: 37307973 DOI: 10.1016/j.ijbiomac.2023.125323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Rutin is a flavonoid polyphenol with excellent biological activity, but due to its instability and poor water solubility, the utilization rate is reduced in vivo. Preparation of rutin microcapsules from soybean protein isolate (SPI) and chitosan hydrochloride (CHC) by composite coacervation can improve this restriction. The optimal preparation conditions were as follows: the volume ratio of CHC/SPI 1:8, pH 6, and total concentration of CHC and SPI 2 %. The rutin encapsulation rate and loading capacity of the microcapsules were 90.34 % and 0.51 % under optimal conditions. The SPI-CHC-rutin (SCR) microcapsules had a gel mesh structure and good thermal stability, and the system was stable and homogeneous after 12 d storage. During in vitro digestion, the release rates of SCR microcapsules in simulated gastric and intestinal fluids were 16.97 % and 76.53 %, respectively, achieving a targeted release of rutin in intestinal fluids; and the digested products were found to exhibit superior antioxidant activity to that of free rutin digests, indicating a good protection of microencapsulation on the bioactivity of rutin. Overall, SCR microcapsules developed in this study effectively enhanced the bioavailability of rutin. The present work provides a promising delivery system for natural compounds with low bioavailability and stability.
Collapse
Affiliation(s)
- Shuai Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shu-Min Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Si-Jia Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK; School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
24
|
Li S, Feng D, Li E, Gilbert RG. Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods 2023; 12:foods12102076. [PMID: 37238894 DOI: 10.3390/foods12102076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve both zeaxanthin stability and controlled release. Optimization using three variables judged important for optimizing the system (reaction temperature of 65 °C, starch concentration of 6%, and reaction time of 2 h) was conducted for incorporation of zeaxanthin into corn starch granules, aiming for high zeaxanthin content (2.47 mg/g) and high encapsulation efficiency (74%). Polarized-light microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that the process partially gelatinized corn starch; additionally, it showed the presence of corn starch/zeaxanthin composites, with the zeaxanthin successfully trapped in corn starch granules. The half-life time of zeaxanthin in corn starch/zeaxanthin composites increased to 43 days as compared with that of zeaxanthin alone (13 days). The composites show a rapid increase in zeaxanthin release with in vitro intestinal digestion, which is favorable for possible use in living systems. These findings could have application in designing effective starch-based carriers of this bioactive ingredient with enhanced storage stability and improved intestines-targeted controlled-release delivery.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Velloso CCV, Lopes MM, Badino AC, Farinas CS. Exploring the roles of starch for microbial encapsulation through a systematic mapping review. Carbohydr Polym 2023; 306:120574. [PMID: 36746565 DOI: 10.1016/j.carbpol.2023.120574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Microorganism encapsulation protects them from stressful conditions and assists in maintaining their viability, being especially beneficial when the carrier material is a renewable and biodegradable biopolymer, such as starch. Here, a systematic mapping was performed to provide a current overview on the use of starch-based systems for microbial encapsulation. Following well-established guidelines, a systematic mapping was conducted and the following could be drawn: 1) there was a significant increase in publications on microbial encapsulation using starch over the past decade, showing interest from the scientific community, 2) ionotropic gelation, emulsification and spray drying are the most commonly used techniques for starch-based microbial encapsulation, and 3) starch play important functions in the encapsulation matrix such as assisting in the survival of the microorganisms. The information gathered in this systematic mapping can be useful to guide researchers and industrial sectors on the development of innovative starch-based systems for microbial encapsulation.
Collapse
Affiliation(s)
- Camila C V Velloso
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Marina M Lopes
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil.
| |
Collapse
|
26
|
Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem 2023; 417:135898. [PMID: 36934707 DOI: 10.1016/j.foodchem.2023.135898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.
Collapse
|
27
|
Afzal O, Rizwanullah M, Altamimi AS, Alossaimi MA, Kamal M, Ahmad J. Harnessing natural polysaccharides-based nanoparticles for oral delivery of phytochemicals: Knocking down the barriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
28
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
29
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
30
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
31
|
Characterization of OSA starch-based films with nut-byproducts extracts for potential application as natural wound dressing. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2023; 63:1187-1207. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Collapse
Affiliation(s)
- Vikas Dadwal
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh Gupta
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Encapsulation of ascorbyl palmitate in corn starch matrix by extrusion cooking: Release behavior and antioxidant activity. Food Chem 2023; 399:133981. [DOI: 10.1016/j.foodchem.2022.133981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
|
34
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Lee Y, Kang YR, Chang YH. Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
37
|
Jiang K, Wang W, Ma Q, Wang J, Sun J. Microwave-assisted enzymatic hydrolysis as a novel efficient way to prepare porous starch. Carbohydr Polym 2022; 301:120306. [DOI: 10.1016/j.carbpol.2022.120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
38
|
Tan YB, Wei JY, Tang YF, Ye YT, Wang L, Yang LJ, Chen ZX. Effect of Ionic and Non-Ionic Surfactants on the Pasting Characteristics and Digestive Properties of Regular and Frozen Starch for Oral Delivery. Foods 2022; 11:3395. [PMID: 36360008 PMCID: PMC9657325 DOI: 10.3390/foods11213395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2023] Open
Abstract
Starch is an ideal wall material for controlled release in oral delivery systems due to its non-allergic properties, availability, and cheap price. However, because of its poor mechanical behavior and high water permeability, it is necessary to modify the amphiphilic nature of starch. Surfactants are essential components to emulsify the lyophobic food ingredients. However, the interaction of starch with emulsifiers and how they affect the pasting behavior and digestion of starch are not well understood. In this paper, surfactants, such as non-ionic Tween (TW) and ionic sodium fatty acid (NaFA), with varying hydrophobic carbon chain lengths, were selected as model amphiphiles to investigate the structural, pasting, rheological properties and in vitro digestibility of regular and frozen starch samples. The results showed that, in most cases, the addition of TW reduced the viscosity of starch. However, saturated medium-chain NaFA increased the starch viscosity and rheological modulus greatly. Both surfactants inhibited starch digestion. This paper presents a comparative investigation on the effect of ionic and non-ionic surfactant on the structure and properties of corn starch, and therefore the information is useful for structural-based formulation with starch for developing colloidal delivery systems. It is also helpful for developing functional food with controllable digestion properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food and Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
39
|
Di Marco AE, Ixtaina VY, Tomás MC. Effect of ligand concentration and ultrasonic treatment on inclusion complexes of high amylose corn starch with chia seed oil fatty acids. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Huang X, Ge X, Wang Y. Single‐layer and double‐layer zein–gum arabic nanoencapsulations: Preparation, structural characterization, thermal properties, and controlled release in the gastrointestinal tract. J Food Sci 2022; 87:4580-4595. [DOI: 10.1111/1750-3841.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xueying Huang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| | - Yi Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou PR China
| |
Collapse
|
42
|
In Vitro Release of Anthocyanins from Microencapsulated Natal Plum (Carissa macrocarpa) Phenolic Extract in Alginate/Psyllium Mucilage Beads. Foods 2022; 11:foods11172550. [PMID: 36076736 PMCID: PMC9455463 DOI: 10.3390/foods11172550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Natal plum (Carissa macrocarpa) contains anthocyanins, cyanidin 3-O-β-sambubioside (Cy-3-Sa), and cyanidin 3-O-glucoside (Cy-3-G) that possess great bioactive properties. During in vitro gastrointestinal digestion, Cy-3-Sa and Cy-3-G are highly sensitive to pH changes and have low bioaccessibility rates of 7.9% and 22%, respectively. This study aimed to therefore use microencapsulation techniques to improve the bioaccessibility of Cy-3-Sa and Cy-3-G. The crude anthocyanin-rich extract was extracted from freeze-dried Natal plum fruit using ultrasonic-assisted ethanol extraction. The anthocyanin-rich extract was encapsulated using the ionic gelation method. Four distinct carrier agents, namely sodium alginate, pectin, xanthan gum and psyllium mucilage were used to form the wall materials. Encapsulation efficiency was highest for alginate/psyllium mucilage beads (93.67%), while alginate showed the least efficiency (86.80%). Scanning Electron Microscopy revealed a cracked and porous structure for the Natal plum extract and a continuous smooth structure for all the beads. Fourier transform infrared spectroscopy showed peaks at 3300 and 1610 cm−1, confirming the presence of polyphenols and polysaccharides in all beads. Thermal stability was higher for the alginate/psyllium mucilage beads and the observed thermal transitions were due to the bonds formed between the polymers and the polyphenols. Alginate beads combined with xanthan gum, pectin, and psyllium mucilage showed a prolonged release of anthocyanins compared to alginate in vitro alone. The highest anthocyanin bioaccessibility was obtained from alginate/psyllium mucilage beads (85.42 ± 1.03%). The results showed the effectiveness of alginate/psyllium mucilage beads in improving stability and in vitro anthocyanin release.
Collapse
|
43
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
44
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
45
|
Rashid R, Masoodi F, Wani SM, Manzoor S, Gull A. Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem 2022; 385:132608. [DOI: 10.1016/j.foodchem.2022.132608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
46
|
Bezzekhami MA, Harrane A, Belalia M, Mostefai A, Belkhir NL, Bououdina M. Green Synthesis of Starch Nanoparticles (SNPs) by Esterification with Rosin Acid Catalyzed by Maghnite-H+ (Algerian Montmorillonite) with Enhanced Antioxidant Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Rashid R, Wani SM, Manzoor S, Masoodi F, Dar MM. Improving oxidative stability of edible oils with nanoencapsulated orange peel extract powder during accelerated shelf life storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
49
|
Lingiardi N, Galante M, de Sanctis M, Spelzini D. Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation? Food Chem 2022; 394:133485. [PMID: 35753255 DOI: 10.1016/j.foodchem.2022.133485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Emulsion gels are structured emulsion systems that behave as soft solid-like materials. Emulsion gels are commonly used in food-product design both as fat replacers and as delivery carriers of bioactive compounds. Different plant-derived proteins like soy, chia, and oat have been used in emulsion gel formulation to substitute fat in meat products and to deliver some vegetable dyes or extracts. Quinoa protein isolates have been scarcely applied in emulsion gel formulation although they seem to be a promising alternative as emulsion stabilizers. Quinoa protein isolates have a high protein content with a well-balanced amino acid profile and show good emulsifying and gelling capabilities. Unlike quinoa starch, quinoa protein isolates do not require any chemical modification before being used. The present article reviews the state of the art in food emulsion gels stabilized with vegetable proteins and highlights the potential uses of quinoa proteins in emulsion gel formulation.
Collapse
Affiliation(s)
- Nadia Lingiardi
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina.
| | - Micaela Galante
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Católica Argentina, Facultad de Química e Ingeniería del Rosario, Pellegrini 3314, Rosario, Argentina
| | - Mariana de Sanctis
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina
| | - Darío Spelzini
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
50
|
Alqosaibi AI. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J Biol Sci 2022; 29:103298. [PMID: 35645591 PMCID: PMC9130109 DOI: 10.1016/j.sjbs.2022.103298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death globally, surpassed only by cardiovascular disease. One of the hallmarks of cancer is uncontrolled cell division and resistance to cell death. Multiple approaches have been developed to tackle this disease, including surgery, radiotherapy and chemotherapy. Although chemotherapy is used primarily to control cell division and induce cell death, some cancer cells are able to resist apoptosis and develop tolerance to these drugs. The side effects of chemotherapy are often overwhelming, and patients can experience more adverse effects than benefits. Furthermore, the bioavailability and stability of drugs used for chemotherapy are crucial issues that must be addressed, and there is therefore a high demand for a reliable delivery system that ensures fast and accurate targeting of treatment. In this review, we discuss the different types of nanocarriers, their properties and recent advances in formulations, with respect to relevant advantages and disadvantages of each.
Collapse
Affiliation(s)
- Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|