1
|
Yu X, Wang H, Xiang X, Fu J, Wang X, Zhou Y, Xing W. Biosynthesis and Extraction of Chlorophyll, Carotenoids, Anthocyanins, and Betalaine In Vivo and In Vitro. Curr Issues Mol Biol 2024; 46:10662-10676. [PMID: 39329984 PMCID: PMC11431765 DOI: 10.3390/cimb46090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
As natural bioactive compounds, plant pigments play crucial roles not only in plant phenotype, growth, development, and adaptation to stress but also hold unique value in biotechnology, healthcare, and industrial applications. There is growing interest in the biosynthesis and acquisition of plant pigments. Thus, this paper explores emerging extraction methods of natural pigments and elucidates the biosynthesis pathways of four key plant pigments, chlorophylls, carotenoids, anthocyanins, and betalaine in vivo and in vitro. We comprehensively discuss the application of solvent, supercritical fluid [extraction], ultrasonic, and microwave-assisted extraction techniques, as well as introducing key enzymes, precursors, and synthetic pathways involved in pigment synthesis. δ-Aminolevulinic acid represents a pivotal initiating enzyme for chlorophyll synthesis, whereas isopentenylpyrophosphate, (IPP) and dimethylallyl pyrophosphate, (DMAPP) are closely associated with carotenoid biosynthesis. Phenylalanine and tyrosine are critical substances for anthocyanin and betalaine synthesis, respectively. Hence, crucial genes such as chlI, crtB, PGT8, CYP76AD1, and BvDODA can be employed for heterologous biosynthesis in vitro to meet the demand for increased plant pigment amount. As a pivotal determinant of plant coloration, an in-depth exploration into the high-quality acquisition of plant pigments can provide a basis for developing superior pigments and offer new insights into increasing pigment yield.
Collapse
Affiliation(s)
- Xinxin Yu
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Hao Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Xingchun Xiang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Jingjing Fu
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Wang Xing
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
2
|
Yang Z, Li F, Shen S, Wang X, Nihmot Ibrahim A, Zheng H, Zhang J, Ji X, Liao X, Zhang Y. Natural chlorophyll: a review of analysis methods, health benefits, and stabilization strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38795062 DOI: 10.1080/10408398.2024.2356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.
Collapse
Affiliation(s)
- Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Hongli Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| |
Collapse
|
3
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
4
|
Thiabmak C, Chiewchan N, Devahastin S. Production and characterization of nanofibrillated cellulose gels simultaneously exhibiting thermally stable green color and oil-in-water emulsion stabilizing capability from Centella asiatica. J Food Sci 2023; 88:3036-3048. [PMID: 37248778 DOI: 10.1111/1750-3841.16621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Nanofibrillated cellulose (NFC) gels simultaneously exhibiting Pickering stabilizing capability and thermally stable green color were developed for use as food additive in thermally processed food emulsion requiring the expression of color. Chopped Centella asiatica plant was mixed with zinc amino acid chelate solution and subject to autoclaving at 130°C for 2 h to form zinc-chlorophylls complex and to remove noncellulosic components. Autoclaved sample was high-shear homogenized at 26,000 rpm for 15 min and microfluidized at either 80, 120, or 160 MPa for 5 passes. An increase in microfluidization pressure resulted in a decrease in NFC diameters; microfluidization at 160 MPa did not nevertheless yield any further reduction in the diameters when compared with that at 120 MPa. From energy consumption point of view, microfluidization at 120 MPa for 5 passes was then noted as optimal condition for preparation of NFC coloring gel; NFC with diameters of 8-42 nm and crystallinity index of 35% was obtained. Freshly prepared gel exhibited gel-like behavior and dark green color. Heating at 121°C for 1 h did not affect diameters, viscoelasticity, and color of the gel. Addition of the gel at 0.9% or 1.2% (w/w) into soybean oil-in-water emulsion, in combination with high-shear homogenization at 18,000 rpm for 5 min, resulted in adequate emulsion stability. The emulsion exhibited stable dark green color and no phase separation after heating at 121°C for 1 h and during storage for 8 weeks. PRACTICAL APPLICATIONS: Information presented here can serve as a guideline for further development of a multifunctional food ingredient exhibiting thermally stable green color and oil-in-water emulsion stabilizing capability. In other words, one simple ingredient can serve at the same time as both natural food colorant and emulsion stabilizer.
Collapse
Affiliation(s)
- Chompunutch Thiabmak
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
5
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
6
|
Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, Olmedilla-Alonso B. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chem 2023; 398:133908. [DOI: 10.1016/j.foodchem.2022.133908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
7
|
Effects of Different Zn2+ Concentrations and High Hydrostatic Pressures (HHP) on Chlorophyll Stability. Foods 2022; 11:foods11142129. [PMID: 35885372 PMCID: PMC9316298 DOI: 10.3390/foods11142129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
This study provides a new idea for improving chlorophyll stability and color quality of green leafy vegetables by Zn2+ synergistic HHP. Zn-chlorophyll was prepared with zinc acetate and chlorophyll under HHP treatment. The effects of different zinc acetate concentrations and pressures on chlorophyll color, antioxidant activity, Zn2+ replacement rate, structure, and thermal stability were analyzed. Results showed with increased zinc acetate concentration and pressure, −a* value, antioxidant activity, and Zn2+ replacement rate of samples gradually increased. However, FTIR indicated the structure did not change. HHP fluorescence online analysis showed fluorescence intensity of samples decreased with zinc acetate concentration and pressure increasing. With zinc acetate 10 mg/100 mL and HHP 500 MPa, the highest −a* value (5.19), antioxidant activity (ABTS, DPPH, and FRAP were 37.03 g ACE/100 g, 25.95 g ACE/100 g, 65.43 g TE/100 g DW, respectively), and Zn2+ replacement rate (42.34%) were obtained. Thermal stability of Zn-chlorophyll obtained by synergistic effect was improved significantly.
Collapse
|
8
|
Tomadoni B, Fabra MJ, Méndez DA, Martínez-Abad A, López-Rubio A. Electrosprayed Agar Nanocapsules as Edible Carriers of Bioactive Compounds. Foods 2022; 11:foods11142093. [PMID: 35885337 PMCID: PMC9319333 DOI: 10.3390/foods11142093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Electrosprayed agar nanocapsules were developed using an acetic acid solution as solvent. The role of solution properties (viscosity, surface tension, and conductivity) in the formation of agar particles was assessed, together with the effect of both agar and acetic acid concentrations on the size and morphology of the resulting particles. Agar solutions with a concentration below 10% w/v were not suitable for electrospraying. Furthermore, the agar–acetic acid ratio was also critical for the formation of agar nanostructures (with an optimum ratio of 1:2). A decrease in particle size was also observed when decreasing agar concentration, with particle diameter values ranging between 50 and 400 nm. Moreover, the suitability of the electrosprayed agar nanocapsules as carriers for a model bioactive compound, chlorophyllin sodium copper salt (CHL), was also evaluated. The release profile of encapsulated CHL, with an estimated encapsulation efficiency of around 40%, was carried out in food simulants with different hydrophilicity (10% v/v and 50% v/v ethanol). While the release of the bioactive was negligible in the hydrophilic food simulant, an initial burst release followed by a slower sustained release was observed when the capsules were immersed in 50% ethanol solution. The results open up a broad range of possibilities that deserve further exploration related to the use of these edible polysaccharide-based nanocapsules.
Collapse
Affiliation(s)
- Barbara Tomadoni
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina;
| | - María José Fabra
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
| | - Daniel Alexander Méndez
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Grupo de Investigación Bioecono, Facultad de Ciencias Económicas y Administrativas, Universidad del Tolima, Tolima 730006, Colombia
| | - Antonio Martínez-Abad
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
| | - Amparo López-Rubio
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Ghosh S, Sarkar T, Das A, Chakraborty R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112527] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
OHTSU N, GTOH M, SHIRAKAWA K, CHIOU TY, SHIMOTORI Y, KOHARI Y, NAGATA Y, MURATA M. Hot-water Treatment of Japanese Peppermint Dried Powder Toward the Application of Natural Food Coloring. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naofumi OHTSU
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| | - Masataka GTOH
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| | | | - Tai-Ying CHIOU
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology
| | - Yasutaka SHIMOTORI
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology
| | - Yoshihito KOHARI
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| | | | - Miki MURATA
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| |
Collapse
|
11
|
Dong SR, Xu HH, Ma JY, Gao ZW. Enhanced molecular flexibility of α-zein in different polar solvents. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
13
|
Ngamwonglumlert L, Devahastin S, Chiewchan N, Raghavan GSV. Color and molecular structure alterations of brazilein extracted from Caesalpinia sappan L. under different pH and heating conditions. Sci Rep 2020; 10:12386. [PMID: 32709964 PMCID: PMC7382456 DOI: 10.1038/s41598-020-69189-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Brazilein extract from sappan wood (Caesalpinia sappan L.) has potential for use as natural food colorant since it has no unique flavor and taste. Although brazilein has long been applied in several traditional foods and beverages, information on its stability, which is of importance for practical application, is still limited. In this work, brazilein was isolated from sappan wood; its purity was confirmed by nuclear magnetic resonance spectroscopy. Relations between molecular structures and color as well as thermal stabilities of brazilein in aqueous solutions at pH 3, 7 and 9 were for the first time investigated. At the lowest pH, zero net-charge structure of brazilein, which exhibited yellow color, was predominantly found. The deprotonated and fully deprotonated structures of brazilein, which exhibited orange and red colors, respectively, were found when pH of the aqueous solutions increased. The forms of brazilein existing at the higher pH suffered extensive degradation upon heating, while the form existing at the lowest pH possessed higher stability. Heat-induced deprotonation and degradation were confirmed by UV-visible and Fourier-transform infrared spectra as well as losses of brazilein content.
Collapse
Affiliation(s)
- Luxsika Ngamwonglumlert
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok, 10140, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok, 10140, Thailand. .,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok, 10140, Thailand
| | - G S Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
14
|
Zhang ZH, Peng H, Woo MW, Zeng XA, Brennan M, Brennan CS. Preparation and characterization of whey protein isolate-chlorophyll microcapsules by spray drying: Effect of WPI ratios on the physicochemical and antioxidant properties. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
The stabilization of food grade copper-chlorophyllin in low pH solutions through association with anionic polysaccharides. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Zhang ZH, Peng H, Ma H, Zeng XA. Effect of inlet air drying temperatures on the physicochemical properties and antioxidant activity of whey protein isolate-kale leaves chlorophyll (WPI-CH) microcapsules. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Mathiyalagan S, Mandal BK, Sinha M, Ling YC. Synthesis of different metallochlorophyllins and quantification in food samples by reversed phase – high performance liquid chromatography. Nat Prod Res 2018; 33:3120-3126. [DOI: 10.1080/14786419.2018.1521403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Siva Mathiyalagan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Madhulika Sinha
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Li X, Zhou R, Xu K, Xu J, Jin J, Fang H, He Y. Rapid Determination of Chlorophyll and Pheophytin in Green Tea Using Fourier Transform Infrared Spectroscopy. Molecules 2018; 23:molecules23051010. [PMID: 29701638 PMCID: PMC6100186 DOI: 10.3390/molecules23051010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 11/29/2022] Open
Abstract
The chlorophyll, pheophytin, and their proportions are critical factors to evaluate the sensory quality of green tea. This research aims to establish an effective method to determine the quantification of chlorophyll and pheophytin in green tea, based on Fourier transform infrared (FT–IR) spectroscopy. First, five brands of tea were collected for spectral acquisition, and the chlorophyll and pheophytin were measured using the reference method. Then, a relation between these two pigments and FT–IR spectroscopy were developed based on chemometrics. Additionally, the characteristic IR wavenumbers of these pigments were extracted and proved to be effective for a quantitative determination. Successively, non-linear models were also built based on these characteristic wavenumbers, obtaining coefficients of determination of 0.87, 0.80, 0.85 and 0.89; and relative predictive deviations of 2.77, 2.62, 2.26 and 3.07 for the four pigments, respectively. These results demonstrate the feasibility of FT–IR spectroscopy for the determination of chlorophyll and pheophytin.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Ruiqing Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Kaiwen Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jie Xu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Juanjuan Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Hui Fang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|