1
|
Luo D, Tian B, Li J, Zhang W, Bi S, Fu B, Jing Y. Mechanisms underlying the formation of main volatile odor sulfur compounds in foods during thermal processing. Compr Rev Food Sci Food Saf 2024; 23:e13389. [PMID: 39031671 DOI: 10.1111/1541-4337.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.
Collapse
Affiliation(s)
- Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Binqiang Tian
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jingxin Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Katırcıoğlu B, Navruz-Varlı S. Effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. Front Nutr 2024; 11:1350534. [PMID: 38962447 PMCID: PMC11220264 DOI: 10.3389/fnut.2024.1350534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Allium species are among the most widely cultivated vegetables for centuries for their positive effects on human health and their variety of uses in food preparation and cooking. Preparation and cooking processes create chemical changes that can affect the concentration and bioavailability of bioactive molecules. Understanding the changes in bioactive compounds and bioactive activities in Allium vegetables resulting from preparation and cooking processes is essential for better retention of these compounds and better utilization of their health benefits. This study aimed to investigate the effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. This review concludes that bioactive compounds in Allium vegetables are affected by each preparation and cooking process depending on variables including method, time, temperature. Owing to differences in the matrix and structure of the plant, preparation and cooking processes show different results on bioactive compounds and bioactive activities for different vegetables. Continued research is needed to help fill gaps in current knowledge, such as the optimal preparation and cooking processes for each Allium vegetable.
Collapse
Affiliation(s)
- Beyza Katırcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Semra Navruz-Varlı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Gębczyński P, Tabaszewska M, Kur K, Zbylut-Górska M, Słupski J. Effect of the Drying Method and Storage Conditions on the Quality and Content of Selected Bioactive Compounds of Green Legume Vegetables. Molecules 2024; 29:1732. [PMID: 38675551 PMCID: PMC11052391 DOI: 10.3390/molecules29081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2-4 °C, 18-22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, β-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9-39% and 3-11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38-75% in the freeze-dried product and 30-77% in the air-dried product, compared to the raw material.
Collapse
Affiliation(s)
- Piotr Gębczyński
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Katarzyna Kur
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Maria Zbylut-Górska
- Department of Land Surveying, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| |
Collapse
|
4
|
Wang J, Qiao L, Liu B, Wang J, Wang R, Zhang N, Sun B, Chen H, Yu Y. Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chem 2023; 429:136909. [PMID: 37516048 DOI: 10.1016/j.foodchem.2023.136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Green onion (Allium fistulosum L.) is a perennial herb with a characteristic allium aroma. Meanwhile, fried green onion oil has a rich flavor that is popular in traditional Chinese cuisine. In this work, the key aroma components of fried green onion oil were focused via flavoromics analysis. The oil samples had a low score of a green aroma but a high score of salty, greasy aromas. Whereafter, a total of 36 aroma-active substances with flavor dilution (FD) factors ranging from 1 to 6561 were identified in fried green onion oil, while 42 were detected in fried green onion residue with FD factors ranging from 1 to 19683. Additionally, the recombination and omission tests revealed that furaneol, dimethyl trisulfide, allyl methyl trisulfide, (E,E)-2,4-decadienal, etc., were the key aroma compounds in fried green onion oil. Furthermore, the observation of the reaction of thioethers at high temperatures revealed that dimethyl disulfide undergoes polymerization to form dimethyl trisulfide. The research results can provide a theoretical basis for the standardization and industrial production of Chinese cuisine.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Bing Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Junyi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Yang Yu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Xiong Y, Guan J, Wu B, Wang T, Yi Y, Tang W, Zhu K, Deng J, Wu H. Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules 2023; 28:6979. [PMID: 37836821 PMCID: PMC10574234 DOI: 10.3390/molecules28196979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Using Meyerozyma guilliermondii YB4, which was isolated and screened from southern Sichuan pickles in the laboratory, as the experimental group, we investigated the changes in growth, total ester content, and volatile flavor substances of M. guilliermondii YB4 under different NaCl concentrations. The growth of M. guilliermondii YB4 was found to be inhibited by NaCl, and the degree of inhibition increased at higher NaCl concentrations. Additionally, the total ester content of the control group (CK) was significantly lower compared to the other groups (p < 0.05). The application of NaCl also resulted in distinct changes in the volatile profile of YB4, as evidenced by E-nose results. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the volatile compounds. A total of 148 and 86 volatiles were detected and identified using GC-MS and GC-IMS, respectively. Differential volatiles among the various NaCl concentrations in YB4 were determined by a variable importance in projection (VIP) analysis in partial least squares-discriminant analysis (PLS-DA). These differentially expressed volatiles were further confirmed by their relative odor activity value (ROAV) and odor description. Ten key contributing volatiles were identified, including ethanol, 1-pentanol, nonanal, octanal, isoamyl acetate, palmitic acid ethyl ester, acrolein, ethyl isobutanoate, prop-1-ene-3,3'-thiobis, and 2-acetylpyrazine. This study provides insights into the specificities and contributions of volatiles in YB4 under different NaCl concentrations. These findings offer valuable information for the development of aroma-producing yeast agents and the subsequent enhancement in the flavor of southern Sichuan pickles.
Collapse
Affiliation(s)
- Yiling Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Ju Guan
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Baozhu Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Tianyang Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanting Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jing Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Huachang Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
6
|
Xie L, Jiang YS, Wang YB, Xiao HW, Liu W, Ma Y, Zhao XY. Changes in the Physical Properties and Volatile Odor Characteristics of Shiitake Mushrooms ( Lentinula edodes) in Far Infrared Radiation Drying. Foods 2023; 12:3213. [PMID: 37685146 PMCID: PMC10486590 DOI: 10.3390/foods12173213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The effects of far infrared radiation drying (FID) on physical properties (drying kinetics, color, shrinkage ratio, rehydration ratio, and microstructural characterization) and volatile odor characteristics (volatile odor profile distinction and volatile compounds) of shiitake mushrooms were evaluated in this study. During the FID, the drying time decreased with the increase in drying temperature, and it had a less significant effect in the lower temperature range. The increase in drying temperature led to increasing shrinkage and collapse in the microstructure, resulting in a decreased rehydration rate and highlighting the influence of microstructure characteristics on macroscopic properties. Higher drying temperatures employed in the FID process were found to be associated with a decreasing L* value and an increasing ΔE value. The application of principal component analysis can effectively distinguish the significant effect of FID on the volatile odor profiles of shiitake mushrooms. Compared to raw shiitake mushrooms, FID treatment has endowed samples with a greater variety of volatile compounds. After processing with FID, there have been increases in volatile components such as sulfur compounds, acids, nitrogen compounds, and aldehydes, while volatile components like alcohols, ketones, and hydrocarbons have shown decreases.
Collapse
Affiliation(s)
- Long Xie
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yu-Si Jiang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yu-Bin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiao-Yan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|
7
|
Evaluation of deodorization techniques using cyclodextrins on the headspace volatiles and antioxidant properties of onion. Food Chem 2023; 410:135416. [PMID: 36652801 DOI: 10.1016/j.foodchem.2023.135416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sulphur-containing volatiles in onion produce unpleasant odors and this limit their usage in foods. To expand its application, several additives including α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and chitosan were added to onion solution and evaluated for their effect on sulphur-containing volatiles. Also, antioxidant property using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and oxidative stabilities in an oil-in-water (O/W) emulsion were carried out. The total volatile contents were decreased in the order of α-CD (50.1%), β-CD (49.3%), HP-β-CD (46.2%), and chitosan (7%). Meanwhile, HP-β-CD showed the highest DPPH radical scavenging ability followed by β-CD, α-CD, and chitosan with decreasing order. The β-CD significantly enhanced the oxidative stability of the O/W emulsion, whereas α-CD and β-HP-CD showed prooxidative behavior. Overall, β-CD might be used as a sulphur-containing volatile decreasing agent, which could keep the antioxidant properties of onion in the O/W emulsion.
Collapse
|
8
|
Zhao X, Feng J, Laghi L, Deng J, Dao X, Tang J, Ji L, Zhu C, Picone G. Characterization of Flavor Profile of "Nanx Wudl" Sour Meat Fermented from Goose and Pork Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Electronic Nose and Tongue. Foods 2023; 12:foods12112194. [PMID: 37297439 DOI: 10.3390/foods12112194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Sour meat is a highly appreciated traditional fermented product, mainly from the Guizhou, Yunnan, and Hunan provinces. The flavor profiles of sour meat from goose and pork were evaluated using gas chromatography-ion mobility spectrometry (GC-IMS) combined with an electronic nose (E-nose) and tongue (E-tongue). A total of 94 volatile compounds were characterized in fermented sour meat from both pork and goose using GC-IMS. A data-mining protocol based on univariate and multivariate analyses revealed that the source of the raw meat plays a crucial role in the formation of flavor compounds during the fermentation process. In detail, sour meat from pork contained higher levels of hexyl acetate, sotolon, heptyl acetate, butyl propanoate, hexanal, and 2-acetylpyrrole than sour goose meat. In parallel, sour meat from goose showed higher levels of 4-methyl-3-penten-2-one, n-butyl lactate, 2-butanol, (E)-2-nonenal, and decalin than sour pork. In terms of the odor and taste response values obtained by the E-nose and E-tongue, a robust principal component model (RPCA) could effectively differentiate sour meat from the two sources. The present work could provide references to investigate the flavor profiles of traditional sour meat products fermented from different raw meats and offer opportunities for a rapid identification method based on flavor profiles.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Jianying Feng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaofang Dao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Lili Ji
- Meat Processing Key Lab of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
9
|
V González-de-Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, F Barbero G. Application of Direct Thermal Desorption-Gas Chromatography-Mass Spectrometry for Determination of Volatile and Semi-Volatile Organosulfur Compounds in Onions: A Novel Analytical Approach. Pharmaceuticals (Basel) 2023; 16:ph16050715. [PMID: 37242498 DOI: 10.3390/ph16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The population is now more aware of their diets due to the connection between food and general health. Onions (Allium cepa L.), common vegetables that are minimally processed and grown locally, are known for their health-promoting properties. The organosulfur compounds present in onions have powerful antioxidant properties and may decrease the likelihood of developing certain disorders. It is vital to employ an optimum approach with the best qualities for studying the target compounds to undertake a thorough analysis of these compounds. In this study, the use of a direct thermal desorption-gas chromatography-mass spectrometry method with a Box-Behnken design and multi-response optimization is proposed. Direct thermal desorption is an environmentally friendly technique that eliminates the use of solvents and requires no prior preparation of the sample. To the author's knowledge, this methodology has not been previously used to study the organosulfur compounds in onions. Likewise, the optimal conditions for pre-extraction and post-analysis of organosulfur compounds were as follows: 46 mg of onion in the tube, a desorption heat of 205 °C for 960 s, and a trap heat of 267 °C for 180 s. The repeatability and intermediate precision of the method were evaluated by conducting 27 tests over three consecutive days. The results obtained for all compounds studied revealed CV values ranging from 1.8% to 9.9%. The major compound reported in onions was 2,4-dimethyl-thiophene, representing 19.4% of the total area of sulfur compounds. The propanethial S-oxide, the principal compound responsible for the tear factor, accounted for 4.5% of the total area.
Collapse
Affiliation(s)
- Ana V González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| |
Collapse
|
10
|
Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Seaweeds have a variety of biological activities, and their aromatic characteristics could play an important role in consumer acceptance. Here, changes in aroma compounds were monitored during microbial fermentation, and those most likely to affect sensory perception were identified. Ulva sp. and Laminaria sp. were fermented and generally recognized as safe microorganisms, and the profile of volatile compounds in the fermented seaweeds was investigated using headspace solid-phase microextraction with gas chromatography–mass spectrometry. Volatile compounds, including ketones, aldehydes, alcohols, and acids, were identified during seaweed fermentation. Compared with lactic acid bacteria fermentation, Bacillus subtilis fermentation could enhance the total ketone amount in seaweeds. Saccharomyces cerevisiae fermentation could also enhance the alcohol content in seaweeds. Principal component analysis of volatile compounds revealed that fermenting seaweeds with B. subtilis or S. cerevisiae could reduce aldehyde contents and boost ketone and alcohol contents, respectively, as expected. The odor of the fermented seaweeds was described by using GC–olfactometry, and B. subtilis and S. cerevisiae fermentations could enhance pleasant odors and reduce unpleasant odors. These results can support the capability of fermentation to improve the aromatic profile of seaweeds.
Collapse
|
11
|
Yang B, Huang J, Jin W, Sun S, Hu K, Li J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods 2022; 11:3249. [PMID: 37430997 PMCID: PMC9601802 DOI: 10.3390/foods11203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, fresh Lyophyllum decastes was dried using hot air drying (HAD), hot air combined with vacuum drying (HAVD), and vacuum freeze drying (VFD). Additionally, the quality and volatile compounds were analyzed. VFD achieved the best color retention, the highest rehydration capacity, and the slightest damaged tissue structure; however, it recorded the longest drying time and the highest energy consumption. HAD was the most energy-efficient of the three methods. Furthermore, the products with more hardness and elasticity were obtained by HAD and HAVD-this finding was convenient for transportation. In addition, GC-IMS demonstrated that the flavor components had significantly changed after drying. A total of 57 volatile flavor compounds was identified, and the aldehyde, alcohol, and ketone compounds were the primary ingredient of the L. decastes flavor component, whereby the relative content of the HAD sample was apparently higher than HAVD and VFD. Taken together, VFD was better at preserving the color and shape of fresh L. decastes, but HAD was more appropriate for drying L. decastes because of the lower energy consumption, and was more economical. Meanwhile, HAD could be used to produce a more intense aroma.
Collapse
Affiliation(s)
- Bin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhang Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wensong Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
12
|
Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods 2022; 11:foods11193070. [PMID: 36230147 PMCID: PMC9562890 DOI: 10.3390/foods11193070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pretreatment improves the edible quality of oat bran and prolongs the shelf life, whereas the effect of pretreatments (i.e., steaming(S-OB), microwaving(M-OB), and hot-air drying(HA-OB)) on the flavor characteristics of oat bran is unknown. This study identified volatile composition using HS-SPME/GC−MS and an electronic nose of oat bran. The amino acid compositions were determined by a High-Speed automatic amino acid analyzer and the fatty acids were determined by gas chromatography. The results showed that steaming and microwaving pretreatments enhanced the nutty notes of oat bran. Sixty-four volatile compounds in four oat brans were identified. OB exhibited higher aroma-active compounds, followed by S-OB, and M-OB, and the HA-OB had the lowest aroma-active compounds. Hexanal, nonanal, (E)-2-octenal,1-octen-3-ol, 2-ethylhexan-1-ol, and 2-pentylfuran were the key volatile compositions in oat bran. The aldehyde content decreased and the esters and ketones increased in steamed oat bran. Microwaving and hot air drying increased the aldehyde content and decreased the ester and alcohol content. Steamed oat bran had the lowest levels of total amino acids (33.54 g/100 g) and bitter taste amino acids (5.66 g/100 g). However, steaming caused a significant reduction in saturated fatty acid content (18.56%) and an increase in unsaturated fatty acid content (79.60%) of oat bran (p < 0.05). Hot air drying did not result in an improvement in aroma. The results indicated that steaming was an effective drying method to improve the flavor quality of oat bran.
Collapse
|
13
|
Liu S, Xiong H, Qiu Y, Dai J, Zhang Q, Qin W. Radiofrequency-assisted low-temperature long-time (LTLT) pasteurization of onion powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Xie B, Wu Q, Wei S, Li H, Wei J, Hanif M, Li J, Liu Z, Xiao X, Yu J. Optimization of Headspace Solid-Phase Micro-Extraction Conditions (HS-SPME) and Identification of Major Volatile Aroma-Active Compounds in Chinese Chive (Allium tuberosum Rottler). Molecules 2022; 27:molecules27082425. [PMID: 35458622 PMCID: PMC9030096 DOI: 10.3390/molecules27082425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/04/2022] Open
Abstract
In order to rapidly and precisely identify the volatile compounds in Chinese chive (Allium tuberosum Rottler), seven key parameters of headspace solid-phase micro-extraction conditions (HS-SPME) from Chinese chive were optimized. A total of 59 volatile compounds were identified by using the optimized method, including 28 ethers, 15 aldehydes, 6 alcohols, 5 ketones, 2 hydrocarbons, 1 ester, and 2 phenols. Ethers are the most abundant, especially dimethyl trisulfide (10,623.30 μg/kg). By calculating the odor activity values (OAVs), 11 volatile compounds were identified as the major aroma-active compounds of Chinese chive. From the analysis of the composition of Chinese chive aroma, the “garlic and onion” odor (OAV = 2361.09) showed an absolute predominance over the other 5 categories of aroma. The results of this study elucidated the main sources of Chinese chive aroma from a chemical point of view and provided the theoretical basis for improving the flavor quality of Chinese chive.
Collapse
Affiliation(s)
- Bojie Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Qian Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
| | - Haiyan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinmei Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Medhia Hanif
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (X.X.); (J.Y.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.X.); (Q.W.); (S.W.); (M.H.); (J.L.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (X.X.); (J.Y.)
| |
Collapse
|
15
|
Effects of Drying Process on the Volatile and Non-Volatile Flavor Compounds of Lentinula edodes. Foods 2021; 10:foods10112836. [PMID: 34829114 PMCID: PMC8622265 DOI: 10.3390/foods10112836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, fresh Lentinula edodes was dehydrated using freeze-drying (FD), hot-air drying (HAD), and natural drying (ND), and the volatile and non-volatile flavor compounds were analyzed. The drying process changed the contents of eight-carbon compounds and resulted in a weaker “mushroom flavor” for dried L. edodes. HAD mushrooms had higher levels of cyclic sulfur compounds (56.55 μg/g) and showed a stronger typical shiitake mushroom aroma than those of fresh (7.24 μg/g), ND (0.04 μg/g), and FD mushrooms (3.90 μg/g). The levels of 5′-nucleotide increased, whereas the levels of organic acids and free amino acids decreased after the drying process. The dried L. edodes treated with FD had the lowest levels of total free amino acids (29.13 mg/g). However, it had the highest levels of umami taste amino acids (3.97 mg/g), bitter taste amino acids (6.28 mg/g) and equivalent umami concentration (EUC) value (29.88 g monosodium glutamate (MSG) per 100 g). The results indicated that FD was an effective drying method to produce umami flavor in dried mushrooms. Meanwhile, HAD can be used to produce a typical shiitake mushroom aroma. Our results provide a theoretical basis to manufacture L. edodes products with a desirable flavor for daily cuisine or in a processed form.
Collapse
|
16
|
Comparative analysis of volatile profiles and phenolic compounds of Four Southern Italian onion (Allium cepa L.) Landraces. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Influence of drying methods on the structure, mechanical and sensory properties of strawberries. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03682-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Aguiar J, Gonçalves JL, Alves VL, Câmara JS. Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption-An Integrative Approach. Molecules 2021; 26:molecules26123653. [PMID: 34203867 PMCID: PMC8232647 DOI: 10.3390/molecules26123653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
In recent years, there has been a growing interest in studying and exploring the potential health benefits of foods, mainly from vegetables and fruits from regular intake. The presence of secondary metabolites, namely polyphenols, carotenoids and terpenes, in certain food matrices seems to contribute to their functional properties, expressed through an increased prevention in the development of certain chronic diseases, namely coronary heart diseases, neurodegenerative diseases, cancer and diabetes. However, some foods' volatile secondary metabolites also present important bioactive properties, although this is a poorly scientifically explored field. In this context, and in order to explore the potential bioactivity of volatile metabolites in different vegetables and fruits from regular consumption, the volatile composition was established using a green extraction technique, solid phase microextraction in headspace mode (HS-SPME), combined with gas chromatography tandem mass spectrometry (GC-MS). A total of 320 volatile metabolites, comprising 51 terpenic compounds, 45 organosulfur compounds, 31 aldehydes, 37 esters, 29 ketones, 28 alcohols, 23 furanic compounds, 22 hydrocarbons, 19 benzene compounds, 13 nitrogenous compounds, 9 carboxylic acids, 7 ethers, 4 halogenated compounds and 3 naphthalene derivatives, were positively identified. Each investigated fruit and vegetable showed a specific volatile metabolomic profile. The obtained results revealed that terpenic compounds, to which are associated antimicrobial, antioxidant, and anticancer activities, are the most predominant chemical family in beetroot (61%), orange carrot (58%) and white carrot (61%), while organosulfur compounds (antiviral activity) are dominant in onion, garlic and watercress. Broccoli and spinach are essentially constituted by alcohols and aldehydes (enzyme-inhibition and antimicrobial properties), while fruits from the Solanaceae family are characterized by esters in tamarillo and aldehydes in tomato.
Collapse
Affiliation(s)
- Joselin Aguiar
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - João L. Gonçalves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - Vera L. Alves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291-705-112; Fax: +351-291-705-149
| |
Collapse
|
19
|
Li J, Dadmohammadi Y, Abbaspourrad A. Flavor components, precursors, formation mechanisms, production and characterization methods: garlic, onion, and chili pepper flavors. Crit Rev Food Sci Nutr 2021; 62:8265-8287. [PMID: 34028311 DOI: 10.1080/10408398.2021.1926906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
There is an enormous demand in the food industry to shift toward natural flavors. However, most flavor molecules are significantly unstable outside their original sources. Moreover, limited studies are focused on the flavor formation mechanisms, regeneration methods, and stability, which could help facilitate this replacement by establishing a link between food processing conditions and flavor generation.This scoping review summarizes major findings related to the identification of garlic, onion, and chili pepper flavors and their precursor molecules, formation mechanisms, generation of flavors and precursors, characterization methods, and precursor stability under thermal food processing conditions. The findings confirmed that the allium flavors could be generated by alliin and isoalliin precursors through thermal processing. Also, the literature lacks detailed knowledge about chili pepper flavor's precursors, and only capsaicinoids have been reported as a thermally stable chili pepper flavor.Although numerous studies have focused on this area, there is still a lack of detailed applicable knowledge. Future investigations can be framed into (1) Development of efficient methods to generate flavors during food processing; (2) Improvement of flavors' stability; (3) Understanding the interactions of flavors and their precursors with other food ingredients and additives; and (4) Characterization of the organoleptic properties of flavors.
Collapse
Affiliation(s)
- Jieying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Tian P, Zhan P, Tian H, Wang P, Lu C, Zhao Y, Ni R, Zhang Y. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC-MS, OAV, and multivariate analysis. Food Chem 2020; 345:128748. [PMID: 33340890 DOI: 10.1016/j.foodchem.2020.128748] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Flavor is a key attribute of fried oil that shows a critical correlation with temperature. Therefore, selecting the appropriate temperature is important in preparing fried shallot oil (FSO). Volatile compounds from five different FSOs were identified and comparatively studied using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate data analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). GC-MS results identified a total of 93 volatiles, among which aldehydes, alcohols, pyrazines, and sulfur-containing compounds were the major compounds. Eighteen compounds had odor active values (OAV) >1. Among the compounds, hexanal, (E)-2-heptenal, (E)-2-octenal, dipropyl disulfide, 2-ethyl-3,5-dimethylpyrazine, and 1-octen-3-ol were important to the overall aroma profile of FSOs. In the PCA model, all the detected FSOs were divided into three clusters, which were assigned as cluster A (FSO5), B (FSO4), and C (the rest FSOs). Multivariate data analyses revealed that nonanal, 2-ethyl-5-methylpyrazine, (E,E)-2,4-decadienal, (E)-2-heptenal, and hexanal contributed positively to the classification of different FSOs. GC-MS coupled with multivariate data analysis could be used as a convenient and efficient analytical method to classify raw materials.
Collapse
Affiliation(s)
- Peng Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; Food College of Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Cong Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ruijie Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yuyu Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
Zhang C, Chen X, Zhang J, Kilmartin PA, Quek SY. Exploring the effects of microencapsulation on odour retention of fermented noni juice. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Czaja A, Czubaszek A, Wyspiańska D, Sokół‐Łętowska A, Kucharska AZ. Quality of wheat bread enriched with onion extract and polyphenols content and antioxidant activity changes during bread storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anna Czaja
- Department of Fermentation and Cereals Technology Wrocław University of Environmental and Life Sciences J. Chełmoński St. 37 51‐630 Wrocław Poland
| | - Anna Czubaszek
- Department of Fermentation and Cereals Technology Wrocław University of Environmental and Life Sciences J. Chełmoński St. 37 51‐630 Wrocław Poland
| | - Dorota Wyspiańska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology Wrocław University of Environmental and Life Sciences J. Chełmoński St. 37 51‐630 Wrocław Poland
| | - Anna Sokół‐Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology Wrocław University of Environmental and Life Sciences J. Chełmoński St. 37 51‐630 Wrocław Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology Wrocław University of Environmental and Life Sciences J. Chełmoński St. 37 51‐630 Wrocław Poland
| |
Collapse
|
23
|
Typicality Assessment of Onions ( Allium cepa) from Different Geographical Regions Based on the Volatile Signature and Chemometric Tools. Foods 2020; 9:foods9030375. [PMID: 32213815 PMCID: PMC7142876 DOI: 10.3390/foods9030375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022] Open
Abstract
Onion (Allium cepa L.) is one of the main agricultural commodities produced and consumed around the world. In the present work, for the first time, the volatile signature of onions from different geographical regions of Madeira Island (Caniço, Santa Cruz, Ribeira Brava, and Porto Moniz) was tested with headspace solid-phase microextraction (HS-SPME/GC-qMS) and chemometric tools, showing that the volatile signature was affected by the geographical region of cultivation. Sulfur compounds, furanic compounds, and aldehydes are the most dominant chemical groups. Some of the identified volatile organic metabolites (VOMs) were detected only in onions cultivated in specific regions; 17 VOMs were only identified in onions cultivated at Caniço, eight in Porto Moniz, two in Santa Cruz, two in Ribeira Brava, while 12 VOMs are common to all samples from the four regions. Moreover, some VOMs belonging to sulfur compounds (dipropyl disulfide, 3-(acetylthio)-2-methylfuran), furanic compounds (dimethylmethoxyfuranone, ethyl furanone, acetyloxy-dimethylfuranone), and lactones (whiskey lactone isomer), could be applied as potential geographical markers of onions, providing a useful tool to authenticate onions by farming regions where the influence of latitude seems to be an important factor for yielding the chemical profile and may contribute to geographical protection of food and simultaneously benefiting both consumers and farmers.
Collapse
|
24
|
Khushbu S, Sunil CK, Chidanand DV, Jaganmohan R. Effect of particle size on compositional, structural, rheological, and thermal properties of shallot flour as a source of thickening agent. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S. Khushbu
- Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | | | | | | |
Collapse
|
25
|
Cecchi L, Ieri F, Vignolini P, Mulinacci N, Romani A. Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion ( Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules 2020; 25:molecules25020408. [PMID: 31963728 PMCID: PMC7024371 DOI: 10.3390/molecules25020408] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Onion is widely used worldwide in various forms for both food and medicinal applications, thanks to its high content of phytonutrients, such as flavonoids and volatile sulfur compounds. Fresh onion is very perishable and drying is widely applied for extending shelf-life, thus obtaining a very easy-to-use functional food ingredient. The flavonoid and volatile fractions of different onion cuts (flakes, rings) prepared through different drying cycles in a static oven, were characterized by high-performance liquid chromatography with a diode-array detector HPLC-DAD, Head Space-Solid Phase Micro Extraction followed by Gas Chromatography coupled with Mass Spectrometry (HS-SPME-GC-MS) and Head-Space Solid Phase Micro Extraction followed by comprehensive two-dimensional Gas-Chromatography (HS-SPME-GC×GC-TOF). Onion flakes showed a significantly higher flavonoid content (3.56 mg g−1) than onion rings (2.04 mg g−1). Onion flakes showed greater amount of volatile organic compounds (VOCs) (127.26 mg g−1) than onion rings (42.79 mg g−1), with different relative amounts of di- and trisulfides—disulfides largely predominate the volatile fraction (amounts over 60% on the total volatile content), followed by trisulfides and dipropyl disulfide and dipropyl trisulfide were the most abundant VOCs. HS-SPME-GC×GC-TOF allowed for the detection of the presence of allylthiol, diethanol sulfide, 4,6-diethyl1,2,3,5-tetrathiolane, not detected by HS-SPME-GC-MS, and provided a fast and direct visualization and comparison of different samples. These results highlight different nutraceutical properties of dried onion samples processed otherwise, only differing in shape and size, thus pointing out potentially different uses as functional ingredients.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff, 6, 50019 Sesto Fiorentino FI, Florence, Italy; (L.C.); (N.M.)
| | - Francesca Ieri
- QuMAP Laboratory, PIN Polo Universitario Città di Prato, Piazza Giovanni Ciardi, 25, 59100 Prato PO, Italy;
- Correspondence: or ; Tel.: +39-055-457-3676
| | - Pamela Vignolini
- Department of Statistic, Informatics and Applications “G. Parenti” (DiSIA)—University of Florence, Phytolab Laboratory, via Ugo Schiff 6, 50019 Sesto Fiorentino FI, Italy;
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff, 6, 50019 Sesto Fiorentino FI, Florence, Italy; (L.C.); (N.M.)
| | - Annalisa Romani
- QuMAP Laboratory, PIN Polo Universitario Città di Prato, Piazza Giovanni Ciardi, 25, 59100 Prato PO, Italy;
- Department of Statistic, Informatics and Applications “G. Parenti” (DiSIA)—University of Florence, Phytolab Laboratory, via Ugo Schiff 6, 50019 Sesto Fiorentino FI, Italy;
| |
Collapse
|
26
|
Effect of storage, food processing and novel extraction technologies on onions flavonoid content: A review. Food Res Int 2019; 132:108953. [PMID: 32331665 DOI: 10.1016/j.foodres.2019.108953] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022]
Abstract
Onions play an important part in the daily diet for most populations around the world owing to their nutritional composition and their unique capacity to naturally flavor dishes. Onions contain quercetin and its derivatives - the predominant flavonoid in onions that exert a great contribution to the effective bioactive properties of onion, including its derived products. The present paper comprehensively reviewed flavonoids (with a specific focus on quercetin in onions): their chemical composition, distribution, bioactivities in onion, and impacting factors with a focus on how they can be affected by various post-harvest conditions (storage and food processing). In addition, research on the extraction of flavonoid compounds from onions using a number of novel technologies was also reviewed.
Collapse
|
27
|
Choi YJ, Yong S, Lee MJ, Park SJ, Yun YR, Park SH, Lee MA. Changes in volatile and non-volatile compounds of model kimchi through fermentation by lactic acid bacteria. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Loredana L, Giuseppina A, Filomena N, Florinda F, Marisa DM, Donatella A. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|