1
|
Sharma R, Nath PC, Das P, Rustagi S, Sharma M, Sridhar N, Hazarika TK, Rana P, Nayak PK, Sridhar K. Essential oil-nanoemulsion based edible coating: Innovative sustainable preservation method for fresh/fresh-cut fruits and vegetables. Food Chem 2024; 460:140545. [PMID: 39047488 DOI: 10.1016/j.foodchem.2024.140545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Pinku Chandra Nath
- Food Science and Technology Division, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua, 793101, India
| | - Puja Das
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Natarajan Sridhar
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Tridip Kumar Hazarika
- Department of Horticulture, Aromatic, and Medicinal Plants, Mizoram University, Mizoram 796004, India
| | - Priya Rana
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
2
|
Choudhary P, Bhanjana G, Kumar S, Dilbaghi N. Development and evaluation of eco-friendly carvacrol nanoemulsion as a sustainable biopesticide against bacterial leaf blight of cluster bean. PEST MANAGEMENT SCIENCE 2024; 80:452-462. [PMID: 37721471 DOI: 10.1002/ps.7776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The study of carvacrol plant antibacterial components has recently become a hot topic in modern farming. Carvacrol industrial applications are restricted by their physicochemical instability and partial solubility in water. In the present study, an ultrasonic emulsification method was used to prepare a carvacrol nanoemulsion (CAR-NE) employing nonionic surfactants. The CAR-NE was characterized using a dynamic light scattering (DLS) instrument and transmission electron microscopy (TEM). The goal of this work was nanoencapsulation of carvacrol to improve its aqueous solubility and preservation of the encapsulated compound against climatic conditions. Another aim of the present study was the evaluation of the growth-promoting effects and antibacterial potential of CAR-NE against bacterial leaf blight of cluster bean. RESULTS CAR-NE showed a hydrodynamic diameter, ZP and PDI index of 43.88 ± 4.30 nm, -47.8 ± 0.23 mV and 0.246 ± 0.04, respectively. The spherical shape morphology of CAR-NE was confirmed by TEM imaging. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the CAR-NE were 20 and 160 μL mL-1 (respectively) against Xanthomonas axonopodis pv. cyamopsidis. Additionally, the antibacterial potential of CAR-NE was evaluated for controlling bacterial blight of cluster bean in fields. The disease severity in the negative control plants (water) was 84%, but that in the CAR-NE 160 (μL mL-1 ) was remarkably low at 14%, nearly the same as the positive control (streptomycin sulfate). CONCLUSION The shelf-life of CAR-NE was 2 months at room temperature without any appreciable changes in hydrodynamic diameter and zeta potential. Consequently, plants treated with CAR-NE 160 showed substantial improvement in plant growth. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Gaurav Bhanjana
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sandeep Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
- Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
3
|
Benitez-Llano CA, Florez-Acosta OA, Velasquez-Polo DD, Mesa-Arango AC, Zapata-Zapata C. Preparation, Physicochemical Characterization, and Stability Study of Lippia origanoides Essential Oil-based Nanoemulsion as a Topical Delivery System. Pharm Nanotechnol 2024; 12:251-261. [PMID: 37581527 DOI: 10.2174/2211738511666230815155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Fungal diseases are a priority in research, development, and health care, according to the WHO, mainly due to Candida spp. Essential oils (EOs) of the genus Lippia have demonstrated broad antimicrobial biological activity. Previous studies identified the anti-Candida potential of a thymol/p-cymene chemotype EO from Lippia origanoides H.B.K coded "0018". Nanoemulsions favor the biological activity of EOs and overcome limitations such as low solubility, instability against oxidizing agents, pH, light, and low permeability. To develop, characterize, and adjust a prototype of an O/W nanoemulsion containing the "0018" EO from Lippia origanoides for its evaluation in an in vitro permeability study. METHODS Nanoemulsions were obtained using a high energy high shear method. Their particle size distribution, Z potential, viscosity, pH, encapsulation efficiency (EE), thermodynamic stability and the Turbiscan Stability Index (TSI) were evaluated. The nanoemulsion prototype was adjusted to improve performance characteristics and microbiological efficacy. Thymol was used as an analyte in the EO quantification using UHPLC-DAD. RESULTS An O/W nanoemulsion with hydrodynamic diameter <200 nm and polydispersity index <0.3, EE >95%, with TSI < 1.5, anti-Candida albicans efficiency >95% was obtained; permeable with a flow of 6.0264 μg/cm2/h and permeability coefficient of 1.3170x10-3 cm/h. CONCLUSION A pharmaceutical formulation prototype is obtained that maintains the physical and physicochemical characteristics over time. Permeability is verified in an in-vitro model. It is proposed to evaluate its antifungal activity in preclinical or clinical studies as a contribution to the treatment of topical fungal diseases caused by Candida spp., through the use of biological resources and Colombian biodiversity.
Collapse
Affiliation(s)
- Carlos Andrés Benitez-Llano
- Department of Pharmacy, Group for the Design and Formulation of Medicines, Cosmetics and Related Products (DYFOMECO), Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Oscar Albeiro Florez-Acosta
- Department of Pharmacy, Group for the Design and Formulation of Medicines, Cosmetics and Related Products (DYFOMECO), Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Darsy Dayana Velasquez-Polo
- Department of Pharmacy, Group for the Design and Formulation of Medicines, Cosmetics and Related Products (DYFOMECO), Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Ana Cecilia Mesa-Arango
- Department of Mycology, Clinical Epidemiology Academic Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Carolina Zapata-Zapata
- Department of Mycology, Clinical Epidemiology Academic Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Baldassarre F, Schiavi D, Di Lorenzo V, Biondo F, Vergaro V, Colangelo G, Balestra GM, Ciccarella G. Cellulose Nanocrystal-Based Emulsion of Thyme Essential Oil: Preparation and Characterisation as Sustainable Crop Protection Tool. Molecules 2023; 28:7884. [PMID: 38067613 PMCID: PMC10707935 DOI: 10.3390/molecules28237884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Essential oil-based pesticides, which contain antimicrobial and antioxidant molecules, have potential for use in sustainable agriculture. However, these compounds have limitations such as volatility, poor water solubility, and phytotoxicity. Nanoencapsulation, through processes like micro- and nanoemulsions, can enhance the stability and bioactivity of essential oils. In this study, thyme essential oil from supercritical carbon dioxide extraction was selected as a sustainable antimicrobial tool and nanoencapsulated in an oil-in-water emulsion system. The investigated protocol provided high-speed homogenisation in the presence of cellulose nanocrystals as stabilisers and calcium chloride as an ionic crosslinking agent. Thyme essential oil was characterised via GC-MS and UV-vis analysis, indicating rich content in phenols. The cellulose nanocrystal/essential oil ratio and calcium chloride concentration were varied to tune the nanoemulsions' physical-chemical stability, which was investigated via UV-vis, direct observation, dynamic light scattering, and Turbiscan analysis. Transmission electron microscopy confirmed the nanosized droplet formation. The nanoemulsion resulting from the addition of crosslinked nanocrystals was very stable over time at room temperature. It was evaluated for the first time on Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease. In vitro tests showed a synergistic effect of the formulation components, and in vivo tests on olive seedlings demonstrated reduced bacterial colonies without any phytotoxic effect. These findings suggest that crosslinked cellulose nanocrystal emulsions can enhance the stability and bioactivity of thyme essential oil, providing a new tool for crop protection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Veronica Di Lorenzo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Francesca Biondo
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gianpiero Colangelo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Alharbi DS, Albalawi SF, Alghrid ST, Alhwity BS, Qushawy M, Mortagi Y, El-Sherbiny M, Prabahar K, Elsherbiny N. Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods 2023; 12:4139. [PMID: 38002196 PMCID: PMC10670723 DOI: 10.3390/foods12224139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that is characterized by uncontrolled cell proliferation. Breast cancer is the most prevalent cancer among women. Ginger oil is a natural cancer fighter and anti-oxidant. However, the minimal absorption of ginger oil from the gastrointestinal tract accounts for its limited medicinal efficacy. The present study was designed to evaluate the efficacy of a nanoemulsion preparation of ginger oil on its oral bioavailability and in vivo anti-cancer efficacy. Ginger oil nanoemulsion was prepared by a high-pressure homogenization technique using different surfactants (Tween 20, 40, and 80). The prepared formulations were evaluated for droplet size, polydispersity index (PDI), zeta potential (ZP), pH, viscosity, and stability by calculating the creaming index percentage. The best formulation was evaluated for shape by TEM. The antitumor activity of the best nano-formulation was determined in comparison with the free oil using the in vivo Ehrlich solid tumor (EST) model. The prepared ginger oil nanoemulsion formulations exhibited acceptable droplet size in the range from 56.67 ± 3.10 nm to 357.17 ± 3.62 nm. A PDI of less than 0.5 indicates the homogeneity of size distribution. The oil globules possessed a negative charge ranging from -12.33 ± 1.01 to -39.33 ± 0.96 mV. The pH and viscosity were in the acceptable range. The TEM image of the best formulation appeared to be spherical with a small size. The ginger oil nanoemulsion reduced in vivo tumor volume and weight, extended animals' life span, and ameliorated liver and kidney function in EST-bearing mice. These effects were superior to using free ginger oil. Collectively, the present study demonstrated that the ginger oil nanoemulsion improved oral absorption with a subsequent enhancement of its anti-proliferative efficacy in vivo, suggesting a nano-formulation of ginger oil for better therapeutic outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Danah S. Alharbi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Shouq F. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Sarah T. Alghrid
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Yasmin Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 13713, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Application of essential oils as sanitizer alternatives on the postharvest washing of fresh produce. Food Chem 2023; 407:135101. [PMID: 36481474 DOI: 10.1016/j.foodchem.2022.135101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Growers commonly wash fresh produce with chemical sanitizers during postharvest handling. However, these sanitizers can be harsh to washing systems and pose a health risk to workers. Essential oils (EOs) can be used as alternatives to chemical sanitizers in produce washing. Previous studies reveal that the EOs from thyme, oregano, cinnamon, and clove are the main EOs evaluated in the studies as potential sanitizers for the washing of produce. The use of EOs and surfactants, such as tween80 and cetylpyridinium chloride, might be used to improve the antimicrobial activity of emulsions. However, studies are still required to evaluate the potential effect of different chemical components of EOs and preparations. Also, it is recommended that researchers focus on overcoming obstacles regarding EOs application in washing systems, including the high levels of EO required to reduce bacterial growth, undesired organoleptic impact on produce, and the poor solubility of EOs in aqueous solution.
Collapse
|
7
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
8
|
Thymol Edible Coating Controls Postharvest Anthracnose by Regulating the Synthesis Pathway of Okra Lignin. Foods 2023; 12:foods12020395. [PMID: 36673486 PMCID: PMC9858591 DOI: 10.3390/foods12020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the methods and potential methods to control the postharvest diseases of okra. In this study, Colletotrichum fioriniae is the major pathogen that causes okra anthracnose, which can be isolated from naturally decaying okra. The pathogenicity of C. fioriniae against okra was preliminarily verified, and the related biological characteristics were explored. At the same time, an observational study was conducted to investigate the in vitro antifungal effect of thymol edible coating (TKL) on C. fioriniae. After culturing at 28 °C for 5 days, it was found that TKL showed an obvious growth inhibition effect on C. fioriniae. The concentration for 50% of the maximal effect was 95.10 mg/L, and the minimum inhibitory concentration was 1000 mg/L. In addition, it was found that thymol edible coating with a thymol concentration of 100 mg/L (TKL100) may cause different degrees of damage to the cell membrane, cell wall, and metabolism of C. fioriniae, thereby inhibiting the growth of hyphae and causing hyphal rupture. Refer to the results of the in vitro bacteriostatic experiment. Furthermore, the okra was sprayed with TKL100. It was found that the TKL100 coating could significantly inhibit the infection of C. fioriniae to okra, reduce the rate of brown spots and fold on the okra surface, and inhibit mycelium growth. In addition, the contents of total phenols and flavonoids of okra treated with TKL100 were higher than those of the control group. Meanwhile, the activities of phenylalaninammo-nialyase, cinnamic acid-4-hydroxylase, and 4-coumarate-CoA ligase in the lignin synthesis pathway were generally increased, especially after 6 days in a 28 °C incubator. The lignin content of TKL-W was the highest, reaching 65.62 ± 0.68 mg/g, which was 2.24 times of that of CK-W. Therefore, TKL may promote the synthesis of total phenols and flavonoids in okra, then stimulate the activity of key enzymes in the lignin synthesis pathway, and finally regulate the synthesis of lignin in okra. Thus, TKL could have a certain controlling effect on okra anthracnose.
Collapse
|
9
|
Yin H, Yuanrong Z, Li Y, Zijing X, Yongli J, Yun D, Danfeng W, Yu Z. Optimization of antibacterial and physical properties of chitosan/citronella oil film by electrostatic spraying and evaluation of its preservation effectiveness on salmon fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Cometa S, Bonifacio MA, Bellissimo A, Pinto L, Petrella A, De Vietro N, Iannaccone G, Baruzzi F, De Giglio E. A green approach to develop zeolite-thymol antimicrobial composites: analytical characterization and antimicrobial activity evaluation. Heliyon 2022; 8:e09551. [PMID: 35663747 PMCID: PMC9160486 DOI: 10.1016/j.heliyon.2022.e09551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the development, analytical characterization and bioactivity of zeolite-thymol composites, obtained using wet, semi-dry and dry processes, were carried out in order to obtain sustainable and powerful antimicrobial additives. FT-IR, XRD, DSC, TGA, SEM and B.E.T. analyses were carried out to gain comprehensive information on the chemical-physical, thermal, and morphological features of the composites. GC-MS analyses allowed quantifying the active molecule loaded in the zeolite, released by the functionalized composites and its stability over time. Among the three procedures, the dry approach allowed to reach the highest thymol loading content and efficiency (49.8 ± 1.6% and 99.6 ± 1.2%, respectively), as well as the highest composite specific surface area value, feature which promises the best interaction between the surface of the composite and the bacterial population. Therefore, the bioactive surface of composites obtained by this solvent-free method was assayed for its antimicrobial activity against four microbial strains belonging to Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans species. The higher antimicrobial activity produced by the solvent-free composite in comparison with that of pure thymol, at the same thymol concentration, was ascribed to the large interfacial contact between the composite and the bacterial target. This feature, together with its enhanced storage stability, suggested that this composite could be employed as effective additives for the development of antimicrobial biointerfaces for food, home and personal care applications.
Collapse
Affiliation(s)
| | - Maria A Bonifacio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126, Bari, Italy.,INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121, Florence Italy
| | | | - Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126, Bari, Italy
| | - Andrea Petrella
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona, 4, Bari, 70125, Italy
| | - Nicoletta De Vietro
- Department of Chemistry, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | | | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126, Bari, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126, Bari, Italy.,INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121, Florence Italy
| |
Collapse
|
11
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
12
|
Chen CH, Yin HB, Teng ZI, Byun S, Guan Y, Luo Y, Upadhyay A, Patel J. Nanoemulsified Carvacrol as a Novel Washing Treatment Reduces Escherichia coli O157:H7 on Spinach and Lettuce. J Food Prot 2021; 84:2163-2173. [PMID: 34410411 DOI: 10.4315/jfp-21-151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fresh produce continues to be the main source of foodborne illness outbreaks in the United States, implicating bacterial pathogens such as Escherichia coli O157:H7 (EHEC). The efficacy of nanoemulsified carvacrol (NCR) as a washing treatment in reducing EHEC on fresh produce was investigated. Fresh baby spinach, romaine lettuce, and iceberg lettuce leaves (2.5-cm-diameter cores) were spot inoculated with a five-strain cocktail of nalidixic acid-resistant EHEC at ∼6 log CFU/cm2. After air drying for 1 h, 20 pieces of each inoculated produce leaf were immersed in water-based treatment solutions (200 mL per group), including water alone, 25 or 50 ppm of free chlorine, and 0.25 or 0.75% NCR for 2 min. Inoculated produce leaves without any treatment served as baseline. Produce leaves were stored at 10°C, and surviving EHEC populations were enumerated on days 0, 2, 7, and 14. The viability of EHEC following NCR treatments on the fresh produce was visualized under a fluorescence microscope. NCR treatment at 0.75% immediately reduced EHEC populations on iceberg lettuce by 1.3 log CFU/cm2 as compared with the produce treated with water alone (P < 0.05). Antimicrobial activity of NCR against EHEC was comparable to chlorine treatments on day 0 for all produce (P > 0.05). After 14 days of storage at 10°C, populations of EHEC on 0.75% NCR-treated romaine lettuce were reduced by 2.3 log CFU/cm2 compared with the recovery from 50 ppm of chlorine-treated samples (P < 0.05). Microscopic images revealed that EHEC cells were observed to be clustered on the baseline samples, indicating the development of cell aggregation, compared with the scattered cells seen on NCR-treated leaf surfaces. Treatments with NCR did not significantly affect the color of the fresh produce leaves during 14 days of storage at 10°C. Results of this study support the potential use of NCR as a water-soluble natural antimicrobial wash treatment for controlling EHEC on fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Chi-Hung Chen
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Hsin-Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Z I Teng
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Suyeun Byun
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Yongguang Guan
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Yaguang Luo
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| | - Abhinav Upadhyay
- University of Connecticut, Department of Animal Science, Storrs, Connecticut 06269, USA
| | - Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland 20705
| |
Collapse
|
13
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Brożyna M, Paleczny J, Kozłowska W, Chodaczek G, Dudek-Wicher R, Felińczak A, Gołębiewska J, Górniak A, Junka A. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus. Pathogens 2021; 10:pathogens10091207. [PMID: 34578239 PMCID: PMC8466273 DOI: 10.3390/pathogens10091207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity of EOs composition and differences in laboratory protocols of the antimicrobial activity assessment hinders the exact estimation of EOs effectiveness. To overcome these disadvantages, in the present work we analysed the effectiveness of volatile and liquid forms of seven EOs (derived from thyme, tea tree, basil, rosemary, eucalyptus, lavender, and menthol mint) against 16 staphylococcal biofilm-forming strains using cohesive set of in vitro techniques, including gas chromatography–mass spectrometry, inverted Petri dish, modified disk-diffusion assay, microdilution techniques, antibiofilm dressing activity measurement, AntiBioVol protocol, fluorescence/confocal microscopy, and dynamic light scattering. Depending on the requirements of the technique, EOs were applied in emulsified or non-emulsified form. The obtained results revealed that application of different in vitro techniques allows us to get a comprehensive set of data and to gain insight into the analysed phenomena. In the course of our investigation, liquid and volatile fractions of thyme EO displayed the highest antibiofilm activity. Liquid fractions of rosemary oil were the second most active against S. aureus. Vapour phases of tea tree and lavender oils exhibited the weakest anti-staphylococcal activity. The size of emulsified droplets was the lowest for T-EO and the highest for L-EO. Bearing in mind the limitations of the in vitro study, results from presented analysis may be of pivotal meaning for the potential application of thymol as a antimicrobial agent used to fight against staphylococcal biofilm-based infections.
Collapse
Affiliation(s)
- Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
- Correspondence: (M.B.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
| | - Anna Felińczak
- Department of Organisation and Management, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | | | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (R.D.-W.)
- Correspondence: (M.B.); (A.J.)
| |
Collapse
|
15
|
Marchesini P, Oliveira DRD, Gomes GA, Rodrigues THS, Maturano R, Fidelis QC, Catunda Júnior FEA, Carvalho MGD, Bittencourt VREP, Monteiro CMO. Acaricidal activity of essential oils of Cinnamomum zeylanicum and Eremanthus erythropappus, major compounds and cinnamyl acetate in Rhipicephalus microplus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e009221. [PMID: 34495124 DOI: 10.1590/s1984-29612021070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to chemically characterize the essential oils (EOs) of Cinnamomum zeylanicum (cinnamon) and Eremanthus erythropappus (candeia) and evaluate their acaricidal activity, together with that of their major compounds and cinnamyl acetate derivative, against Rhipicephalus microplus. Essential oil compounds were identified through gas chromatography. The larval packet test (LPT) at concentrations ranging from 0.31 to 10.0 mg/mL and the adult immersion test (AIT) at concentrations between 2.5 and 60.0 mg/mL were performed. (E)-cinnamaldehyde and α-bisabolol were the major compounds in cinnamon (86.93%) and candeia (78.41%) EOs, respectively. In the LPT, the EOs of cinnamon and candeia and the compounds (E)-cinnamaldehyde, α-bisabolol and cinnamyl acetate resulted in 100% mortality at concentrations of 2.5, 2.5, 5.0, 10.0 and 10.0 mg/mL respectively. In the AIT, percentage control values > 95% were observed for cinnamon and candeia EOs, (E)-cinnamaldehyde and α-bisabolol at the concentrations of 5.0, 60.0, 20.0, and 20.0 mg/mL, respectively, whereas cinnamyl acetate showed low activity. We conclude that EOs and their compounds showed high acaricidal activity, whereas the acetylated derivative of (E)-cinnamaldehyde presented less acaricidal activity on R. microplus engorged females.
Collapse
Affiliation(s)
- Paula Marchesini
- Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Débora Ramos de Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Geovany Amorim Gomes
- Centro de Ciências Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | - Ralph Maturano
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, MG, Brasil
| | - Queli Cristina Fidelis
- Departamento de Ciências e Tecnologia, Universidade Federal do Maranhão - UFMA, Balsas, MA, Brasil
| | | | - Mário Geraldo de Carvalho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | | | | |
Collapse
|
16
|
Zeng C, Liu Y, Ding Z, Xia H, Guo S. Physicochemical properties and antibacterial activity of hydrophobic deep eutectic solvent-in-water nanoemulsion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. SUSTAINABILITY 2021. [DOI: 10.3390/su13179746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Post-harvest pest control can rely on few approved pesticides and tools; hence, there is a rising interest in new sustainable, eco-friendly approaches. In this study, eight commercial essential oils (EOs) (anise Pimpinella anisum, artemisia Artemisia vulgaris, fennel Foenicum vulgare, garlic Allium sativum, lavender Lavandula angustifolia, mint Mentha piperita, rosemary Rosmarinus officinalis, and sage Salvia officinalis) were selected for their bioactivity and commercial availability, and then formulated in nano-emulsions. Repellency and acute toxicity of the developed nano-formulations were tested against a key stored product pest, Tribolium confusum (Coleoptera: Tenebrionidae). All the developed nano-emulsions presented optimal physical characteristics (droplet dimension = 95.01–144.30 nm; PDI = 0.146–0.248). All the formulations were repellent over time tested against adult beetles, in area preference bioassays. The best repellent was the anise EO-based formulation (RC50 = 0.033 mg). Mortality values from cold aerosol trials showed that the majority of tested EOs caused immediate acute toxicity, and garlic EO nano-emulsion caused the highest mortality of T. confusum adults (LC50 = 0.486 mg/L of air). EO-based nano-insecticides, used as cold aerosol and gel, are promising control methods against stored product pests, which can be integrated and combined with other sustainable biorational approaches.
Collapse
|
18
|
Garavand F, Jalai-Jivan M, Assadpour E, Jafari SM. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem 2021; 364:130376. [PMID: 34171813 DOI: 10.1016/j.foodchem.2021.130376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
Phenolic compounds (phenolics) have received great attention in the food, pharmaceutical and nutraceutical industries due to their health-promoting attributes. However, their extensive use is limited mainly due to their poor water dispersibility and instability under both processing conditions and/or gastrointestinal interactions, affecting their bioavailability/bioaccessibility. Therefore, different nanocarriers have been widely used to encapsulate phenolics and overcome the aforementioned challenges. To the best of our knowledge, besides many research studies, no comprehensive review on encapsulation of phenolics by microemulsions (MEs) and nanoemulsions (NEs) has been published so far. The present study was therefore attempted to review the loading of phenolics into MEs and NEs. In addition, the fundamental characteristics of the developed systems such as stability, encapsulation efficiency, cytotoxicity, bioavailability and releasing rate are also discussed. Both MEs and NEs are proved as appropriate vehicles to encapsulate and protect phenolics which may expand their applications in foods, supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Mehdi Jalai-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
19
|
Nano-emulsification improves physical properties and bioactivities of litsea cubeba essential oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Kawakami MYM, Zamora LO, Araújo RS, Fernandes CP, Ricotta TQN, de Oliveira LG, Queiroz-Junior CM, Fernandes AP, da Conceição EC, Ferreira LAM, Barros ALB, Aguiar MG, Oliveira AEMFM. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 2021; 134:111109. [PMID: 33341050 DOI: 10.1016/j.biopha.2020.111109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Monique Y M Kawakami
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Lisset Ortiz Zamora
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Raquel S Araújo
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Tiago Q N Ricotta
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro G de Oliveira
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edemilson C da Conceição
- Laboratory of Research, Development and Innovation of Bioproducts, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas A M Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta G Aguiar
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna E M F M Oliveira
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil.
| |
Collapse
|
21
|
Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
23
|
Almasi L, Radi M, Amiri S, Torri L. Fully dilutable Thymus vulgaris essential oil:acetic or propionic acid microemulsions are potent fruit disinfecting solutions. Food Chem 2020; 343:128411. [PMID: 33131952 DOI: 10.1016/j.foodchem.2020.128411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to evaluate the effect of acetic (AA) or propionic (PA) acid as a cosurfactant on the microemulsion (ME) characteristics of Thymus vulgaris essential oil (TVO). The results showed that addition of propylene glycol to TVO/AA or PA:T80/water MEs gave dilutable systems with particles ~59 nm in diameter. Plain TVO showed the highest antimicrobial activity against E. coli, S. aureus, and S. typhi in in vitro antimicrobial tests, followed closely by AA/PA-MEs. The antimicrobial activity of AA/PA-MEs used as a washing solution on cucumber and strawberry samples was remarkably greater than those of free TVO, TVO nanoemulsions, and chlorhexidine solutions against E. coli and S. aureus. The sensory properties of the samples were not changed by the use of AA/PA-MEs at 0.05 or 0.1% TVO. The results introduce dilutable TVO:AA/PA-MEs for incorporation of TVO in aqueous systems for use as a fruit/vegetable disinfecting agent.
Collapse
Affiliation(s)
- Laleh Almasi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo-Bra, Italy.
| |
Collapse
|
24
|
Zhao R, Song R, Sun G, Liu S, Li B, Cao Y, Li Y. Cutoff Ostwald ripening stability of eugenol-in-water emulsion by co-stabilization method and antibacterial activity evaluation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Feng J, Wang R, Chen Z, Zhang S, Yuan S, Cao H, Jafari SM, Yang W. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Fujiki M, Honda M. The investigation of synergistic activity of protamine with conventional antimicrobial agents against oral bacteria. Biochem Biophys Res Commun 2020; 523:561-566. [PMID: 31932035 DOI: 10.1016/j.bbrc.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
In this study, we applied protamine, which is an antimicrobial peptide, to oral healthcare in combination with conventional antimicrobial agents. First, we explored the antimicrobial activity of protamine, with or without other antimicrobial agents, against Streptococcus mutans (S. mutans). Co-treatment with protamine and 3-methyl-4-isopropylphenol (IPMP) decreased the viability of S. mutans synergistically within 10 min. Interestingly, sodium fluoride (NaF) did not exhibit synergistic activity with protamine. Next, S. mutans and Streptococcus gordonii (S. gordonii) were co-treated with protamine and IPMP for 5 min to simulate tooth brushing. As a result, this co-treatment killed S. mutans faster than S. gordonii. Therefore, co-treatment with protamine and IPMP could be incorporated into oral healthcare products to prevent dental caries.
Collapse
Affiliation(s)
- Masashi Fujiki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
28
|
Li Z, Xu D, Yuan Y, Wu H, Hou J, Kang W, Bai B. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Adv Colloid Interface Sci 2020; 277:102119. [PMID: 32045722 DOI: 10.1016/j.cis.2020.102119] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Emulsions, including oil-in-water (O/W) and water-in-oil (W/O) emulsions, can play important roles in both controlling reservoir conformance and displacing residual oil for enhanced oil recovery (EOR) projects. However, current methods, like high-shear mixing, high-pressure homogenizing, sonicators and others, often use lots of extra energy to prepare the emulsions with high costs but very low energy efficiency. In recent decades, spontaneous emulsification methods, which allow one to create micro- and nano-droplets with very low or even no mechanical energy input, have been launched as an overall less expensive and more efficient alternatives to current high extra energy methods. Herein, we primarily review the basic concepts on spontaneous emulsification, including mechanisms, methods and influenced parameters, which are relevant for fundamental applications for industrials. The spontaneity of the emulsification process is influenced by the following variables: surfactant structure, concentration and initial location, oil phase composition, addition of co-surfactant and non-aqueous solvent, as well as salinity and temperature. Then, we focus on the description of importance for emulsions in EOR processes from advances and categories to improving oil recovery mechanisms, including both sweep efficiency and displacement efficiency aspects. Finally, we systematically address the applications and outlooks based on the use of spontaneous emulsification in the practical oil reservoirs for EOR processes, in which conventional, heavy, high-temperature, high-salinity and low-permeability oil reservoirs, as well as wastewater treatments after EOR processes are involved.
Collapse
Affiliation(s)
- Zhe Li
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Derong Xu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Yongjie Yuan
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Hairong Wu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jirui Hou
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Wanli Kang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Baojun Bai
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China; Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, United States
| |
Collapse
|
29
|
Effect of Nanoemulsification on the Antibacterial and Anti-biofilm Activities of Selected Spice Essential Oils and Their Major Constituents Against Salmonella enterica Typhimurium. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01720-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Aziz ZAA, Nasir HM, Ahmad A, Setapar SHM, Ahmad H, Noor MHM, Rafatullah M, Khatoon A, Kausar MA, Ahmad I, Khan S, Al-Shaeri M, Ashraf GM. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats' assay. Sci Rep 2019; 9:13678. [PMID: 31548590 PMCID: PMC6757054 DOI: 10.1038/s41598-019-50134-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023] Open
Abstract
Eucalyptus globulus is an aromatic medicinal plant which known for its 1,8-cineole main pharmacological constituent exhibits as natural analgesic agent. Eucalyptus globulus-loaded micellar nanoparticle was developed via spontaneous emulsification technique and further evaluation for its analgesic efficacy study, in vivo analgesic activity assay in rats. The nanoemulsion system containing Eucalyptus-micelles was optimized at different surfactant types (Tween 40, 60 and 80) and concentrations (3.0, 6.0, 9.0, 12.0, 15.0, and 18.0 wt. %). These formulations were characterized by thermodynamically stability, viscosity, micelles particle size, pH, and morphology structure. The spontaneous emulsification technique offered a greener micelles formation in nanoemulsion system by slowly titrated of organic phase, containing Eucalyptus globulus (active compound), grape seed oil (carrier oil) and hydrophilic surfactant into aqueous phase, and continuously stirred for 30 min to form a homogeneity solution. The characterizations evaluation revealed an optimized formulation with Tween 40 surfactant type at 9.0 wt. % of surfactant concentration promoted the most thermodynamic stability, smaller micelles particle size (d = 17.13 ± 0.035 nm) formed with spherical shape morphological structure, and suitable in viscosity (≈2.3 cP) and pH value (6.57) for transdermal purpose. The in vivo analgesic activity assay of optimized emulsion showed that the transdermal administration of micellar nanoparticle of Eucalyptus globulus on fore and hind limb of rats, possessed the central and peripheral analgesic effects by prolonged the rats pain responses towards the heat stimulus after being put on top of hot plate (55 °C), with longest time responses, 40.75 s at 60 min after treatment administration. Thus, this study demonstrated that micellar nanoparticle of Eucalyptus globulus formed in nanoemulsion system could be promising as an efficient transdermal nanocarrier for the analgesic therapy alternative.
Collapse
Affiliation(s)
- Zarith Asyikin Abdul Aziz
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Akil Ahmad
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Siti Hamidah Mohd Setapar
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
- SHE Empire Sdn Bhd, No 44, Jalan Pulai Ria 2, Bandar Baru Kangkar Pulai, 81300, Skudai, Johor, Malaysia.
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Asma Khatoon
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Research center for Advanced Material Sciences, King Khalid University Abha, Abha, Saudi Arabia
| | - Shahida Khan
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
31
|
Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Sedaghat Doost A, Van Camp J, Dewettinck K, Van der Meeren P. Production of thymol nanoemulsions stabilized using Quillaja Saponin as a biosurfactant: Antioxidant activity enhancement. Food Chem 2019; 293:134-143. [PMID: 31151593 DOI: 10.1016/j.foodchem.2019.04.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023]
Abstract
Thymol oil-in-water nanoemulsions as a potential natural alternative for synthetic antioxidant agents were developed. The nanoemulsions were formulated using Quillaja Saponin bio-surfactant and green solvents including high oleic sunflower oil (HOSO), tricaprylin (TC), and cinnamaldehyde (CA). The 4% thymol nanoemulsions containing TC and HOSO remained stable during long-term storage (at least 30 d). The antioxidant activity (AA) of free thymol and thymol nanoemulsions was compared with butylated hydroxytoluene (BHT) and ascorbic acid. The results obtained from DPPH, FRAP, and CUPRAC antioxidant assays showed a substantial improvement (p < 0.05) of the AA of free thymol through emulsification. The outcomes from the AA of the nanoemulsions in raw chicken breast meat measured by the TBARS assay revealed a significant improvement (p < 0.05) of the AA when thymol was encapsulated. These nanoemulsions may be applicable in the food industry as well as in cosmetic and health care products.
Collapse
Affiliation(s)
- Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| |
Collapse
|
33
|
Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Prakash A, Vadivel V, Rubini D, Nithyanand P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Dewettinck K, Stevens CV, Van der Meeren P. Pickering stabilization of thymol through green emulsification using soluble fraction of almond gum – Whey protein isolate nano-complexes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem 2019; 271:122-128. [DOI: 10.1016/j.foodchem.2018.07.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
|
37
|
Park JB, Kang JH, Song KB. Combined treatment of cinnamon bark oil emulsion washing and ultraviolet-C irradiation improves microbial safety of fresh-cut red chard. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Robledo N, López L, Bunger A, Tapia C, Abugoch L. Effects of Antimicrobial Edible Coating of Thymol Nanoemulsion/Quinoa Protein/Chitosan on the Safety, Sensorial Properties, and Quality of Refrigerated Strawberries (Fragaria × ananassa) Under Commercial Storage Environment. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2124-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Prakash A, Baskaran R, Paramasivam N, Vadivel V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res Int 2018; 111:509-523. [PMID: 30007714 DOI: 10.1016/j.foodres.2018.05.066] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Due to the convenience and nutritional value, minimally processed fruits and vegetables (MPFV) are one of the rapid growing sectors in the food industry. However, their microbiological safety is a cause of great concern. Essential oils (EOs), known for potent antimicrobial efficacy have been shown to reduce microbial load in MPFV, but their low water solubility, high volatility and strong organoleptic properties limit their wide use. Encapsulating EOs to nanoemulsion offers a viable remedy for such limitations. Due to the unique properties of the EOs nanoemulsion, there has been an increasing interest in their fabrication and use in food system. The present review article encompasses the overview of the prominent microflora present in MPFV, the recent developments on the fabrication and stability of EOs based nanoemulsion, their in vitro antimicrobial activity and their application in MPFV. This review also discusses the EOs based nanoemulsions antimicrobial mechanism of action and their regulatory issues related to their use. Application of EOs based nanoemulsion either as washing disinfectant or with incorporation into edible coatings have been shown to considerably improve the microbial quality and safety of MPFV. This efficacy has been further shown to increase when combined with other hurdles. However, further studies are required on the toxicity of EOs based nanoemulsion to assure its commercial exploitation.
Collapse
Affiliation(s)
- Anand Prakash
- Chemical Biology Lab (ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Revathy Baskaran
- Department of Fruit and Vegetable Technology, Central Food Technological Research Institute (CFTRI), Mysore 570020, India
| | - Nithyanand Paramasivam
- Biofilm Biology Lab, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401,Tamil Nadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
40
|
Robledo N, Vera P, López L, Yazdani-Pedram M, Tapia C, Abugoch L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem 2018; 246:211-219. [DOI: 10.1016/j.foodchem.2017.11.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
|
41
|
Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L, Julian McClements D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J Colloid Interface Sci 2017; 514:208-216. [PMID: 29257975 DOI: 10.1016/j.jcis.2017.11.084] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/06/2023]
Abstract
Essential oils, such as those isolated from cinnamon, are effective natural antimicrobial agents, but their utilization is limited by their low water-solubility. In this study, phase inversion temperature (PIT) was used to prepare cinnamon oil nanoemulsions. To this aim, it was hypothesized that cinnamon oil nanoemulsions could be fabricated by optimizing the oil phase composition and surfactant concentration of the system and their stability could be enhanced using a cooling-dilution method during the PIT. A mixture of cinnamon oil, non-ionic surfactant, and water was heated above the PIT of the system, and then rapidly cooled with continuous stirring, which led to the spontaneous generation of small oil droplets. The impact of oil phase composition and surfactant concentration on the formation and stability of the nanoemulsions was determined. Cinnamon oil nanoemulsions with the smallest mean droplet diameter (101 nm) were formed using 40:60 wt% of cinnamon oil and medium chain triglyceride (MCT) in the total lipid phase. Increasing surfactant concentration significantly decreased the mean droplet diameter of the nanoemulsions but did not alter their particle morphology. In addition, using the cooling-dilution method, the nanoemulsions were stable for at least 31 days when stored at 4 °C or 25 °C.
Collapse
Affiliation(s)
- Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; The Novel Technology for Food Packaging & Control of Shelf Life Research Group, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; The Novel Technology for Food Packaging & Control of Shelf Life Research Group, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Romanee Sanguandeekul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|